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Abstract

Einstein’s theory of relativity is based on the Principle of Equiv-
alence, Hilbert’s on invariant theory and the calculus of variations.
The two paradigms are not equivalent. Using the universality of
Maxwell’s equations, Hilbert’s variational method is used to deter-
mine the energy-momentum tensor uniquely, and to show that general
relativity can be formulated on the basis of Maxwellian, rather than
specific physical force fields. A unified field theory is proved in which
the Maxwellian force fields are all on an equal footing, distinct from
the geometric field.
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1 Introduction

Newtonian physics played a fundamental role in the prediction and
discovery of Neptune; it accurately described the motions of all the
planets in the solar system save Mercury; but it could not account for
the anomalous 38 seconds of arc per century observed in its orbit [11].
The astounding accuracy of Einstein’s geometric theory in explaining
those anomalies – together with his calculation of the correct bending
of light rays from a distant star passing by the Sun – led to a rapid
acceptance of his theory of gravitation.

Einstein’s investigation of gravitation began in his 1907 “review”
article [3]. He discussed many aspects of relativity there, and proposed
that the axiom of special relativity – that the laws of physics are
valid in all inertial coordinate systems – be extended to accelerated
coordinate systems as well. He called this the Principle of Equivalence.
It can be stated in a number of ways; one is that an observer cannot
detect the difference between a force field and an accelerated reference
frame. In a brilliant gedanken Experiment he posited two identical
clocks on a line, one in uniform acceleration, the second fixed in a
uniform gravitational field. Assuming the two clocks keep the same
time, he showed by an entirely mathematical argument that the rate
of time of the stationary clock depended solely on the gravitational
potential.

Einstein’s intuition and determination ultimately led him to a sys-
tem of partial differential equations coupling two unknown quanti-
ties, the metric tensor of the space-time continuum, and the energy-
momentum tensor representing the physical source term causing space-
time to bend. The energy-momentum tensor is not determined by the
Principle of Equivalence, but Einstein did not need it in the two prob-
lems he was treating; for by his gedanken Experiment he knew the
time-component of the metric tensor was to first order a perturbation
of the Minkowski metric by the addition of the gravitational potential
φ. The source was clearly the mass of the Sun, which could be taken
as a point source; Einstein argued that the first order approximation
was sufficient, and thereby obtained the solution to his problem.

But how do we model intense gravitational fields generated by
objects in motion, a binary star, for example, or the collision of two
black holes? Or competing fields, such as the electromagnetic and
gravitational fields in the interior of a star?

The energy-momentum tensor is fundamental to modeling such
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problems. It was uniquely determined in Hilbert’s formulation of
general relativity as a problem in the calculus of variations on the
space-time manifold (see §3). But there was a glitch: it turned out
to be the classical Maxwell energy-stress tensor and Maxwell’s equa-
tions were seen as specific to the electromagnetic field. This leads
to an inexplicable “coupling” of the gravitational and electromagnetic
fields. Hilbert [8] describes it as “the appearance of electrodynamics as
the source of gravitation” (§82, Die elektrodynamischen Erscheinun-
gen als Wirkung der Gravitation). Perhaps for that reason, Hilbert’s
contribution has never been fully appreciated or acknowledged. The
variational method is often presented in the literature as an alternative
derivation of the equations of general relativity, without an acknowl-
edgement of Hilbert.

The Einstein field equations, with the classical Maxwell stress-
tensor for the electromagnetic field as the energy-momentum tensor,
are called the Einstein-Maxwell equations. Einstein himself discussed
the Maxwell stress-tensor for electromagnetism as an example of a co-
variant energy-momentum tensor; but since he identified the geometry
of space-time with the gravitational field, he did not propose that ten-
sor for his equations. His skepticism about using the Maxwell stress
tensor as the energy-momentum theory in his theory of gravity was
justified; it makes no sense to argue that the electromagnetic field
generates the gravitational field.

Nevertheless, the Einstein-Maxwell equations occur repeatedly through-
out the literature. An early attempt to combine electromagnetism and
gravitation in a single relativistic theory appeared in Nordström [15],
predating both Hilbert and Einstein. Subsequent to the publication of
Einstein’s theory and Schwarzschild’s construction of the associated
line element, Reissner in 1916 [21] and Nordström in 1918 [16] inde-
pendently obtained metric tensors for the Maxwell-Einstein equations
for special choices of the electromagnetic field which purport to rep-
resent the gravitational field generated by spherical bodies with both
mass and charge. The associated metric is known as the Reissner-
Nordström metric [25] Wald, Chapter 6, Problem 3. Metric tensors
for the Einstein-Maxwell equations are central the modern theory of
black holes (see §12.3 Wald).

This discrepancy between theory and practice is rectified by Theo-
rem 2.1, which proves that Maxwell’s equations are universal, indepen-
dent of the physical nature of the material source generating the field.
Theorem 2.2 then follows using Hilbert’s variational method combined
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with the universality of Maxwell’s equations to obtain a formulation
of general relativity based on Maxwellian fields rather than specific
force fields.

There is a second problem with Einstein’s formulation of his theory.
In [4], he stated

“According to the general theory of relativity, gravitation
occupies an exceptional position with regard to other forces,
particularly the electromagnetic forces, since the ten func-
tions representing the gravitational field at the same time
define the metrical properties of the space measured.”

This premise put the electromagnetic and gravitational fields on in-
compatible footings – the gravitational field as the Riemannian struc-
ture on space-time, the electromagnetic field as a linear field theory
on flat space-time. Owing to that viewpoint, Kaluza [9] modified the
work of Nordström and Reissner to obtain a unification of gravita-
tion and electromagnetism consistent with Einstein’s premise. Like
Hilbert, Kaluza’s theory was based on a variational method.

Electromagnetism and gravitation certainly differ at the micro-
scopic level – the interaction of the field with matter, for example
Snell’s laws of reflection and refraction in electromagnetism; and in
subatomic interactions, which are the province of quantum mechanics.
But Einstein’s premise is not supported by any physical experiment
in the macroscopic case, and is contradicted by Theorem 2.1.

Relativistic theories of gravitation built on Maxwell’s equations
and Lorentz invariance go back to Heaviside [7], Lorentz [12] and
Poincaré [20]. Theorem 2.1 is not to be interpreted as a proof that
Maxwell’s equations are a valid physical model for gravitation. Quite
the contrary: current notions about the role of Maxwell’s equations
must be re-examined. They are only approximate models of field the-
ory – in the electromagnetic as well as the gravitational case – valid
for weak fields. Curvature effects become noticeable in the presence
of strong fields,

When Theorem 2.1 is incorporated into Hilbert’s variational method,
the Maxwell stress-energy tensor associated with the field in question
is found to be the unique energy-momentum tensor to be used in the
equations of general relativity. Maxwell’s equations are thus central
to the determination of the energy-momentum tensor.

Universality puts all force fields generated by a material source
on the same footing, leading to a simple unified field theory in which
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the geometric structure of Einstein’s theory is no longer specific any
physical force field. Instead, it is the mechanism for the transmission
and interaction of physical forces via the bending of the space-time
continuum. The semi-Riemannian manifold of space-time thus plays
the role of Maxwell’s luminiferous medium in his original theory of the
electromagnetic field.

These results have significant consequences for general relativity.
Since the correct energy-momentum tensor has never been used, a
good deal of the theory will have to be reexamined. For example,
the extensive body of research on gravitational collapse deals with the
gravitational field alone, and ignores the competing electromagnetic
field (see §4); whereas the stability and ultimate gravitational collapse
of a star are the consequence of competing fields, for example the
electromagnetic and gravitational fields.

Historically, Maxwell derived his dynamical equations for the elec-
tromagnetic field using the empirical laws of electromagnetism, in par-
ticular Faraday’s law of electromagnetic induction. While the original
theory has been considerably streamlined and simplified, all existing
derivations are based in one way or another on Faraday’s Law.

It is essential to Hilbert’s invariant approach to general relativity
that Maxwell’s equations be invariant under the entire diffeomorphism
group of space-time. Minkowski’s formulation of them is restricted to
flat space time, where the invariance group is the Poincaré group.
That formulation is easily extended to obtain the tensorial represen-
tation of Maxwell’s equations, and was known to both Einstein and
Hilbert. The invariant Lagrangian is given in equation (7); and the
invariant (tensorial) form of the equations is given in (38), §9.

The vector form of the equations, the coupled system of partial
differential equations for E and B, can be obtained directly from
Minkowski’s formulation. The vector form of the equations is the
simplest form of Maxwell’s equations, and is ubiquitous in the liter-
ature, e.g. [5], [10], [14]. It is specific to flat space-time and to the
electromagnetic field, and its symmetry group is the Poincaré group,
the Lorentz group plus translations.

Hodge theory is the natural language of potential theory, and
Maxwell’s equations have the structure of a potential problem on
Minkowski 4 dimensional space-time. Misner, Thorne and Wheeler
[14] obtained Maxwell’s equations in the language of Hodge theory
directly from their vector form. Since those equations are specific to
the electromagnetic field, that derivation does not establish univer-
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sality. To prove universality, one must derive the equations directly,
with the use of Faraday’s Law. This is done in §6 by replacing the
laws of Faraday and Maxwell-Ampère by Einstein’s two assumptions
of special relativity. Both laws are found to be valid for all Maxwellian
fields; they are not presumed in advance, but follow as mathematical
corollaries of special relativity. The derivation is based on 2-forms
which correspond to the laws of Maxwell-Ampère and Faraday; and
Hodge duality plays a substantive role in the proof.

In order to extend universality to the tensorial and vector forms of
the equations, it suffices to show that Minkowski’s formulation can be
obtained directly from the Hodge form of the equations; this is done
in §7.

The drama and excitement of Einstein’s discovery is captured in
The Hunt for Vulcan, by Thomas Levenson [11]. Just as the discovery
of Neptune validated Newtonian physics in explaining the perturba-
tions of Uranus’ orbit, astronomers postulated the existence of another
planet, Vulcan, to explain the perturbations of Mercury. The search
for Vulcan proved fruitless, and Einstein finally showed that the prob-
lem lay not in the heavens, but in the mathematical model itself – a
point to keep in mind in the present search for dark matter, or dark
energy.

The Schwarzschild metric is a singular solution of the Einstein
field equations – the Euler-Lagrange equations for the “Riemannische
Krümmungsinvariant” (the Ricci scalar curvature). Is it a solution to
Hilbert’s variational problem? It is not even clear that the integral
exists, due to the Schwarzschild singularity. The mathematical anal-
ysis of such singularities plays a central role in modern cosmology, in
particular, the theory of black holes (Wald, Chapters 9 and 12).

Hilbert’s paradigm, as realized in Theorem 2.2, opens the door
to an alternative mathematical approach to cosmology based on the
calculus of variations. Some examples are briefly discussed in §3; but
a good deal of mathematical machinery remains to be developed.
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2 Statement of Results

A force field F is said to be generated by a material source consisting
of a density ρ and current J, both compactly supported, such that

ρt + div · J = 0; (1)

∇× F = J, div · F = ρ. (2)

We assume in addition that the dynamical equations satisfy Einstein’s
two axioms of special relativity [2] – that the equations are valid in
all inertial frames, and that there is a universal velocity c which is the
same in all such frames. Force fields satisfying these postulates will
be called Maxwellian fields.

Theorem 2.1 In an isotropic, homogeneous medium the electromag-
netic field equations are not specific to the electromagnetic field, but
rather comprise a mathematical theory of Maxwellian fields, regardless
of the physical nature of their source.

The dynamical field equations are Maxwell’s equations, and the
laws of Maxwell-Ampère and Faraday are mathematical corollaries of
the theory, valid for all force fields, regardless of their physical nature.

Theorem 2.1 is of mathematical interest in that its proof consti-
tutes the first mathematical derivation of Maxwell’s equations based
on first principles, rather than on empirical laws such as Faraday’s.
Its physical significance is that it is central to the proof of Theorem
2.2 below. That theorem shows, among other things, that Maxwell’s
equations for gravitation are necessary for the proper determination
of the energy-momentum tensor of Einstein’s theory. This will be
explained in §3.

Theorem 2.2 Maxwell’s equations couple to Einstein’s field equa-
tions of general relativity using Hilbert’s variational method.

The energy-momentum tensor is uniquely determined, and the the-
ory of general relativity can be formulated in terms of Maxwellian
fields, rather than specific force fields.

The Maxwell potentials corresponding to distinct force fields can be
superposed, leading to a unified field theory.

Theorem 2.2 will be proved in §3. A unified field theory is es-
sential in modeling massive structures with internal electromagnetic
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fields such as a star §4. The theorem shows not only that Maxwell’s
equations are relevant to gravitation, but also that general relativity
is relevant in cases where the electromagnetic field is intense, in the
interior of a star, or the early universe, for example.

The proof of Theorem 2.1 makes substantive use of Hodge theory.
A summary of the basic ideas are presented in §9. The static equa-
tions require the conservation of material, and are obtained in §5 as
an application of the Hodge decomposition theorem on E

2,E3. Two
parameters ǫ, µ arise in the static theory, and in the course of the
derivation of the dynamic equations we obtain

µǫ =
1

c2
. (3)

Equation (3) was central to Maxwell’s demonstration that light is an
electromagnetic phenomenon. The parameters ǫ and µ are also central
to the proof of universality.

By (3) Maxwell’s equations in the presence of a material source
form a one-parameter family of equations, labeled by µ. The param-
eter ǫ is connected with Gauss’ law for the conservative component of
the force field and is given by 4π/G, where G is the strength constant
associated with the inverse square law, and is positive for repulsive
forces and negative for attractive forces cf. §5. By (3),

µ =
4πG

c2
. (4)

3 Universality of General Relativity

Einstein uses the word gravitation in his 1907 paper, but his argument
is entirely mathematical and easily extends to any conservative force
field. Why then should the Principle of Equivalence apply to the
gravitational but not the electromagnetic field? And why should the
proposition that the laws of physics be the same in any coordinate
system apply to gravity but not to electromagnetism? He says nothing
about this, and builds the theory of general relativity on the premise
that “gravitation occupies an exceptional position with regard to other
forces, particularly the electromagnetic forces . . . ” – a premise
contradicted by Theorem 2.1.

Einstein [4] shows that invariance, together with the Principle
of Equivalence, leads by purely mathematical considerations to field
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equations on a semi-Riemannian manifold, with Newton’s law of mo-
tion replaced by the geodesics. But the energy-momentum tensor is
not determined by geometric methods. Einstein introduces that ten-
sor as the source term for the geometric field equations, in analogy
with the material source in Maxwell’s equations. He discusses two
physical examples – the energy-stress tensor of a frictionless adiabatic
gas, and the Maxwell stress tensor for the electromagnetic field. As
Maxwell’s equations are at the time regarded as specific to electromag-
netism, while Einstein identifies the geometry of space-time with the
gravitational field, he does not propose that tensor in his equations.

The lack of a definitive stress-tensor has led to extensive discussions
in the literature of possible energy-momentum tensors, all based on
physical arguments, for example [10], [14], [26]. A common approach
is to sum the energy-momentum tensors of individual particles. There
are extensive discussions in the literature comparing the approaches
of Einstein and Hilbert to obtaining the energy-momentum tensor.
See especially Chapters 17 and 21 in Misner, Thorne, and Wheeler.
Chapter 21 is devoted to a discussion of Hilbert’s variational approach.
That method is the only mathematical framework known for deter-
mining the energy-momentum tensor.

Hilbert’s approach to general general relativity [8] is based on an
action principle and two invariants, K and L. The first is the “Rie-
mannische Krümmungsinvariant” (better known as the Ricci scalar
curvature R), K =

∫∫
K
√
g dω, where

K = gjkKjk, Kjk =
∂Γi

jk

∂xi
−
∂Γi

ji

∂xk
+ Γi

riΓ
r
jk − Γi

rkΓ
r
ji, (5)

Γi
jk are the Christoffel symbols; and

√
g dω is the invariant volume

element, where g = det ||gij || and dω = dx1dx2dx3dx4.
The second is L =

∫∫
L
√
g dω, where L is the Lagrangian of a

physical system with coordinates qi and their derivatives qi,j , invariant
under the group of diffeomorphisms of space-time. Hilbert combines
the two invariants as a sum; but in order to conform with Einstein’s
formulation of the equations, we take H = K− ζL. (The parameter ζ
can be computed up to a pure number by dimensional analysis §8.)

The equations of general relativity are given by the action prin-
ciple δH = 0, where the variations are taken over both the physical
variables qi and the geometric variables consisting of the gij and the
Christoffel symbols. The energy-momentum tensor is obtained from
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the variational derivative

Tmn =
1√
g

∂
√
g L

∂gmn
. (6)

Hilbert calculates all the invariants and finds that the simplest case
is that in which L is the Lagrangian for Maxwell’s equations in free
space. Writing qi = Ai, the Maxwell 4-potential, we have

L = FijF
ij , F ij = gikgjlFkl, Fij = Aj,i −Ai,j .

The expression L is obtained as an extension to general coordinates of
Minkowski’s Lagrangian on Minkowski space M4 of Maxwell’s equa-
tions in free space.

Einstein and Hilbert both base their calculations on Minkowski’s
work; but Einstein extends it to include the source terms, while Hilbert
does not. The result is that the energy-momentum tensor obtained by
Einstein is specific to the electromagnetic field; while that obtained
by Hilbert is specific to Maxwell’s equations in free space.

We contend that Maxwell’s equations in free space should not be
considered specific to the electromagnetic field. When written in the
language of Hodge theory, as in §6, they take the form dF = 0, δF = 0
where F is a 2-form on Minkowski four dimensional space-time M4.
That is, F is a harmonic 2-form, a purely mathematical object. To put
this in perspective, take the equation ∆φ = 0 in E

3. What physical
field does the gradient −∇φ represent? We have no information. On
the other hand, consider Poisson’s equation ∆φ = −ρ/ǫ, where ρ is a
density and ǫ is the strength parameter associated with Gauss’ law.
Now −∇φ is the force field induced by ρ.

This ambiguity does not occur in the theory presented this paper,
since only Maxwell’s equations in the presence of a material source
are considered. The associated Lagrangian is (see §7)

L = −1
4
FjkF

jk + µAiJ
i. (7)

The energy-momentum tensor obtained from (6) is calculated explic-
itly in §8:

Tmn =
1

2
(−FmjF

j
n + 1

4
FijF

ijgmn)

+ µ(AmJn − 1
2
gmnAiJ

i). (8)

Up to a scalar multiple, the first term, quadratic in the Fij , is
the classical stress-energy tensor for a general Maxwellian field. (By
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(38) µ2 is implicitly contained in that term.) The Maxwell stress-
tensor (without the µ) appears throughout the literature in general
relativity, but it is always specific either to the electromagnetic field,
or to Maxwell’s equations in free space.

Though Einstein had extended Minkowski’s treatment to include
the source terms, he did not make use of Hilbert’s variational method
and so did not compute the Lagrangian (7). Consequently, the second
term in (8) does not appear in his presentation.

We note a useful variant of Hilbert’s original method. The varia-
tion δL with respect to the field variables Ai, Ai,j constitutes a varia-
tion under the constraint that the geometry of space-time is fixed; and
the equations so obtained are Maxwell’s equations on a fixed curvilin-
ear space-time. The field equations of general relativity are obtained
by relaxing this constraint, introducing K, and allowing variations over
both field and geometric variables gij and Γi

jk.
This approach by-passes the Principle of Equivalence, as well as

the postulate that space-time bends in the presence of a force field, by
showing that space-time must bend in the presence of a Maxwellian
field unless it is constrained not to do so. This proves the universality
of general relativity, no further postulates being necessary.

We have so far proved the first two statements in Theorem 2.2;
the proof of the unified field theory is very simple. Consider a family
of Maxwellian fields, indexed by κ, generated by material sources Jκ;
Aκ the corresponding Maxwellian potentials; Fκ , jk the force fields;
Lκ the Lagrangians; and ζκ the corresponding Lagrange multipliers.
Putting L =

∑
κ ζκ Lκ and using (6) we have

Tmn =
1√
g

∂
√
g L

∂gmn
=

1√
g

∂
√
g
∑
κ
ζκLκ

∂gmn
=

∑

κ

Tκ,mn, (9)

where

Tκ,mn =
1√
g

∂

∂gmn

√
g ζκLκ.

We assume the linear physical fields interact only via the geometric
field. �

4 Negative Energy

Maxwell briefly considered the possibility of applying his ideas to grav-
itation in his original tract, but abandoned it because of the implica-
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tions of the negative energy of an attractive field. He had proposed
a luminiferous medium, the aether, as a mechanical medium to trans-
port the energy of the waves. Since the field energy of an attractive
force field is negative, and there is no lower bound on that energy, the
aether would have to have an infinite amount of energy, he reasoned,
concluding ([13] p. 493)

“As I am unable to understand in what way a medium
can possess such properties, I cannot go any further in this
direction in searching for the cause of gravitation.”

Many of the arguments against Maxwell’s equations for gravitation
are based on that brief passage in his treatise. See Pais Chapter 9 [17],
and the discussion in [22]). But Einstein scotched Maxwell’s aether
with his two simple axioms of special relativity; and the negative field
energy is neither an obstruction to the derivation of the equations nor
to their coupling to the field equations of general relativity. In fact, the
negativity of the classical field energy is essential to an understanding
of astrophysics.

In [22] §8 we constructed a simple example to show that as mass
aggregates under the influence of gravity, the field energy goes to −∞.
We considered the family of Gaussian mass distributions

ρσ(x) =
(σ
π

)3/2
exp(−σ|x|2), x ∈ E

3.

These densities all have total mass 1, while the total energy,

E = −
∫∫

ρ(x)ρ(y)

8π|x− y|dxdy, x, y ∈ E
3,

can be computed explicitly and is given by

Eσ = − 1

16π2

( σ

2π

)1/2
.

As σ → ∞, the mass distribution collapses to the origin (ρσ → δ(x))
while Eσ → −∞

The theory of distributions treats the notion of a point mass rig-
orously in linear partial differential equations; but the above result
shows that the gravitational energy of a point mass is −∞, regardless
of the amount. In the construction of the Schwarzschild line element
the energy-momentum tensor is assumed to vanish; and this implies
that the field source is a Dirac delta function with mass M located at
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the origin. Thus a nonlinear system of partial differential equations is
being forced by a source with infinite negative energy. Is the resulting
singularity, the event horizon, a physical reality, or a simply a spurious
artifact of the assumption of a point mass?

A star forms by the aggregation of gases, typically hydrogen, under
gravitation. As the volume of the aggregate decreases, its temperature
and pressure increase until thermonuclear fusion commences and the
contraction is halted, the pressures of the gravitational and electro-
magnetic fields coming into equilibrium. In the course of contraction,
the decrease of energy in the gravitational field is compensated by the
increase in thermal energy. This shows that star formation, and more
generally gravitational collapse, cannot be modeled by the gravita-
tional field alone; other forms of energy must be included.

There is an extensive body of theoretical literature on gravitational
collapse, but it is limited by the fact that only the gravitational field
is accommodated. A physically realistic model of the dynamics of a
massive body requires the combination of two or more distinct fields –
mass and energy for example – a so-called unified field theory, which
was never found under the old paradigm.

The complementary processes of gravitational collapse and explo-
sion also manifest themselves in the recent observation of a “gravita-
tional wave” by the Laser Interferometer Gravitational Observatory,
announced on February 11, 2016 (www.ligo.caltech.edu):

“LIGO scientists estimate that the black holes for this event
were about 29 and 36 times the mass of the sun, and the
event took place 1.3 billion years ago. About 3 times the
mass of the sun was converted into gravitational waves in
a fraction of a second – with a peak power output about
50 times that of the whole visible universe.”

What is the mechanism that produces the outgoing “gravitational”
wave? Here is one way to look at the process. The coalescence of the
two black holes results in a reduction of the (already negative) grav-
itational energy of the system. That decrease is converted into en-
ergy, partly the heat, electromagnetic, and kinetic energy of the newly
formed black hole, but also into the space-time continuum. (Einstein
[4] denoted the energy-momentum tensor of space-continuum by tµν .)
Space-time can thus be viewed as the luminiferous medium initially
proposed by Maxwell – the “mechanical system” that transports en-
ergy. We argued earlier that the theory of relativity should not be
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seen as specific to the gravitational field. This allows us to view the
outgoing wave as one in the fabric of space-time. While the energy
source came initially from the gravitational field, the resulting outgo-
ing wave is purely geometric in nature; there are no longer material
sources such as charge or mass involved.

5 Maxwellian Fields

In this section we obtain the static equations of a Maxwellian field; the
discussion in this section is restricted to E

3. The Hodge star operation
is determined by the invariant volume element dv = dx1 ∧ dx2 ∧ dx3;
the details are given in §9. Thus, dxi = dxj ∧ dxk, where i, j, k are
in cyclic order. The co-adjoint operator δ = ∗−1d∗ is then the formal
adjoint of the exterior derivative d. On E

3, ∗ = ∗−1, so δ = ∗d ∗. For
proofs and further details concerning Hodge theory, see §9 and [22].

Let F = F · dx = Fidx
i and J = J · dx = Jidx

i, where F is the
force field and J the current in (1) and (2). Then ∗F = Fidx

j ∧ dxk.
In the stationary case, ρt = 0, hence d ∗ J = 0, and equations (2) take
the form

dF = ∗J, δF = ρ. (10)

The Hodge decomposition of the Hilbert spaces Λp(E
3) of square

integrable p-forms (Theorem 9.2) implies that

Λ1(E
3) = E⊕ H, Λ2(E

3) = B⊕D, (11)

where E and H are the subspaces of exact and co-exact 1-forms; while
B and D are respectively the subspaces of exact and co-exact 2-forms.
By (11) we have F = E + H, and ∗F = B + D, where E, B are
exact and H, D are co-exact. We may therefore write E = −dφ (the
minus sign is by convention) and B = dA; and so from (10) we obtain
dF = ∗J = dH, and δF = ρ = ∗dD, hence dD = ρ dv.

The four differential forms, E,H,B and D form the basic structure
of the electromagnetic field equations: E and H are the electric and
magnetic fields, B the magnetic induction, and D Maxwell’s electric
displacement. The equation dH = ∗J is Ampère’s law. We use the
nomenclature of electromagnetism in the general case as well to orient
the reader. But the reader should keep in mind that these results are
not specific to the electromagnetic field.

14



Theorem 5.1 There exist parameters ǫ = ǫ(x, n, E), µ = µ(x,n, H),
n a vector situated at x ∈ E

3, such that

D = ǫ ∗ E, B = µ ∗H (12)

These two identities are called constituency laws; in [22] they were
taken as postulates.

Proof: Writing D = D · dS and ∗E = − ∗ dφ = −∇φ · dS we see
that the pair of differential forms are simply the projections of the
axial vector field D and the polar field −∇φ along the normal line to
the surface element dS at x. Hence they are defacto scalar multiples
of one another, the scalar multiple being a function of x, the normal
n and possibly the field strength E: ǫ = ǫ(x,n, E).

In the case of B, H write B = B ·dS, ∗B = B ·dx and H = H ·dx.
Replacing dx by n = dx/ds, where s is the arc length along the normal
curve to a family of surface elements dS, we see that ∗B and H are
projections of the axial vector B and polar vector H along that curve,
hence scalar multiples of one another. As above, ∗B = µH where
µ = µ(x,n, H). �

The medium is isotropic if both ǫ and µ are independent of n, and
homogeneous if they are independent of x. In free space, they are
both, hence they are constant by the assumption of frame invariance.

The dependence of ǫ and µ on the medium account for the interac-
tion of the field with matter. Snell’s laws of reflection and refraction
in electromagnetic waves, for example, can be derived mathematically
when ǫ and µ have jump discontinuities, see Stratton, [24]. If ǫ and µ
depend on the fields, as in (12), the field equations are nonlinear; this
is precisely the situation in nonlinear optics. Non-local dependence in
the case of electromagnetism is necessary to explain such phenomena
as chromatic aberration, rainbows, and prisms, since these are mani-
festations of the dependance of the speed of light on the frequency of
the field (see (3))
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Using (36) the static equations are

E = −dφ, dD = ∗ρ, E = ∗1
ǫ
D

δE = − ∗ d ∗ dφ = ∗d1
ǫ
∗D (13)

B = dA, dH = ∗J, B = µ ∗H;

δB = δ dA = ∗d ∗ dA = ∗d (µH). (14)

The equations (13) and (14) are in “divergence form”; this form must
be used in cases where ǫ and µ are discontinuous.

In a homogeneous medium, where ǫ and µ are constant, the equa-
tions simplify to

δE = − ∗ d ∗ dφ =
ρ

ǫ
, δB = ∗d ∗ dA = µJ. (15)

Proposition 5.2 The relation D = ǫ ∗E is equivalent to Gauss’ Law
together with Newton’s inverse square law for the exact component of
the field. The field is repulsive or attractive according as ǫ is positive
or negative.

Proof: The displacement D due to a point source q at the origin is
[22]

D =
q

4π

xj
r3
dxk ∧ dxl. (16)

By the first relation in (12), it follows that

Ei =
q

4πǫ

xi
r3
.

Writing r̂ = r/r the force on a point source of strength q′ at r is then

E =
Gqq′

r2
r̂, G =

1

4πǫ
. (17)

The “lines of force” exit or enter the region bounded by S, ac-
cording as E · n is positive or negative. If ρ (hence q) is taken to be
non-negative in both cases, then ǫ is positive or negative according
as the force is repulsive or attractive. Equation (17) is the classical
inverse square law when G is the negative of the Cavendish constant
in the case of gravity, and the Coulomb constant in the case of the
electrostatic field.
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6 The Dynamical Equations

Special relativity is efficiently encoded by formulating the dynamical
equations on 4 dimensional Minkowski space-time M4, obtained from
E
4 by setting x4 = ict. The Lorentz group is obtained directly from

the rotation group SO(4) on E
4; and the star operation is obtained

by replacing x4 with ict in (19), (20), (36) in §9. The conventions
for Maxwell’s equations on M4 in the general case are identical with
those in Stratton’s classic treatise on electromagnetism [24].

By Theorem 9.2 the Hodge star operation on M4 interchanges
exact p forms with co-exact 4 − p forms; hence it maps Λ2 to itself.
The Hodge duality is

(A,B) =
1

ic

∫

Mr

A ∧ ∗B. (18)

We begin by combining the density ρ and current J into a single
source term, the 1-form J = Jidx

i, 1 ≤ i ≤ 4 on M4. Since the entries
in the Lorentz matrices are pure numbers, all components of J must
have the same dimension. That, plus the conservation law (1), implies
that J4 = icρ and δJ = 0

Similarly, we combine the potentials φ and Â = A · dx from the
static case into a single 1-form A = Aidx

i ∈ Λ1(M
4). By the Hodge

decomposition of Λ1(M
4), we may write A = dψ + δΦ, but since the

field is obtained from dA, the term dψ has no effect; hence we may
assume that δA = 0. We take A4 = iφ/c for reasons that will be
explained shortly.

The Hodge star operation on E
4 associated with the oriented vol-

ume element dv ∧ dx4 is

∗ dxj = dxk ∧ dxl ∧ dx4 ∗ dx4 = −dv (19)

∗ dxj ∧ dxk = dxl ∧ dx4 ∗ dxj ∧ dx4 = dxk ∧ dxl (20)

∗ dv = dx4, ∗ dxj ∧ dxk ∧ dx4 = −dxl. (21)

Here and below j, k, l run from 1 to 3 in cyclic order. Note that
∗∗ = (−1)pid on E

4.
The Hodge star operation on M4 is then given by replacing x4 by

ict in the relations above. The volume element dv ∧ dx4is denoted by
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dω. Maxwell’s equations in the language of Hodge theory then take
the form of a potential problem on M4,

F = dA, δF = −µJ. (22)

In the specific case of the electromagnetic field, F is the Faraday 2-
form E ∧ dt+B. Equations (22) (without the µ) are obtained in [14]
starting with Maxwell’s equations in vectorial form.

The first equation in (22) is equivalent to Faraday’s Law of elec-
tromagnetic induction (see [22]), and therefore cannot be taken as an
axiom in the general case. We proceed instead as follows. (Recall that
E and B are respectively general 1- and 2-forms, not specific to the
electromagnetic field.)

Lemma 6.1 Every exact 2-form can be written as

F =
E

ic
∧ dx4 +B, (23)

where E = Ejdx
j , B = Bjdx

k ∧ dxl is exact, and (j, k, l) run from 1
to 3 in cyclic order.

Proof: The exact forms in Λ2 are given by F = dA, where A = Ajdx
j ,

and

dA =
∑

j<k≤3

(
∂Ak

∂xj
− ∂Aj

∂xk

)
dxj ∧ dxk

+
3∑

j=1

(
∂A4

∂xj
− ∂Aj

∂x4

)
dxj ∧ dx4

The result follows by putting

Bi =
∂Ak

∂xj
− ∂Aj

∂xk
,

Ej

ic
=

(
∂A4

∂xj
− ∂Aj

∂x4

)
. � (24)

The reason for the choice of A4 is now apparent: the second
equation in (24) gives Ej = −∂φ/∂xj in the special case when the
solenoidal component vanishes.

In [22] Faraday’s Law was reformulated as a theorem, essentially
that given any E = E(x, t) there is an exact 2-form B such that
E ∧ dt + B is exact. But two additional axioms were necessary for
the derivation of Maxwell’s equations: (3) and the extension of (12)
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obtained by formally replacing the star operation on E
3 by that on

M4:
∗D = ǫE ∧ dx4, ∗B = µH ∧ dx4. (25)

These dualities, together with (3), were taken as axioms and used to
prove that

∗F = µG, dG = ∗J, (26)

where F was the Faraday 2-form. The duality (26) shows that G is
co-exact, and implies (22).

We now show that (3) and (25) can be derived from the static
constitutive laws (12) alone, which were obtained mathematically. The
condition δJ = 0 implies that d ∗ J = 0, hence that there is a 2-form
G such that dG = ∗J locally. We write G = (H ∧ dx4 − icD), where
H = Hjdx

j and D = Djdx
k ∧ dxl are chosen so that dG = ∗J . In the

language of vector analysis this equation gives the Maxwell-Ampère
equation of the electromagnetic field [22].

There is no obstruction to solving the equations for G, but the
2-form is not necessarily co-exact.

Lemma 6.2 Let F be an exact 2-form, and let G satisfy dG = ∗J .
Then ∗F = µG if and only if both (3) and (25) are satisfied.

Proof: If both (3) and (25), then

∗F = ∗
(
E

ic
∧ dx4 +B

)
=

1

icǫ
D + µH ∧ dx4

=µ

(
H ∧ dx4 + 1

icǫµ
D

)
= µG.

Conversely, if ∗F = µG then

∗
(
E

ic
∧ dx4 +B

)
= µ(H ∧ dx4 − icD);

hence ∗B = µH ∧dx4 and ∗E ∧dx4 = µc2D, and (25) are established.
It follows that

Ejdx
j ∧ dx4 =E ∧ dx4 = ∗ ∗ E ∧ dx4 = µc2 ∗D

=µc2 ∗Djdx
k ∧ dxl = µc2Djdx

j ∧ dx4.

When the fields are stationary, Dj = ǫEj by (12); and (3) follows. �
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We can now complete the proof of Theorem 2.1. Given a com-
pactly supported source J , we first solve the system of equations
�A = −µJ, δA = 0. The equations �Ai = −µJi are obtained glob-
ally without difficulty, since the equations are hyperbolic and J is
compactly supported. The Lorentz condition, δA = 0, can always be
obtained by a gauge transformation if necessary, that is, by replac-
ing A by A + dψ where ψ is determined by the hyperbolic equation
�ψ = −δA.

Now put F = dA and G = µ−1∗dA. Then F is exact, G is co-exact,
and dG = ∗J . Moreover ∗F = µG; hence the dynamic constitutive
laws (26) as well as (3) follow directly from Lemma 6.2; and Maxwell’s
equations (22) are obtained. �

7 Hodge to Minkowski

In addition to universality, Maxwell’s equations have the remarkable
property that the Lagrangian (7) is invariant with respect to the entire
group of general coordinate transformations. These two properties,
universality and invariance, are the basis underlying Theorem 2.2.
Hodge theory, the basis for the proof of universality, is restricted to
transformation groups leaving the measure dω invariant; but since (7)
is tensorial, it suffices to derive it in the case of special relativity.

The Lagrangian for Maxwell’s equations (22) is [22]

S =
1

ic

∫∫∫
1

2
F ∧ ∗F + µA ∧ ∗J =

1

2
(F, F ) + µ(A, J), (27)

where (F,G) is the Hodge duality (18). In fact, denoting the variation
of S by Ṡ, we get Ṡ = ic[(Ḟ , F ) + µ (Ȧ, J)]. Noting that (Ḟ , F ) =
(dȦ, F ) = (Ȧ, δF ), we have Ṡ = ic (Ȧ, δF + µJ). Letting Ȧ vary over
all admissible variations, and assuming these to be a dense set, we get
δF + µJ = 0, which, together with the relation F = dA, comprise
Maxwell’s equations.
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From (23) we have

F ∧ ∗F =

(
E

ic
∧ dx4

)
∧ ∗

(
E

ic
∧ dx4

)
+B ∧ ∗B

=


∑

j

BjBj −
Ej

c

Ej

c


 dω, (dω = dv ∧ dx4),

=−
(
BjB

j +
1

c2
EjE

j

)
dω,

where Bj = −Bj and Ej = Ej are the contravariant tensors ob-
tained by raising the indices using the Minkowski metric tensor η =
diag (−1,−1,−1, 1).

From (23) we obtain Fkl = Bj , Fk4 = Ek/ic. Replacing x4 by x4/i
and noting that Bj = F kl, etc. we find

(F, F ) = −1

2
FjkF

jk.

Since Fjk is a covariant tensor, its contraction is an invariant. The
source term (A, J) is transformed in the same way, so (7) follows from
(27).

8 The Energy-Momentum Tensor

In this section we obtain the explicit form of the energy-momentum
tensor (8) directly from (6) and (7). Since the the action depends only
on the gij and not their derivatives, the calculation reduces to

Tmn = C1(g)(−1
4
FijFkl) + C2(g)(µAiJj),

where

C1 =
1

4

(
1√
g

∂

∂gmn

√
ggikgjl

)
, C2 =

(
1√
g

∂

∂gmn

√
ggij

)
.

These two coefficients can be simplified using a standard identity
from matrix theory:

(
∂

∂gij

)
log g = gji,

(
∂

∂gij

)
log g = −gji. (28)
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The second identity follows from the first by replacing the matrix gij
by its inverse gij . The first follows from the Laplace expansion of the
determinant g =

∑
i gij∆

ij , where ∆ij is the cofactor of gij . Since ∆
ij

is independent of gij , ∂g/∂gij = ∆ij = gjig, which is equivalent to the
first identity.

Using (28) we obtain

1√
g

∂

∂gmn

(√
ggij

)
=

∂gij

∂gmn
+

1

2
gij
∂ log g

∂gmn
= δimδ

j
n − 1

2
gijgmn. (29)

Similarly

1√
g

∂

∂gmn

(√
ggikgjl

)
= δimδ

k
ng

jl + δjmδ
l
ng

ik − 1

2
gikgjlgmn. (30)

Equation (8) then follows.
The field equations of general relativity obtained by Hilbert’s vari-

ational approach are therefore

Kjk − 1
2
Kgjk = ζTjk, (31)

where Tjk is given by (8). The parameter ζ is necessary to match the
differing dimensions of the two sides of (31). It can be determined up
to a numerical constant by dimensional analysis.

Let ℓ, τ,m, q denote respectively the units of length, time, (inertial)
mass and source, with ℓ and τ restricted so that c = ℓ/τ . Then
[dxi] = ℓ, and [d] = 1, that is [dη] = [η] for any differential form. Also,
[δ] = [∗−1d ∗] = [∗−1][d][∗] = 1.

To compute the dimension of Tjk we first observe that the two
terms in (8) are of the same dimension: from (22) it follows that
[F ] = [A] = [µ][J ]; and therefore that [F ]2 = [A]2 = [µAJ ], hence
that [F 2

jk] = [µAiJ
i] = [Tjk]. Also [J ] = [Jidx

i] = [ρ][v]ℓ = [q](ℓτ)−1,

[Ji] = q/ℓ2τ . From the inverse square law (17) we deduce that [G] =
mℓ3/τ2q2. Hence by (4) it follows that [µ] = mℓ/q2. From the equation
�Ai = −µJi we obtain [Ai] = [µJi]ℓ

2 = mℓ/qτ .
Since the gij are dimensionless, the left side of (31) is of dimension

ℓ−2 by (5); hence

1

ℓ2
= ζ[µAiJ

i] = ζ
m2

q2τ2
, ζ =

( q
m

)2 1

c2
. (32)

Einstein calculates ζ directly by a perturbation method, based
on the presumption that the dynamics of a slowly moving particle
in a weak field in general relativity is approximated by Newtonian
mechanics (§21, Newton’s Theory as a Weak Approximation).
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9 Appendix: Hodge Theory

Vector analysis is today’s lingua franca of applied mathematics and
physics; but differential forms already made a cameo appearance in
Maxwell’s treatise, for example,

(
dH

dy
− dG

dz

)
dydz

is “the number of lines of magnetic force which pass through the area
dydz.”

Here is his introduction of the electric displacement and its cur-
rents:

“(55) Electrical displacement consists in the opposite
electrification of the sides of a molecule or particle of a body
which may or may not be accompanied with transmission
through the body. Let the quantity of electricity which
would appear on the faces dy.dz and an element dx, dy, dz
cut from the body be f.dy.dz, then f is the component
of the electric displacement parallel to x. We shall use
f, g, h to denote the electric displacements parallel to x, y, z
respectively.

The variation of the electrical displacement must be
added to the currents p, q, r to get the total motion of elec-
tricity . . . ” [13] p.480

The exterior calculus of differential forms, developed by Grassman,
Poincaré [19] (see Chapter 22) and later Cartan [1], is comprised of
two operations, the exterior derivative d, and the wedge product ∧,
acting on the linear spaces Λp of p-forms – completely anti-symmetric
covariant tensors of rank p. Both operations are tensorial – that is,
they are the same in all coordinate systems [23] §§18,19. The exterior
calculus is the natural language of integration theory.

On E
n the Hodge star operation ∗ : Λp → Λn−p associated with

the standard volume element dvn = dx1 ∧ · · · ∧ dxn is obtained by
defining its action on the basis forms η = dxi1 ∧ · · · ∧ dxip so that
η ∧ ∗η = dvn. An inner product on Λp, called the Hodge duality, is
then given by

(ξ, η) =

∫∫∫

En

ξ ∧ ∗η, ξ, η ∈ Λp. (33)
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This duality implicitly defines a formal adjoint of d, called the
co-derivative, δ : Λp+1 → Λp, defined by

(d ξ, η) = (ξ, δη) ξ ∈ Λp, η ∈ Λp+1, (34)

where ξ, η are smooth and compactly supported on E
n. The co-

derivative acting on Λp is given by

δp = (−1)p ∗−1 d ∗ . (35)

(This result was proved in [22], Proposition 2.1. The first statement
there must be corrected by replacing δp by δp+1 on the left side, and
then replacing p by p− 1 on both sides.)

Using those results for δp we find

δp = (−1)p ∗ d ∗ on E
3; and δ = ∗ d ∗ on E

4. (36)

Under a smooth coordinate transformation xi → x′i on E
n, dvn →

dv′n = J dvn, where J is the Jacobian ∂(x′ 1, . . . x′n)/(x1, . . . xn). The
group of volume preserving transformations on E

n are those for which
J = 1. Since the Hodge star operation is defined by its action on the
basis forms dxj , dxj ∧ dxk, . . . , an invariant Hodge star operation is
defined by the relation ∗ξ′ = (∗ξ)′. The Hodge star operation on E

n is
thus invariant under the group of volume preserving transformations.

The same arguments apply on M4. Moreover, d and ∧ are tenso-
rial – they are invariant under the entire diffeomorphism group [23].
Accordingly, by (22) we see that Maxwell’s equations are invariant
under the entire group of volume preserving transformations, not just
the Lorentz group.

It is well known that Maxwell’s equations can be written in curvi-
linear coordinates on a fixed geometry of space-time. (See [10]) We
can extend the above discussion to this situation. We begin by noting
that the star operation is an artifact of integration theory on differ-
entiable manifolds, independent of its geometry. (After all, the initial
applications of Hodge theory were to algebraic topology.)

On a general Riemannian manifold the volume form
√
g dvn, where

g = det ||gij || is the determinant of the metric tensor, is invariant
under the entire diffeomorphism group. In the specific case of general
relativity, n = 4 and this volume element was used by both Einstein
and Hilbert. It is invariant under the subgroup which preserves dω
(the group of volume preserving transformations on M4); hence

√
g is

also invariant under this subgroup, and therefore so is
√
g dω.
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In curvilinear coordinates on M4 the invariant star operation ∗g
and its inverse are

∗g =
√
g ∗ (∗g)−1 =

1√
g
∗−1, (37)

where ∗ is that on E
4.

Maxwell’s equations in curvilinear coordinates are obtained by re-
placing δ by δg

F = dA, δgF =
1√
g
∗−1 d

√
g ∗ F = −µJ.

These equations are valid when the geometry of space-time is fixed
(up to the group of volume-preserving coordinate transformations).
Maxwell’s equations in general coordinates are

Fij = Aj,i −Ai,j ,
1√
g

∂
√
g F ij

∂xj
= F ij

; j = −µJ i. (38)

In the case of the vector form of Maxwell’s equations in a vacuum
there is an extensive literature on additional geometrical symmetries
that go beyond the Poincaré group and include the conformal group.
Fushchych and Nikitin [6] have extended this class to additional non-
geometric symmetries; and Pohjanpelto [18] has shown that the first
order generalized symmetries of the equations form a closed Lie alge-
bra isometric to so(6, C)R ⊗ g, where g is an abelian algebra.

A differential form ξ is exact if ξ = dφ, and co-exact if ξ = δψ.
The Hodge star interchanges exact and co-exact forms. Similarly ξ is
closed if dξ = 0 and co-closed if δξ = 0. A differential form is called
harmonic if it is both closed and co-closed, i.e. dξ = δξ = 0.

The Hodge decomposition on a compact manifold states that every
(smooth) p-form ω can be decomposed as ω = dξ + δη + α, where α
is harmonic. Since (dξ, δη) = (ξ, δ2η) = 0, etc. it is clear that
the subspaces of exact, co-exact, and harmonic forms are mutually
orthogonal; hence the Hodge decomposition can also be written as

Λp = [im d]⊕ [im δ]⊕ [ker d ∩ ker δ]. (39)

We now denote by Λp the Hilbert space of all measureble p-forms
ξ for which (ξ, ξ) < +∞. The formulation of Hodge’s theorem above
leads to a simple proof of its extension to these Hilbert spaces based
on the well-known orthogonal decomposition theorem.
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Proposition 9.1 Let H be a Hilbert Space, E a subspace, and E⊥ its
orthogonal complement. Then every element F ∈ H can be uniquely
decomposed as F = E + G, where E ∈ E and G ∈ E⊥. We write
H = E ⊕ E⊥.

To account for the lack of differentiability of the elements of Λp,
the decomposition must incorporate the notion of weak derivatives.
We say that dF = G in the weak sense if (dF, η) = (G, δη) for all
smooth differential forms η ∈ Λp+1 with compact support. A similar
definition applies to the equation δF = G. Note that if dF = G in
the weak sense and F is C1, then G is continuous and dF = G in the
strong sense.

Theorem 9.2 The Hilbert space Λp(E
n) decomposes into the direct

sum of exact and co-exact forms: Λp = [dΛp−1] ⊕ [δΛp+1], where
[dΛp−1] denotes the L2 closure of the linear set {dA : A ∈ Λp−1},
etc. and by default, [dΛn] = [δΛ0] = 0. Thus every differential form
F ∈ Λp can be written as F = dA+δΦ, where A ∈ Λp−1 and Φ ∈ Λp+1.

The Hodge star operation interchanges exact and co-exact differ-
ential forms. Specifically, since ∗∗ = ±id,

∗[dΛp] = [δΛn−p]. (40)

Proof: A harmonic form A satisfies dA = δA = 0, hence ∆A =
0, where ∆ = dδ + δd. Writing A = Aα ∧ dxα where α = {i1 <
. . . ip}, it follows that ∆Aα = 0 as well. Therefore each Aα is a
harmonic function in the ordinary sense on E

n. In order that they be
square integrable they must also be bounded, and in that case they are
constant, by Liouville’s theorem. Those constants must vanish if A if
is to be square integrable on E

n; so there are no harmonic components
in the Hodge decomposition of Λp(E

n). The orthogonal decomposition
(39) therefore follows immediately from Proposition 9.1. The identity
(40) follows very simply:

∗ [dΛp] = {∗dα : α ∈ Λp} =

{∗d ∗ β : β = (−1)n+1 ∗ α ∈ Λn−p} = [δΛn−p].

The assumption that the material source is compactly supported
implies that F is square integrable on E

n. By (2), F is harmonic
outside a sufficiently large ball B; and we may assume without loss of
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generality that δA = 0. By the argument above, ∆Aα = 0 outside B,
and each Aα = O(r2−n) at infinity. It follows without difficulty that
F = dA ∈ Λp−1(E

n) �.
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