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ABSTRACT

Compressible turbulence shapes the structure of the interstellar medium of our Galaxy and
likely plays an important role also during structure formation in the early Universe. The
density probability distribution function (PDF) and the power spectrum of such compress-
ible, supersonic turbulence are the key ingredients for theories of star formation. However,
both the PDF and the spectrum are still a matter of debate, because theoretical predictions
are limited and simulations of supersonic turbulence require enormous resolutions to capture
the inertial-range scaling. To advance our limited knowledge of compressible turbulence, we
here present and analyse the world’s largest simulations of supersonic turbulence. We compare
hydrodynamic models with numerical resolutions of 2563–40963 mesh points and with two
distinct driving mechanisms, solenoidal (divergence-free) driving and compressive (curl-free)
driving. We find convergence of the density PDF, with compressive driving exhibiting a much
wider and more intermittent density distribution than solenoidal driving by fitting to a recent
theoretical model for intermittent density PDFs. Analysing the power spectrum of the turbu-
lence, we find a pure velocity scaling close to Burgers turbulence with P(v) ∝ k−2 for both
driving modes in our hydrodynamical simulations with Mach numberM = 17. The spectrum
of the density-weighted velocity ρ1/3v, however, does not provide the previously suggested
universal scaling for supersonic turbulence. We find that the power spectrum P(ρ1/3v) scales
with wavenumber as k−1.74 for solenoidal driving, close to incompressible Kolmogorov tur-
bulence (k−5/3), but is significantly steeper with k−2.10 for compressive driving. We show that
this is consistent with a recent theoretical model for compressible turbulence that predicts
P(ρ1/3v) ∝ k−19/9 in the presence of a strong ∇ · v component as is produced by compressive
driving and remains remarkably constant throughout the supersonic turbulent cascade.

Key words: hydrodynamics – turbulence – methods: numerical – ISM: clouds – ISM: kine-
matics and dynamics – ISM: structure.

1 IN T RO D U C T I O N

The aim of this study is to pin down the properties and statis-
tics of supersonic, compressible turbulence. This kind of turbu-
lence is relevant for the highly compressible interstellar medium
(Elmegreen & Scalo 2004; Mac Low & Klessen 2004; McKee &
Ostriker 2007), because it controls the rate of star formation trig-
gered by gas compression in shocks (Krumholz & McKee 2005;
Hennebelle & Chabrier 2011; Padoan & Nordlund 2011; Federrath
& Klessen 2012), affects the star formation efficiency (Elmegreen
2008; Federrath & Klessen 2013; Kainulainen, Federrath &
Henning 2013), and determines the mass distribution of stars when
they are born (Padoan & Nordlund 2002; Hennebelle & Chabrier
2008, 2013; Hopkins 2013a). Supersonic turbulence also has an
important effect on the gravitational instability of galactic discs

⋆ E-mail: christoph.federrath@monash.edu

(Romeo, Burkert & Agertz 2010; Hoffmann & Romeo 2012). Even
the early Universe was likely dominated by supersonic turbulence
when the first cosmic haloes started to contract to form the first
galaxies (Abel, Bryan & Norman 2002; Greif et al. 2008; Wise,
Turk & Abel 2008; Schleicher et al. 2010). Analytic models of
star formation are based upon the probability distribution function
(PDF) of the gas density and the scaling of the velocity spectrum
in supersonic turbulence. It is thus crucial to determine the PDF
and the scaling with high precision and to test whether these are
universal in any kind of supersonically turbulent flow or whether
they depend on the driving of the turbulence.

It is important to study the influence of the driving mode, be-
cause interstellar turbulence is likely driven by a combination of
different stirring mechanisms, all leading to potentially different
excitation states and mode mixtures. Driving mechanisms for in-
terstellar turbulence include supernova explosions and expanding,
ionizing shells from previous cycles of star formation (McKee
1989; Balsara et al. 2004; Krumholz, Matzner & McKee 2006;
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1246 C. Federrath

Breitschwerdt et al. 2009; Goldbaum et al. 2011; Peters et al.
2011; Lee, Murray & Rahman 2012), gravitational collapse and
accretion of material (Vazquez-Semadeni, Canto & Lizano 1998;
Elmegreen & Burkert 2010; Klessen & Hennebelle 2010; Vázquez-
Semadeni et al. 2010; Federrath et al. 2011b; Robertson & Goldreich
2012; Choi, Shlosman & Begelman 2013), and galactic spiral-
arm compression of HI clouds (Dobbs & Bonnell 2008; Dobbs
et al. 2008), as well as magneto-rotational instability (Piontek &
Ostriker 2007; Tamburro et al. 2009). Wind, jets and outflows from
young stellar objects have also been suggested to drive turbulence
on smaller scales (Norman & Silk 1980; Banerjee, Klessen & Fendt
2007; Nakamura & Li 2008; Cunningham et al. 2009; Carroll, Frank
& Blackman 2010; Wang et al. 2010; Moraghan, Kim & Yoon 2013).
Turbulence in high-redshift galaxies is probably generated during
the collapse of primordial haloes and later by the feedback from the
first stars (Greif et al. 2008; Green et al. 2010; Latif et al. 2013).

Many of the aforementioned driving mechanisms for interstellar
turbulence directly compress the gas (which we call ‘compressive
driving’), while others primarily excite vortices (called ‘solenoidal
driving’). Mathematically, we distinguish those two extreme cases
by defining a vector field Fstir that drives the turbulence (Federrath,
Klessen & Schmidt 2008; Federrath et al. 2010):

(i) solenoidal driving (∇ · Fstir = 0), and
(ii) compressive driving (∇ × Fstir = 0).

In reality, we expect a mixture of both, some mechanisms will be
closer to our idealized picture of solenoidal driving, while others
might be closer to compressive driving.

Unlike the extensively studied case of incompressible turbulence
led by the pioneering theoretical work of Kolmogorov (1941, here-
after K41), studies of highly supersonic turbulent flows only re-
cently started to shed light on the basic statistics of supersonic
turbulent flows. Because of its complexity and three-dimensional
nature, the properties of supersonic, compressible turbulence are
primarily investigated through numerical simulations (e.g. Porter,
Pouquet & Woodward 1992; Kritsuk et al. 2007; Schmidt et al. 2009;
Federrath et al. 2010). Early studies (Porter, Pouquet & Woodward
1994) indicated that compressible turbulence might exhibit a tur-
bulent velocity spectrum P(v) very similar to the phenomeno-
logical theory of incompressible turbulence by Kolmogorov with
P(v) ∝ k−5/3 (K41; Frisch 1995). Here, v is the turbulent gas veloc-
ity and k = 2π/ℓ is the wavenumber (or inverse length-scale ℓ) of
a turbulent fluctuation (sometimes called ‘eddy’). The resolution of
these early simulations, however, did not yield a significant inertial
range (the scaling range over which a power law in wavenumber
space can be measured which is well separated from both the driv-
ing and the viscous scales), and the turbulence was only mildly
compressible (Mach number �1).

With the advent of supercomputers combining thousands of com-
pute cores in one large-scale parallel application, it is only recently
that the spectral scaling of supersonic turbulence could be measured
with improved precision (Kritsuk et al. 2007; Federrath et al. 2010),
indicating P(v) ∝ k−2, which is much steeper than the Kolmogorov
spectrum and closer to Burgers turbulence (Burgers 1948, , hereafter
B48). Burgers turbulence consists of a network of discontinuities
(shocks), which can only form in supersonic flows. However, the
studies by Kritsuk et al. (2007) and Federrath et al. (2010) were
limited to 10243 grid cells. The highest resolution simulation of
supersonic turbulence so far was done by Kritsuk et al. (2009) for
a moderate Mach number of 6. Although this is clearly in the su-
personic regime, typical molecular clouds in the Milky Way have
Mach numbers of about 5–20 and sizes in the range 1–50 pc (e.g.

Roman-Duval et al. 2010). They can thus be significantly more com-
pressible. Here we focus on the most compressible type of clouds in
the Milky Way and compare simulations with Mach 17 turbulence.
Kritsuk et al. (2009) only studied solenoidal (divergence-free) driv-
ing, while here we study both extremes: solenoidal and compressive
(curl-free) driving, in order to test the influence of different driv-
ing modes. We find significantly different statistics for these two
extreme cases.

First, we briefly summarize our limited theoretical knowledge of
supersonic turbulence in Section 2. In Section 3, we then turn to
the numerical simulation techniques used to compare to and test
these theories. Section 4 presents our results with details on the
vorticity production and spatial structure of supersonic turbulence,
the density PDF, and finally the scaling of the power spectrum. We
conclude in Section 5.

2 T H E O RY O F C O M P R E S S I B L E T U R BU L E N C E

Studying turbulence requires a sufficient scale separation between
energy injection (driving) on large scales and dissipation on small
scales. The range in between is known as the inertial range of
turbulence with a constant energy flux, where the flow is directly
influenced neither by driving nor by dissipation. The existence of
an inertial range is well established for incompressible turbulence
(Frisch 1995). However, this may not be the case for supersonic tur-
bulence. It is only recently that Aluie (2011, 2013) have rigorously
proven the existence of an inertial range for highly compressible
turbulence produced by any type of driving mechanism, solenoidal
or compressive. The existence of such an inertial range, however,
does not exclude the possibility of different scaling properties for
solenoidal or compressive driving, which we will test below.

A fundamental idea for the scaling of supersonic turbulence was
proposed by Lighthill (1955) and later refined by Henriksen (1991),
Fleck (1996) and Kritsuk et al. (2007). Based on the dimensional
analysis by K41 and the assumption of a constant flux of the kinetic
energy density, ekin = (1/2)ρv2 in the inertial range, we can write

dekin

dt
∝

ρv2

t
∝

ρv3

ℓ
!
= constant. (1)

The second proportionality implies a time-scale t = ℓ/v for en-
ergy transfer on scale ℓ. The last, enforced equality in equation
(1) is that of a constant energy flux and is the same as that as-
sumed in K41, only that we keep the dependence on density ρ,
while ρ = constant in the incompressible model by K41. Taking
this last equality in equation (1), we find that the third-order struc-
ture function of the density-weighted velocity, vmw ≡ ρ1/3v ∝ ℓ1/3,
scales linearly, 〈|δvmw(ℓ)|3〉 ∝ ρv3 ∝ ℓ, for an increment δvmw(ℓ)
between two points separated by a distance ℓ. Thus, the original
Kolmogorov scaling for the power spectrum

P (ρ1/3v) ∝ d(ρ1/3v)2/dk ∝ k−5/3 (2)

would be preserved even for highly compressible turbulence, if
the density-weighted velocity ρ1/3v were taken instead of the pure
velocity v. Indeed, numerical simulations with Mach numbers of
M ≈ 5–7 and resolutions of 10243 grid cells, using solenoidal or
weakly compressive driving, indicate a ρ1/3v scaling consistent with
P(ρ1/3v) ∝ k−5/3 (Kritsuk et al. 2007; Federrath et al. 2010; Price
& Federrath 2010; Kritsuk, Wagner & Norman 2013), even if a
magnetic field is included (Kowal & Lazarian 2007; Kritsuk et al.
2009). However, the simulation with purely compressive driving by
Federrath et al. (2010) indicated a significantly steeper scaling with
P(ρ1/3v) ∝ k−2.1 in the inertial range.
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Supersonic turbulence 1247

While this last result might be regarded as a false alarm, be-
cause of a limited or insufficient scaling range in simulations with
purely compressive driving as argued by Kritsuk et al. (2010), re-
cently, Galtier & Banerjee (2011) derived an exact relation for the
scaling of compressible isothermal turbulence, which does exactly
predict P(ρ1/3v) ∝ k−19/9 ≈ k−2.1. Their model is also based on
ρ1/3v and the predicted P(ρ1/3v) ∝ k−19/9 scaling applies for tur-
bulence with a very strong ∇ · v component, such as produced by
compressive driving. Only around the sonic scale, where the lo-
cal Mach number drops to unity, would the spectrum approach
P(ρ1/3v) ∝ k−5/3.

The central result in Galtier & Banerjee (2011) is an exact re-
lation for compressible turbulence (their equation 11). It has two
contributions to the total energy injection or dissipation rate ε,

− 2ε = S(r) + ∇r · F (r), (3)

where F ∝ ρv3 is the energy flux as a function of length-scale r

and S is a new term that vanishes for incompressible turbulence and
contains the contributions of ∇ · v. Using the general definition of
the increment δξ = ξ (x + r) − ξ (x) ≡ ξ ′ − ξ of any given variable
ξ at position x and separated by a distance r, the exact expression
for the new term S(r) is (Galtier & Banerjee 2011; Banerjee &
Galtier 2013)

S(r) = 〈(∇ · v)′(R − E)〉x + 〈(∇ · v)(R′ − E′)〉x, (4)

with R = ρ(v · v′/2 + e′) and E = ρ(v · v/2 + e), where
e = c2

s ln(ρ/ρ0) and 〈. . . 〉x denotes an average over all positions x

in the turbulent flow.
Assuming isotropy (which is typically fulfilled, at least in a sta-

tistical sense) and integrating over a sphere with radius r, equation
(3) can be written as

−
2

3
εeff r = F (r) (5)

with an effective dissipation rate

εeff(r) = ε +
3

8
r

∂

∂r
S|r→0 (6)

to first order in a Taylor expansion of S for sufficiently small r, but
still larger than the viscous scale to probe the scaling in the inertial
range (see equation 15 in Galtier & Banerjee 2011).

Following dimensional analysis, the flux F ∝ ρv3 ∝ εeffr . Intro-
ducing again the density-weighted velocity vmw ≡ ρ1/3v, we find
εeffr ∝ v3

mw and thus the spectrum of the density-weighted velocity

P (ρ1/3v) ∝
dv2

mw

dk
∝ ε

2/3
eff r5/3 ∝ ε

2/3
eff k−5/3. (7)

If εeff = constant, then the spectrum P(ρ1/3v) ∝ k−5/3 is expected
to follow K41 scaling as argued in our previous derivation above
(equation 2). If, however, εeff scales with r to some power, then
P(ρ1/3v) does not follow k−5/3, but is modified by the scaling of
εeff(r) ∝ ε + S(r) according to equation (6). It is thus the addi-
tional term S in the derivation of Galtier & Banerjee (2011) that
can lead to a modified scaling of P(ρ1/3v). Finally, Galtier & Baner-
jee (2011) argue that one may expect a scaling εeff ∝ S(r) ∝ r2/3

for turbulence with a strong ∇ · v component (see the dependence
of S on ∇ · v in equation 4), in which case we would obtain
P(ρ1/3v) ∝ k−19/9 according to equation (7).

In the next section, we run and analyse two extremely high res-
olution simulations of supersonic turbulence with solenoidal and
compressive driving to test the prediction of P(ρ1/3v) ∝ k−19/9 by
Galtier & Banerjee (2011). We do this here for compressive driving

at a very high Mach number (Mach number = 17), such that ∇ · v

is potentially very strong on certain scales in the turbulent flow.
We also analyse how ∇ · v depends on the driving mode. A direct
measurement of the new term S(r) is beyond the scope of this paper
and will be presented in a future study with focus on the analysis of
structure functions. Here we concentrate on the scaling inferred by
Fourier analysis.

3 N U M E R I C A L A P P ROAC H

We use the FLASH code (Fryxell et al. 2000; Dubey et al. 2008) in its
current version (v4) to solve the compressible gas-dynamical equa-
tions on three-dimensional, uniform, periodic grids of fixed side
length L with resolutions of 2563, 5123, 10243, 20483 and 40963

grid points. To guarantee stability and accuracy of the numerical
solution of the Euler equations, we use the HLL5R positive-definite
Riemann solver (Waagan, Federrath & Klingenberg 2011), closed
with an isothermal equation of state, which is a reasonable ap-
proximation for dense, molecular gas of solar metallicity, over a
wide range of densities (Omukai et al. 2005). Keeping the gas
temperature fixed has also the desirable advantage that the sound
speed cs in the medium is fixed and thus the root-mean-square
(rms) Mach number M does not change systematically for a con-
stant kinetic energy injection rate of the turbulence. This allows
us to run these calculations for an arbitrary number of turbulent
turnover times, T = L/(2csM) (following the definition by Krit-
suk et al. 2007; Federrath et al. 2010), to obtain a number of sta-
tistically independent flow snapshots, which can be averaged over
time to yield converged statistical measures (PDFs and Fourier
spectra).

To drive turbulence, we apply a stochastic acceleration field Fstir

as a momentum and energy source term. Fstir only contains large-
scale modes, 1 < |k| L/2π < 3, where most of the power is in-
jected at the kinj = 2 mode in Fourier space, i.e. on half of the
box size (for simplicity, we will drop the wavenumber unit L/2π

in the following). Such large-scale driving is favoured by molecu-
lar cloud observations (e.g. Ossenkopf & Mac Low 2002; Heyer,
Williams & Brunt 2006; Brunt, Heyer & Mac Low 2009; Roman-
Duval et al. 2011). The turbulence on smaller scales, k ≥ 3, is
not directly affected by the driving and develops self-consistently
there. We use the stochastic Ornstein–Uhlenbeck process to model
Fstir with a finite autocorrelation time-scale (Eswaran & Pope
1988; Schmidt, Hillebrandt & Niemeyer 2006), set to the turbu-
lent crossing time on the largest scales of the system, T (for details,
see Schmidt et al. 2009; Federrath et al. 2010; Konstandin et al.
2012a).

We decompose the driving field into its solenoidal and compres-
sive parts by applying a projection in Fourier space. In index nota-
tion, the projection operator reads Pζ

ij (k) = ζ P⊥
ij + (1 − ζ )P‖

ij =

ζ δij + (1 − 2ζ ) kikj/|k|2, where P⊥
ij and P

‖
ij are the solenoidal

and compressive projection operators. This projection allows us to
construct a solenoidal (divergence-free) or compressive (curl-free)
acceleration field by setting ζ = 1 or 0, respectively.

Our aim here is to study the regime of highly supersonic turbu-

lence such as in the interstellar medium, so we chose to drive the
turbulence to M ≈ 17 for both extreme cases of driving (solenoidal
and compressive), which means that all the scales resolved in our
calculations are in the supersonic regime, i.e. above the sonic
scale (Vázquez-Semadeni, Ballesteros-Paredes & Klessen 2003;
Federrath et al. 2010). Assuming a power-law velocity scaling of
the turbulence, v(ℓ) ∝ ℓα ∝ k−α , the sonic scale ks (where the scale-
dependent Mach number, M (ℓ) ∝ v(ℓ), has dropped to unity) can
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1248 C. Federrath

Table 1. Simulation parameters and statistical measures.

Model M Driving N3
res PDF σ s PDF θ Slope P(v) Slope P(ρ1/3v) Slope P (∇ · v)

(1) (2) (3) (4) (5) (6) (7) (8) (9)

M17sol256 17.2 ± 1.0 Solenoidal 2563 2.25 ± 0.10 0.37 ± 0.06 n/a n/a n/a
M17sol512 17.1 ± 0.9 Solenoidal 5123 2.18 ± 0.08 0.28 ± 0.04 n/a n/a n/a
M17sol1024 17.3 ± 0.9 Solenoidal 10243 2.09 ± 0.04 0.22 ± 0.02 n/a n/a n/a
M17sol2048 17.4 ± 0.8 Solenoidal 20483 2.00 ± 0.02 0.18 ± 0.02 n/a n/a n/a
M17sol4096 17.4 ± 1.1 Solenoidal 40963 2.00 ± 0.02 0.20 ± 0.02 −1.96 ± 0.04 −1.74 ± 0.05 −0.08 ± 0.05

M17comp256 16.6 ± 1.0 Compressive 2563 4.03 ± 0.16 0.60 ± 0.08 n/a n/a n/a
M17comp512 16.9 ± 1.1 Compressive 5123 3.72 ± 0.13 0.43 ± 0.07 n/a n/a n/a
M17comp1024 16.9 ± 1.3 Compressive 10243 3.60 ± 0.11 0.39 ± 0.06 n/a n/a n/a
M17comp2048 16.8 ± 1.1 Compressive 20483 3.60 ± 0.14 0.39 ± 0.07 n/a n/a n/a
M17comp4096 16.7 ± 1.1 Compressive 40963 3.54 ± 0.13 0.37 ± 0.06 −1.99 ± 0.03 −2.10 ± 0.07 −0.00 ± 0.03

Notes. Column (1): simulation name. Columns (2)–(4): rms Mach number, driving mode and grid resolution. Columns (5) and (6): standard
deviation of logarithmic density fluctuations σ s and the intermittency parameter θ for the density PDF fit. Columns (7)–(9): slopes of the Fourier
power spectra for velocity, ρ1/3v, and ∇ · v (only measured with sufficient confidence for the 40963 models).

be estimated as

ks/kinj ≈ (1/M)−1/α, (8)

because the Mach number on the injection scale is roughly equal to
the rms Mach number, M (L/2) ≈ M. With M ≈ 17, kinj = 2 and
α ≈ 1/2 (the approximate velocity scaling for supersonic turbulence
found in B48; Kritsuk et al. 2007; Schmidt et al. 2008; Federrath
et al. 2010, and confirmed in Section 4.3), this leads to ks ≈ 578,
which is in the dissipation range of the turbulence, even in our high-
est resolution runs with 40963 points. Thus, any resolved scales in
our calculations are in the truly supersonic regime of turbulence,
so we can exclude any potential contamination of the inferred su-
personic scaling exponents by a transition region to subsonic flow
around the sonic scale, because that transition region is on much
smaller scales than we analyse here. A list of all numerical models
and parameters is provided in Table 1.

4 R ESU LTS

In the following, we will primarily focus on comparing two simula-
tions with solenoidal and compressive driving, each with a grid reso-
lution of 40963 points, which is currently the world’s largest data set
of supersonic turbulence (an equivalent resolution was so far only
reached for incompressible turbulence by Kaneda et al. 2003). Each
simulation was run for about 44 000 time-steps (see Appendix A)
on 32 768 compute cores running in parallel on SuperMUC at
the Leibniz Rechenzentrum in Garching (which consumed about
7.2 million CPU hours altogether). Each run produced 115 TB of
data (51 double-precision snapshots of the turbulent density and
three-dimensional velocity, stretched over six turbulent turnover
times). In order to study resolution effects, we also compare each
40963 model with the respective lower resolution versions with
20483, 10243, 5123 and 2563 compute cells (see Table 1 for a com-
plete list of simulations).

4.1 Time evolution and turbulent structure

For all but the 40963 simulations, we start with gas of initial velocity
v0 = 0 and homogeneous density ρ0 in a three-dimensional periodic
box. The driving then accelerates the gas to our target Mach number,
M ≈ 17, until a statistically converged regime of fully developed
turbulent flow is reached, which happens after about two turnover
times, 2T. For the 40963 runs, we take the density and velocity fields

of the respective 20483 simulations at t = 2T and map them on 40963

grids to spare the initial transient start-up phase, t < 2T. We run them
until t = 8T, which gives us a sufficiently large statistical sample
of independent flow snapshots to obtain converged results. In order
to allow the turbulence to adjust to the new resolution and to con-
verge to a statistically steady state, we start analysing the results for
t ≥ 3T, leaving us five turnover times (3 ≤ t/T ≤ 8) to average PDFs
and Fourier spectra. This procedure also allows us to quantify the
temporal variations of the turbulence in the fully developed regime.

To demonstrate statistical convergence within 3 ≤ t/T ≤ 8, we
show the time evolution of the rms Mach number and the mean
vorticity magnitude, 〈|∇ × v|〉, in Fig. 1, for all resolutions with
solenoidal driving (left-hand panels) and with compressive driving
(right-hand panels). We see that both M and the vorticity grow
quickly within 2T and then reach a statistically steady state. The
40963 runs, which were initialized with the 20483 density and ve-
locity fields at t = 2T, reach a steady state by t = 3T, so we choose to
start averaging PDFs and spectra for t ≥ 3T, when all statistics have
safely reached a steady state. (We also inspected the time evolution
of the rms velocity divergence, as well as the time evolution of
Fourier spectra shown in Section 4.3, all of which were statistically
converged for t ≥ 3T.)

Fig. 1 shows that both extreme types of driving generate vor-
ticity, with solenoidal driving being about twice as efficient. This
is because solenoidal motions are directly injected by solenoidal
driving, while they have to self-generate in shock collisions and
by viscous interactions across density gradients with subsequent
amplification in the case of purely compressive driving (for details
of the ‘anti-diffusion’ term responsible for this behaviour, see the
vorticity equations in Mee & Brandenburg 2006; Federrath et al.
2011a).

Since the overall vorticity is always dominated by small-
scale structures, which have the smallest turbulent time-scales,
t(ℓ) = ℓ/v(ℓ) ∝ ℓ1 − α , for any 0 < α < 1 (e.g. α = 1/3 for
Kolmogorov and α = 1/2 for Burgers turbulence as reasonable
limiting cases), increasing the resolution leads to higher levels of
vorticity, as the effective viscosity of the gas decreases and the
effective Reynolds number increases (Sur et al. 2010; Federrath
et al. 2011b). This is consistent with the expectation that the vor-
ticity tends to infinity at a finite time in the limit of zero viscosity
(Lesieur 1997; Sytine et al. 2000). The effective Reynolds numbers
of our simulations are of the order of Re ≈ N1+α

res (Benzi et al. 1993;
Federrath et al. 2011a). For Burgers turbulence with α = 1/2 and
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Supersonic turbulence 1249

Figure 1. rms Mach number (top panels) and mean vorticity magnitude (bottom panels) as a function of time for solenoidal driving (left-hand column) and
compressive driving (right-hand column). Different line styles indicate grid resolutions from 2563 to 40963 cells. Both the Mach number and vorticity reach
a statistically steady state at t = 2T. The 40963 calculations were initialized with the density and velocity fields of the 20483 runs at t = 2T. They reach
statistical convergence within another turnover time and were run until t = 8T. We thus use the interval 3 ≤ t/T ≤ 8 for averaging in subsequent analyses (for
all resolutions). The Mach number is well converged, while the vorticity increases with resolution as expected (Lesieur 1997; Sytine et al. 2000). The vorticity
at a fixed resolution is about a factor of 1.8 higher for solenoidal compared to compressive driving, consistent with the limit for hypersonic turbulence (factor
of 2) estimated in Federrath et al. (2011a).

for a grid resolution of Nres = 4096, this yields Re ≈ 3 × 105. It
must be emphasized though that the actual dissipation range of the
turbulence is not resolved when computing numerical solutions of
the Euler equations instead of the Navier–Stokes equations (Sytine
et al. 2000). To find the trustworthy scales in our simulations, i.e.
the inertial range, we have to study the resolution dependence of
Fourier spectra, which we do below in Section 4.3.

Slices through the three-dimensional turbulent flow structures
are shown in Fig. 2. Corresponding projections (integration along
the line of sight) of the density- and mass-weighted vorticity are
shown in Fig. 3. The latter is closer to what an observer would
see in a molecular cloud observation. The gas density and vorticity
appear to be correlated for both driving types in the slices and in
the projections. This is because vorticity is primarily generated in
shocks and across strong density gradients (Mee & Brandenburg
2006; Federrath et al. 2011a). Solenoidal driving produces more
space-filling structures with a fractal dimension Df ≈ 2.6, while
Df ≈ 2.3 and thus closer to sheets for purely compressive driving
(Federrath et al. 2009). The latter is consistent with the fractal mass
dimension inferred for molecular clouds in the Milky Way (Roman-
Duval et al. 2010) and in nearby galaxies (Donovan Meyer et al.
2013). Dense structures with high levels of vorticity are confined to
relatively small patches in the case of purely compressive driving.
Some large-scale regions with sizes of about ℓ � L/10 or k � 10
remain almost empty and exhibit very low gas density and vorticity.
However, structures on smaller scales (k � 10) do show high lev-
els of vorticity throughout. This indicates that the inertial range in
M ≈ 17 turbulence with compressive driving starts on somewhat
smaller scales than with purely solenoidal driving (Kritsuk et al.
2010), which is different from the case of mildly supersonic turbu-

lence with M ≈ 5–6 (Kritsuk et al. 2007; Federrath et al. 2010),
where the inertial-range extent is not significantly different between
solenoidal and compressive driving.

4.2 Density PDFs

The strong density variations in supersonic turbulence, such as seen
in Figs 2 and 3, are clearly the most prominent difference to in-
compressible turbulence. To quantify these, we briefly analyse the
PDF of the gas density. The volume-weighted density PDFs of the
logarithmic density s ≡ ln (ρ/ρ0) are shown in Fig. 4. Obviously,
compressive driving produces a significantly wider density distri-
bution with a larger standard deviation than solenoidal driving for
the same rms Mach number, which has been explored and discussed
in detail in previous studies (Federrath, Klessen & Schmidt 2008;
Price, Federrath & Brunt 2011; Konstandin et al. 2012a,b).

Previous works suggest that the density PDF should be approx-
imately lognormal (Vázquez-Semadeni 1994; Padoan, Nordlund
& Jones 1997; Passot & Vázquez-Semadeni 1998). Deviations
from perfectly lognormal distributions are caused by intermittency
and sampling effects (Kowal, Lazarian & Beresnyak 2007; Krit-
suk et al. 2007; Federrath et al. 2010; Price & Federrath 2010;
Konstandin et al. 2012b). Recently, Hopkins (2013b) suggested an
intermittency fit for the volume-weighted PDF with the following
function:

pV (s) = I1

(
2
√

λ ω(s)
)

exp [− (λ + ω(s))]

√
λ

θ2 ω(s)
,

λ ≡ σ 2
s /(2θ2), ω(s) ≡ λ/(1 + θ ) − s/θ (ω ≥ 0), (9)
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1250 C. Federrath

Figure 2. Slices through the three-dimensional gas density (top panels) and vorticity (bottom panels) for fully developed, highly compressible, supersonic
turbulence, generated by solenoidal driving (left-hand column) and compressive driving (right-hand column), and a grid resolution of 40963 cells. Large regions
of very low density and very low vorticity in the compressive driving case indicate that the inertial range is shifted to slightly smaller scales for compressive
driving compared to the more space filling case of solenoidal driving. The fractal dimension of the density is Df ≈ 2.6 and ≈2.3 for solenoidal and compressive
driving, respectively (Federrath, Klessen & Schmidt 2009). (Movies are available in the online version.)

where I1(x) is the modified Bessel function of the first kind.
Equation (9) is motivated and explained in detail in Hopkins
(2013b). It contains two parameters, the standard deviation of
logarithmic density variations, σ s, and an intermittency parame-
ter θ . In the zero-intermittency limit θ → 0, equation (9) simplifies
to a lognormal PDF. Hopkins (2013b) show that this intermittency
form of the PDF provides excellent fits to density PDFs from turbu-
lence simulations with extremely different properties (solenoidal,
mixed and compressive driving, Mach numbers from 0.1 to 18, and
varying degrees of magnetization).

We apply fits to all PDFs in Fig. 4 for different driving and
resolutions by simultaneously fitting the standard deviation σ s and
the intermittency parameter θ , i.e. we perform a two-parameter fit.
We note that this yields fitted values of σ s that agree very well with

the actual data values (to within 10 per cent). The parameters σ s

and θ are listed in Table 1. Comparing different resolutions, we
see that σ s and θ decrease with increasing resolution. To study the
convergence behaviour, we plot σ s and θ as a function of resolution
in Fig. 5. The top panels show σ s and the bottom panels show θ .
We apply power-law fits with the model function y(x) = ax−b + c

to study convergence and to estimate the parameter values c, which
correspond to the limit of infinite numerical resolution Nres → ∞.
We perform fits for c = σ s(∞) and c = θ (∞) and both driving
types. The fit curves are added in each panel of Fig. 5. They fit
the data for all our resolutions Nres = 256–4096 quite well and
give σ s(∞) = 1.95 ± 0.15 and θ (∞) = 0.18 ± 0.06 for solenoidal
driving, and σ s(∞) = 3.55 ± 0.25 and θ (∞) = 0.38 ± 0.10 for
compressive driving in the limit of infinite resolution. The 20483
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Supersonic turbulence 1251

Figure 3. Same as Fig. 2, but instead of slices, these show projections (integration along the line of sight) of the three-dimensional gas density (top panels)
and (mass-weighted) vorticity (bottom panels) for solenoidal driving (left-hand column) and compressive driving (right-hand column). (Movies are available
in the online version.)

and 40963 data are converged to within 10 per cent of the limit
Nres → ∞.

Our fit values for the infinite-resolution limit in Fig. 5 show
that compressive driving is significantly more intermittent with
θ comp/θ sol ≈ 2.1, consistent with the fits in Hopkins (2013b) for
M ≈ 15 simulations with solenoidal and compressive driving by
Konstandin et al. (2012b).

4.3 Fourier power spectra of v and ρ1/3v

Fourier power spectra are an ideal tool to study the scaling of fluid
variables such as the turbulent velocity, density or combinations of
both, and the results are readily comparable to turbulence theories
such as the incompressible K41 model or the B48 model. The latter
is entirely composed of discontinuities (or shocks). As the analy-
sis is done in Fourier space, the spatial scale ℓ simply transforms

to a wavenumber scale k = 2π/ℓ. The three-dimensional Fourier
transform of a variable q(ℓ) with ℓ = {ℓ1, ℓ2, ℓ3} is defined as

q̂(k) =
1

(2πL)3/2

∫
q(ℓ) e−i k·ℓ d3ℓ , (10)

where we denote the Fourier transform of q(ℓ) with q̂(k). With this
definition of the Fourier transform, the Fourier power spectrum of
q is given by

P (q) = 〈q̂ · q̂⋆ 4πk2〉k , (11)

as an average of q̂ · q̂⋆ over a spherical shell with radius k = |k| and
thickness dk in Fourier space.

An important caveat of numerical turbulence simulations is that
the Fourier spectra are typically only converged within a very tiny
range of scales for the resolutions achievable with current technol-
ogy (see also Klein et al. 2007). Thus, a large fraction of scales is
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1252 C. Federrath

Figure 4. Volume-weighted PDFs of the logarithmic gas density s ≡ ln (ρ/ρ0) for solenoidal driving (left-hand panel) and compressive driving (right-hand
panel). Numerical resolutions from 2563 to 40963 are plotted with different line styles according to the legend. The grey error bars indicate the 1σ snapshot-
to-snapshot variations (only shown for the 40963 runs). The thin black lines show two-parameter fits for σ s and θ to the 40963 data with the intermittency
PDF, equation (9). Compressive driving produces a larger standard deviation σ s than solenoidal driving, and exhibits a much higher degree of intermittency
(quantified by the fit parameter θ ; see Table 1 and Fig. 5).

Figure 5. Numerical convergence study of the PDF standard deviation σ s (top panels) and intermittency θ (bottom panels) for solenoidal driving (left-hand
column) and compressive driving (right-hand column). The solid line is a power-law convergence fit with y(x) = ax−b + c and the dashed line shows the limit of
infinite resolution (fit parameter c). The 40963 runs are almost converged to the infinite-resolution limit. Compressive driving is characterized by significantly
larger σ s and stronger intermittency θ compared to solenoidal driving.

either affected by numerical dissipation (and thus not converged)
or a potential inertial range is contaminated by the so-called bot-
tleneck effect (Falkovich 1994; Dobler et al. 2003; Schmidt et al.
2006). Scales affected by numerical dissipation and the bottleneck
effect must be excluded from the analysis. Previous simulations
established very stringent requirements on the numerical resolu-
tion. For instance, Kritsuk et al. (2007), Schmidt et al. (2009),
Lemaster & Stone (2009) and Federrath et al. (2010) find that at
least a resolution of 5123 grid cells is required, but even with a
resolution of 10243 grid cells, the scaling range is much less than
half a decade. Those studies were also run at relatively low Mach

number (M ≈ 5–7), while the larger Mach numbers studied here
may require even higher resolution.

Federrath et al. (2010, 2011b) found a strict lower limit of 32
grid cells, across which the energy carried by a vortex is reasonably
well captured in a grid-based code. Vortices resolved with less than
32 grid cells in diameter suffer numerical dissipation. It is quite
obvious that vortices are completely lost when their diameter falls
below a single grid cell. In addition to that, the bottleneck effect can
contaminate the inertial-range scaling on even larger scales than nu-
merical dissipation. Eventually, only resolution studies can reveal
the trustworthy scales, which is why we perform a resolution study
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Supersonic turbulence 1253

Figure 6. Compensated Fourier power spectra of the velocity, P(v)/k−2 (top panels), and the density-weighted velocity, P(ρ1/3v)/k−5/3 (bottom panels), for
solenoidal driving (left-hand column) and compressive driving (right-hand column). Different line styles show different grid resolutions and the grey error bars
indicate the 1σ temporal variations (only shown for the 40963 data). The extent of the scaling range (inertial range) is indicated by the dotted lines, showing
different power-law scalings in each panel, for comparison. The thin solid lines in each panel are power-law fits within the most reasonable scaling ranges
(5 ≤ k ≤ 20 for solenoidal driving and 10 ≤ k ≤ 30 for compressive driving), considering how each of the spectra changes with increasing resolution and
considering contamination by the bottleneck effect (see text for details).

below. Here we compare runs with 2563, 5123, 10243, 20483 and
40963 grid cells, showing that the most reasonable scaling ranges
for the simulations studied here are 5 ≤ k ≤ 20 for solenoidal driv-
ing and 10 ≤ k ≤ 30 for compressive driving. The upper limit for
solenoidal driving extends to slightly lower k than with compressive
driving (i.e. kmax = 20 versus 30), because the bottleneck effect is
stronger for solenoidal driving (Konstandin et al., in preparation).
On the other hand, the lower limit (kmin = 5 versus 10) is shifted
to higher k for compressive driving, as we guessed from the vi-
sual inspection of Figs 2 and 3 (right-hand panels), which showed
large empty patches of size down to one-tenth of the box length,
i.e. kmin ≈ 10.

Fig. 6 (top panels) shows the compensated velocity spectra, P(v),
i.e. setting q ≡ v (the turbulent velocity) in equation (11). We see
that both solenoidal and compressive driving produce velocity scal-
ings much steeper than the K41 scaling for incompressible turbu-
lence (P ∝ k−5/3). Solenoidal driving yields P(v) ∝ k−1.96 ± 0.04 and
compressive driving yields P(v) ∝ k−1.99 ± 0.03, both very close to
B48 scaling (P ∝ k−2). These results for P(v) are consistent with
previous studies by Kritsuk et al. (2007), Lemaster & Stone (2009)
and Federrath et al. (2010) at a lower Mach number (M ≈ 5–7)
and lower resolution. Moreover, our measured spectral slopes for
solenoidal and compressive driving are both consistent with a turbu-
lent velocity dispersion–size scaling (often referred to as the Larson
1981 relation) of v ∝ ℓ0.5, as measured in observational studies
of molecular clouds (Larson 1981; Solomon et al. 1987; Falgarone,

Puget & Perault 1992; Ossenkopf & Mac Low 2002; Heyer & Brunt
2004; Roman-Duval et al. 2011).

In contrast to the pure velocity spectra, Fig. 6 (bottom panels)
shows that the density-weighted velocity spectra P(ρ1/3v) are sig-
nificantly different for different driving. As explained in Section 2,
the density-weighted velocity ρ1/3v has been proposed to exhibit a
more universal scaling in supersonic turbulence than the pure veloc-
ity. According to the simple theoretical analysis given by equation
(2), we would expect P(ρ1/3v) ∝ k−5/3, as in the incompressible
K41 case. However, we see that contrary to the hypothesis of uni-
versality of P(ρ1/3v), the spectra are significantly different between
solenoidal and compressive driving. While solenoidal driving is
close to (but slightly steeper than) K41 scaling with k−1.74 ± 0.05,
compressive driving exhibits a significantly steeper scaling with
k−2.10 ± 0.07. The latter seems to be consistent with the recent theo-
retical prediction of P(ρ1/3v) ∝ k−19/9 by Galtier & Banerjee (2011)
for highly compressible turbulence with a strong ∇ · v component,
which we discuss further in Section 4.4.

Our resolution study in Fig. 6 shows that the inertial range is
shifted to smaller scales for compressive driving, as we guessed
from the visual inspection of Figs 2 and 3 (right-hand panels), show-
ing large empty patches of size down to one-tenth of the box length,
i.e. k ≈ 10. This was not the case in our previous simulations with
compressive driving and a moderate Mach number of M ≈ 5–6 in
Federrath et al. (2010), which were consistent with P(ρ1/3v) ∝

k−19/9 at moderate 5123–10243 resolution. Resolving Mach 17
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1254 C. Federrath

Figure 7. Spectral slope of the density-weighted velocity power spectra P(ρ1/3v) in the regime of fully developed turbulence, 3 ≤ t/T ≤ 8. The left-hand
panel is for solenoidal driving and the right-hand panel for compressive driving. The dashed line shows the time-averaged mean slope and the dotted lines
enclose the 1σ time variations. Solenoidal driving yields a slope of −1.74 ± 0.05, close to K41 scaling, while compressive driving gives a significantly steeper
slope of −2.10 ± 0.07, consistent with the theoretical prediction in Galtier & Banerjee (2011).

turbulence requires much higher resolution than Mach 6 turbulence.
The shock width decreases with the Mach number squared. Thus,
we have to resolve structures that are (17/6)2 ≈ 8 times smaller
compared to Federrath et al. (2010), which is about the difference
in the required resolution, i.e. 4096/512 is a factor of 8 in linear res-
olution, equivalent to the reduction in shock width between Mach
6 and Mach 17 turbulence.

From this analysis, we see that at least a resolution of 40963

grid cells is required to resolve the inertial range for supersonic
turbulence with a higher Mach number (M ≈ 17). Even with such
high resolution, the inertial range only extends between k ≈ 10
and 30. We emphasize that the P(ρ1/3v) spectrum for compressive
driving would have been consistent with the universal hypothesis of
k−5/3 scaling, if we had only resolved it up to 10243 grid cells (see
the relatively flat dashed and dot–dashed lines for 5123 and 10243

resolutions in the bottom, right-hand panel of Fig. 6). In contrast,
the additional 20483 and 40963 calculations clearly demonstrate
a significant steepening to P(ρ1/3v) ∝ k−19/9 in the scaling range
10 ≤ k ≤ 30, before P(ρ1/3v) flattens again for k � 40 due to bot-
tleneck contamination there. The steepening to k−19/9 is basically
absent for resolutions Nres � 1024, because the bottleneck effect
artificially flattens the spectra, i.e. we would have measured a shal-
lower slope closer to k−5/3, if we had included scales in the fit that
are affected by the bottleneck effect. Thus, for fitting the spectra,
great care must be exercised in choosing converged scales that re-
flect the physical scaling of supersonic turbulence, which requires
extremely high resolution for M � 15 turbulence, such as in many
molecular clouds.

Given all statistical and numerical uncertainties, and given the
systematic evolution of the spectra with increasing resolution in
Fig. 6, our measured slopes for the 40963 models are converged
to within an uncertainty of <10 per cent, which we estimated by
extrapolating the slopes for 10243, 20483 and 40963 resolutions to
the limit of infinite resolution (the temporal variations are of the
order of <5 per cent). Varying the fit range arbitrarily between
kmin = 5 and kmax = 30 (given the constraint that kmax/kmin ≥ 2)
changes the measured slopes by less than 10 per cent. Thus, the
P(ρ1/3v) slopes are significantly different between solenoidal and
compressive driving.

To see that the slopes of the P(ρ1/3v) spectra are also converged
in time, we fit each individual flow snapshot within the fully devel-
oped regime of turbulence. This analysis is shown in Fig. 7, demon-
strating convergence and emphasizing our main result: the spectral

slope of the density-weighted velocity ρ1/3v is −1.74 ± 0.05, only
slightly steeper than K41 scaling, while compressive driving yields
a significantly steeper slope of −2.10 ± 0.07, consistent with the
theoretical prediction in Galtier & Banerjee (2011).

4.4 Why is the scaling of ρ1/3v not universal?

The reason for the dependence of P(ρ1/3v) on the driving that we
found above can be seen in the theoretical derivation by Galtier &
Banerjee (2011) of the scaling in equation (7). This derivation shows
that P (ρ1/3v) ∝ ε

2/3
eff k−5/3. Since εeff(r) ∝ S(r), exactly defined in

equation (4), εeff is not constant, but instead modifies the scaling
of P(ρ1/3v). Preliminary analyses of structure functions (not shown
here) indicate a positive power-law scaling of S(r), such that the
effect of the new (compressible) term S(r) is to steepen the slope of
P(ρ1/3v) compared to K41 scaling with k−5/3. Such a steepening is
indeed seen in the numerical spectra in Fig. 6 with P(ρ1/3v) ∝ k−1.74

and ∝ k−2.10 for solenoidal and compressive driving, respectively.
The stronger steepening for compressive driving is caused by the
stronger ∇ · v component for this type of driving (see equation 4
for the dependence of S on ∇ · v).

A detailed analysis of the scaling of the term S is beyond the
scope of this study, but we can nevertheless quantify the amount of
compression and ∇ · v, causing the modified scaling of P(ρ1/3v). To
study the effects of compression, we first consider the compressive
ratio spectrum,

�(k) ≡ Pcomp(v)/P (v), (12)

i.e. the ratio of the longitudinal part of the velocity spectrum
Pcomp(v) (for which v̂(k) is parallel to k) divided by the total ve-
locity spectrum P(v). The compressive ratio is a useful measure
to evaluate the fraction of compressible velocity fluctuations as a
function of scale. It is shown in Fig. 8 (top panels). We clearly see
the effect of the distinct driving at k = 2. Solenoidal driving does not
excite compressible modes directly, producing a minimum in �(k)
≈ 0.1 (note that this is not exactly zero, because some compression
is indirectly induced at k = 2, because the flow is supersonic). In
contrast, compressive driving excites only compressible modes at
k = 2 and �(k) ≈ 0.8 (it is also not exactly unity, because of indi-
rect production of solenoidal modes in shock collisions and along
density gradients). However, the direct effect of the driving is only
noticeable on scales 1 ≤ k ≤ 3 (see Section 3). Yet, we will see
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Supersonic turbulence 1255

Figure 8. As Fig. 6, but showing Fourier power spectra of the compressive ratio defined in equation (12) (top panels) and of ∇ · v (bottom panels) for solenoidal
driving (left-hand column) and compressive driving (right-hand column). � and P (∇ · v) decrease for solenoidal driving, but stay remarkably constant for
compressive driving in the inertial range.

below that the driving does indirectly change the statistics in the
inertial range of compressible turbulence, as the supersonic turbu-
lent fluctuations cascade down to smaller scales.

Fig. 8 (top panels) shows that the compressive ratio � decreases
from about 1/3 to 1/4 for solenoidal driving in the inertial range,
consistent with Kritsuk et al. (2010), but remains almost constant at
� = 0.43 ± 0.04 for compressive driving up to k ≈ 30, where the
scaling is nearly converged with resolution (higher wavenumbers,
k > 30, are affected by numerical dissipation and the bottleneck
effect as explained above, and were thus excluded from the fit).
This emphasizes the very different nature of supersonic turbulence
driven by a solenoidal force and driven by a compressive force. In
contrast to the classical concept of incompressible turbulence with
an inertial range that does not depend on the driving, we see here
that the inertial-range scaling of compressible turbulence depends
on the driving.

Consistent with the compressive ratio spectrum, also P (∇ · v)
has a significant dependence on the driving as shown in the bottom
panels of Fig. 8. P (∇ · v) ∝ k−0.08 decreases in the inertial range for
solenoidal driving. Remarkably though, for compressive driving,
P (∇ · v) remains constant over an extremely extended range of
scales. We believe that this is the key reason for the different scaling
of the ρ1/3v spectra. A quantitative analysis, however, requires a
direct measurement of the scaling of εeff ∝ S(r), which must be
done in a follow-up study.

5 C O N C L U S I O N S

We studied the statistics of isothermal, highly compressible, super-
sonic (Mach 17) turbulence, such as relevant for the dynamics of

the interstellar medium, with the Mach numbers of the order of
5–20 in the nearly isothermal density regime of molecular clouds.
We analysed simulations with resolutions of 2563–40963 grid cells
to study the convergence of our results. Comparing the two limit-
ing cases of turbulent driving: (1) by a solenoidal (divergence-free)
force and (2) by a compressive (curl-free) force, we find significant
differences in the production of vorticity, the density PDF and the
scaling of the turbulence in the inertial range.

The vorticity produced by solenoidal driving is about 1.8 times
larger than by compressive driving, close to the hypersonic
limit (Fig. 1). The turbulent structures, in particular, the density
structures, exhibit significantly different fractal dimensions for
solenoidal and compressive driving (Figs 2 and 3). For 10243–
40963 resolutions, the density PDFs are converged to within 20
per cent of the infinite-resolution limit, while simulations with
Nres ≤ 256 resolution can deviate by more than a factor of 2 from the
infinite resolution limit (Figs 4 and 5). Compressive driving is more
intermittent than solenoidal driving, with the PDF intermittency
parameter θ comp/θ sol ≈ 2.1.

The pure velocity spectra are close to Burgers scaling with P(v) ∝

k−2 for both driving cases. In contrast, we find that the previously
suggested universal scaling of the density-weighted velocity ρ1/3v

is ruled out (see Figs 6 and 7). The power spectrum P(ρ1/3v) ∝

k−1.74 ± 0.05, close to (but slightly steeper than) K41 scaling (P ∝

k−5/3) for solenoidal driving, is consistent with previous studies.
However, P(ρ1/3v) is significantly steeper for compressive driving
with P(ρ1/3v) ∝ k−2.10 ± 0.07 in the inertial range. The latter is in
excellent agreement with the theoretical estimate P ∝ k−19/9 by
Galtier & Banerjee (2011) for highly compressible turbulence with
a strong ∇ · v component, which we find to decrease for solenoidal
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1256 C. Federrath

driving, but stays almost perfectly constant for compressive driving
down to very small scales (Fig. 8).

Our study emphasizes the need to rethink the definition of the
inertial-range scaling in highly compressible turbulence compared
to incompressible turbulence. The latter defines an inertial range on
scales sufficiently separated from the driving and dissipation scales,
such that there is no influence of driving and dissipation. This ba-
sic rule cannot be carried over to highly compressible, supersonic
turbulence, where the inertial-range scaling does depend on the
driving, as we have shown here. This may be caused by supersonic
turbulent fluctuations (shocks) crossing multiple scales, in contrast
to the more local energy transfer between scales in incompressible
turbulence. Answering this question requires a scale-by-scale anal-
ysis of the energy transfer tensor with high-resolution data in future
studies.
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APPEN D IX A : V ELOCITY PDFS AND

TIME-STEPPING

Fig. A1 shows the PDFs of velocity v averaged over all three spatial
directions and averaged over time (error bars indicate 1σ tempo-
ral and spatial variations of the velocity components). Since we
expressed the velocity in units of the sound speed throughout, max-
imum Mach numbers reach absolute values of about 50. The stan-
dard deviation of the v-PDF is practically identical to the rms Mach
number, because the mean time-averaged velocity (and the mean
momentum) is zero to machine precision.

Given these maximum velocities |vmax| ≈ 50, typical time-steps
for the simulations with Nres = 4096 are �t ≈ fCFL �x/|vmax| ≈

4 × 10−6 for �x = 1/4096 and the CFL safety factor fCFL = 0.8
(Courant, Friedrichs & Lewy 1928). The total number of time-steps
to evolve the simulations for six turbulent crossing times 6T, where
T = L/(2csM) = 1/(2 × 17) ≈ 2.9 × 10−2, is thus Nsteps = 6T/�t

≈ 44 000.

Figure A1. Time-averaged velocity PDFs (linear and logarithmic PDF axes
in the top and bottom panels, respectively) for solenoidal driving (dotted
line) and compressive driving (dashed line). The error bars show 1σ time
variations and variations between the x, y and z components of the velocity.
The v-PDFs are very close to Gaussian distributions and show maximum
velocities (Mach numbers) of vmax ≈ ±50.

S U P P O RT I N G IN F O R M AT I O N

Additional Supporting Information may be found in the online ver-
sion of this article:

Figure 2. Slices through the three-dimensional gas density (top pan-
els) and vorticity (bottom panels) for fully developed, highly com-
pressible, supersonic turbulence, generated by solenoidal driving
(left-hand column) and compressive driving (right-hand column),
and a grid resolution of 40963 cells.
Figure 3. Same as Fig. 2, but instead of slices, these
show projections (integration along the line of sight) of
the three-dimensional gas density (top panels) and (mass-
weighted) vorticity (bottom panels) for solenoidal driving
(left-hand column) and compressive driving (right-hand column)
(http://mnras.oxfordjournals.org/lookup/suppl/doi:10.1093/mnras/
stt1644/-/DC1).
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