
transactions of the
american mathematical society
Volume 147, February 1970

ON THE UPPER AND LOWER CLASS FOR
STATIONARY GAUSSIAN PROCESSES(1)

BY

TUNEKITI SIRAO(2) AND HISAO WATANABE(3)

1. Introduction. Let X={x(t); 05=?^ 1} be a real stationary Gaussian process
defined on a probability space (Q, 3S, P). As is well known, a stationary Gaussian
process is uniquely determined by its mean value m = E(x(t)) and covariance
function p(h) = E((x(t + h) — m)(x(t) — m)). Without loss of generality, we may
assume that «3 = 0 and p(0)=l. Then we have a2(h) = 2(l — p(h)), where a2(h)
denotes E((x(t + h) — x(t))2), and accordingly all the information about X is
contained in a2.

Ju. K. Beljaev [1] has shown that for stationary Gaussian processes X the
following alternatives take place: either all sample functions are continuous, or all
sample functions are unbounded in every interval of finite length (0-1 law). In the
continuous case, he has further generalized G. A. Hunt's results [5] concerning
Holder continuity of sample functions. Before stating his result, we shall define the
upper and lower classes for X. If there exists a positive number S such that
0<|i-j|<S (0£t,sgl) implies \f(t)-f(s)\^g(\t-s\), then it is said that/
satisfies Lipschitz's condition relative to g.

Definition 1. Let X={x(t); 0^?^ 1} be a stationary Gaussian process. Then a
monotone nondecreasing continuous function <p defined on [a, oo) with a > 0 is
called a function belonging to the upper class (with respect to the uniform con-
tinuity of X), if almost all sample functions x(t, co) satisfy Lipschitz's condition
relative to g(h) = a(h)cp(h ~1), i.e. for almost all co there exists a 8(co)>0 such that
0 < | t — s | < S(co) implies

\x(t, co)-x(s, co)|  ^ a(t-s)(p(lj\t-s\).

A monotone nondecreasing continuous function <p is called a function belonging
to the lower class (with respect to the uniform continuity of X), if almost all sample
functions x(t, co) do not satisfy Lipschitz's condition relative to g(h) = a(h)<p(h~1),
i.e. for almost all co there exists a sequence {/„(co); «= 1, 2, 3,.. .}<= [0, 1] such that

\x(t2n)-x(t2n-l)\   >  °(\ ?2n ~ t2n - i |)<p(l /| t2n - t2n _ j |), «  ä   1,

and \t2n-t2„-i\ ^0 as «-^oo.
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302 T. SIRAO AND H. WATANABE [February

The collection of functions belonging to the upper class is denoted by ^" and
the one for the lower class is denoted by ^u(4).

Using these notations, Beljaev's result is stated as follows : Let A' be a continuous
stationary Gaussian process with 0-mean and assume that there exist positive
constants S, Cx < C2, and a (0 < a < 2) such that for any « e (0, 8)

Cxhal\logh\ í o\h) ú C2h"¡\logh\,

and further o2(h) is concave in (0,6). Then the function <p(t) = c{o(t~1)tat2}~1
belongs to °llu or &* according as c>(2C2)ll22a + ll2(2al2-l)-1 or c<(2Cx)112. As
is easily seen, we have unfortunately

(2C2)112 ̂^ > (2Q)1'2,       0 < a < 2, 0 < Cx < C2.

On the other hand, the final form about the Holder continuity of Wiener process
is known which states: A monotone nondecreasing and continuous function <p
defined on [a, co) belongs to <%u or -£?u according as

(1) <p(03exp [-W(t)]dt < co    or    = co,
Ja

(cf. Chung-Erdös-Sirao [3]). So we can see that

<p(t) = {2 log i + 5 log(2) i + 2 log(3> t+ ■ ■ ■ +2 lo&n-D t + (2 + e) log(n) t}112,

t ^ ee'''       (n-1 times)

belongs to <%u or S£u according as e > 0 or e ̂  0, where Iog(W t denotes the A:-fold
iterated logarithm, i.e.

logmt = log log- • -logt,
(k times)

Our main purpose in this paper is to give a criterion like (1), under certain con-
ditions on a2, which decide if <p belongs to °UU (¿fu) or not(5).

The authors wish to express their hearty thanks to Professor K. Itô for his
valuable suggestions.

2. Results. Throughout this paper, X={x(t); O^/^l} is a real, continuous
and stationary Gaussian process with zero mean, defined on the probability space
(Q.,3S,P). We denote the correlation function of X by p and assume p(0)=l,
and accordingly <r2(«) = 2(l — p(h)).

(4) The superscript u expresses "with respect to the uniform continuity".
(5) <&■" and .£?" denote the collection of upper functions and lower functions defined for

Wiener process, respectively.
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Let g be a positive continuous function defined on (0, 1). For a È 0, define S(a) by

S(a) = {«; lim sup [*(?' **>"^' ^; 0Si,<Sl,O< \t-s\ g «1 á al-

Then we have

Theorem 1. If a(h)jg(h) tends to zero with h, then it follows that for any a>0,
P(i(a)) = 0 or I.

From this theorem, we can easily see the following

Corollary 1.1. If a(h)jg(h) tends to zero with h, then for any a^O

Remark 1. The above corollary suggests that under Beljaev's assumption
mentioned in §1, there exists a constant C0 between C% and C2 such that <p(t) =
cir'M?"1)}"1 belongs to <?/u or ¿?u according as c>C0 or c<C0.

Now we consider the following condition (A) :
(A.l) For suitably chosen constants a, ß, C3, C4 and 8 such that 0<a<2,

-oo<i8<oo, 0<C3<C4<oo and 0<S< 1, it holds that for any he(0, 8)

C3«7|log«|" Í a2(h) í C4««/|log«|T),

(A.2) a2(h) is concave or convex in (0, 8), where S is a constant mentioned in
(A.1).

Remark 2. The condition (A.l) is a slight generalization of the corresponding
one in Beljaev's case, because ß is arbitrary in our case.

Remark 3. For the existence of processes satisfying the condition (A), we have
the following sufficient condition.

A sufficient condition: Let/be the spectral density function of correlation function
o. If/ satisfies the following two conditions, then X satisfies the condition (A).

(i) There exist positive constants C3, C4 and K such that

C3 Ú f(x)xa + 1(log xY ¿Ct,       x^ K,

where 0<a<2, —oo</3<oo.
(ii) g(x) = x2f(x) is two times differentiable in x, and for some 0<£<1 either

one of the following (a) or (b) holds.
(a) x3~eg"(x) is bounded from below, and lim inf,..,^ x3~£g"(x)>0.
(b) x3~eg"(x) is bounded from above, and lim supÄ_„ x3~sg"(x)<0.
The proof of this statement will be given in §7. It is also shown that, the cases

(a) and (b) correspond to the convexity and concavity of a2, respectively.

(6) If a separable stationary Gaussian process X satisfy the condition (A.l), then x't, co)
is continuous in t with probability 1 (cf. [4]).
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Now let/be a spectral density such that

f(x) = c!(xa + 1(\og x)e),       x ^ K,

where c>0, K"¿.\, 0<a<2 and —co<ß<co. lff'(x) and f"(x) are bounded on
[0, K], then the corresponding process X satisfies the condition (A), and <r2(«) is
convex or concave in a small interval (0, 8) according as 1 <c¡<2 (or a= 1, /3>0)
or 0 < a < 1 (or a = 1, ß < 0). In fact, we have for g(x) = x2f(x)

i _,,.* i f (     u(2a-l)ßß(ß+iy
c g w      x"+ Xlog xf \aya      )+   log X   + (log X)

Then we can see for 0 < e < 2 — a

lim inf x3'sg"(x) = oo,        l<a<2   or   a=l    and   ß > 0
X-* CO

and

lim sup x3~eg"(x) = -co,       0 < a < 1    or   a = 1,   j8 < 0,
*-♦ CO

which show the convexity and concavity of ct2 respectively. In the case a= 1, (8 = 0,
a2 is still concave if other conditions hold. But if we replace constant c by a positive
and bounded function, then there may happen both cases.

Now we state :

Theorem 2. Let <p be a positive, continuous and nondecreasing function defined on
[a, co) with a>0. If the process satisfies the condition (A) and it holds that

(2) C ¡pit)11"-1 exp [-i<p2(t)] dt < oo,
Ja

then the function <p belongs to °UU.

Under the same assumption on X as in Theorem 2, we have

Corollary 2.1. For any e > 0,

{2 log t + (4j a +1 ) log<a) t + 2 logo, t + • • • + 2 log(n - « <+(2+•) logo,, ' }1/2 e ^u.

Corollary 2.2.

Theorem 3. Let <p èe a positive, continuous and nondecreasing function defined on
[a, co) with a>0. If the process X satisfies the condition (A.l) and a2 is concave in a
small interval (0, 8), and further

(3) fœ<P(04,a-1exp[-V(0]^ =
Ja

then the function f belongs to 3?u.

co,
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Under the same assumption on X as in Theorem 3, it follows

Corollary 3.1. For any e^O,

{2 log r+(4/a+l) loga, t + 2 log(3, f+ • • • +2 log(n_1,i + (2-£) log(n) t}112 eX".

Combining Corollary 2.1 and 3.1, we have

Corollary 3.2. Under the same assumption on X as in Theorem 3, it holds that

p(lim sup \-j--*ffi~y   | ,u;2; 0 á s, t £ 1,0 < |/-í| ú h] = l) = 1.Ujo    f ^(í—■s){2[Iog \t-s\ |}1/2' '       '        J        /

Remark 4. As was stated already, our main purpose is to prove Theorems 2 and
3. But we remark here that the condition (A) excludes all the cases for a = 0 which
contains the critical case whether all sample functions are continuous or not (cf.
X. Fernique [4]).

Next, we shall state the corresponding results concerning the local continuity
otX.

Definition 2. Let ip he a function defined on [a, co) with a>0. If, for almost all
tu, there exists a positive 8(co) such that 0<h<8(co) implies \x(h,co) — x(0,co)\
<o(h)<¡s(l¡h), then <\> is called a function belonging to the upper class with respect to
the local continuity of X. If, for almost all w, there does not exist any positive 8
with the above stated property, then ifi is called a function belonging to the lower
class with respect to the local continuity of X.

The collections of functions belonging to the upper and lower classes with respect
to the local continuity of X are denoted by % and JS?, respectively.

Remark 5. Let / be a number between 0 and 1. If </> belongs to all, then for almost
all tu there exists 8(t, to) > 0 such that

\x(t+h, co)-x(t, o))| < o(h)i/j(llh),       0 < « < 8(t, tu),

because X is stationary. We may also consider that the above inequality holds for
any«(#0)between -8(t, tu)andô(r, tu),because Y={y(t, w) = x(l-t, tu);0^?^l}
is stochastically equivalent to X.

Using the notations W and JS?, we have

Theorem 4. Let >J> be a positive, continuous nondecreasing function on [a, oo) with
a>0, X be a process satisfying the condition (A.l), and o(h) be monotone non-
decreasing for small h > 0. If

(4) J" \ m2'"-1 exp [-W(t)] dt < co,

then if> belongs to ^l.

Corollary 4.1. Under the same assumption on X as in Theorem 4,

{2 log<2, t + (2/a +1 ) log(3, t + 2 log,« t+ • ■ ■ + 2 logo, - » '+(2+e) log(n, t}1'2

belongs to °U if e > 0.
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Theorem 5. Let >p be a positive, continuous and nondecreasing function defined on
[a, co) with a>0. If X satisfies the condition (A.l) and a2 is concave in a small
interval (0, 8), and further

(5) £" j ¿(t)21*-1 exp [-W(t)] dt = oo,

then 0 belongs to 3?.

Corollary 5.1. Under the same assumption on X as in Theorem 5,

{2 log(2) t + (2/a +1) log(3) t + 2 log(4) /+■••+ 2 Iog(B-,,i + (2-£) logo,, 01/a

belongs to ¿f if e^O.

Combining Corollary 4.1 with the above one, we have

Corollary 5.2. Under the same assumption on X as in Theorem 5, it holds that

_/,. x(h)-x(0) .\      ,

Let us return to the uniform continuity of X.

Theorem 6. Let 0<a<2, — cc<ß<<x>, C4>0, and suppose that

°2(h) ú CJP¡\\ogh\>.

If a2 is concave or convex in a small interval (0, 8) according as 0 < a < 1 (or a = 1,
¿SSO) or l<a<2 (or «=1, ß>0), then for any e>0 there exists an h0(co), with
probability 1, such that 0< \t—s\ <h0(w) implies

( \t-s\a      ~)112
\x(t, co)-x(s, co)| S |(2 + £)C4 |log'|f_J| jg-i)    »       0 S j, r 5¡ 1.

The above result is an improvement of the first half of Theorem 7 in Beljaev [1].
Now let F be the spectral function of X, i.e.

(6) P(h) = f°   exp [ihx] dF(x) = 2 f " cos «x ¿F(x)(7).
J - oo Jo

Then we have

Corollary 6.1. Leí Z fte a process satisfying

x"\log x\e dF(x) < oo,       0 < a < 2,    -co < ß < oo.r;o
/fa2 « concave or convex in a small interval (0, S) according as 0<a< I (or a = \,

O Fis a nondecreasing function of symmetric variation with F(co)-F(—co) = l.
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/SáO) or l<a<2 (or a=l, ß>0), then for any e>0 there exists an h0(co), with
probability 1, such that

\x(t, tu) — x(s, tu)[ ^ e
U-s\a 1/2

,   0 S s, t ¡S 1, 0 < \t-s\ < «o(tu).Mog\t-*\\'-\
This corresponds to Theorem 4 in G. A. Hunt [5].

3. Proof of Theorem 1. Since p(t — s) is continuous in (t, s) e [0, 1] x [0, 1], we
have by Mercer's theorem

CO 1

p(*-s) = 2 r ^W'P'X5)'i K
where A„, <pn (« = 1, 2, 3,...) are the eigenvalues and orthonormal eigenfunctions
of the integral equation

<p(t) = Ajo P(t-s)<p(s)ds,

and A„ > 0 because p is positive definite. We remark that

I      f1Wn(t+h)-<Pn(t)\ = M W'+*-»)-M*-*»fy(*)*
I       Jo

t¿ An|£ i^r+Ä-i)-^-*)!»^3

= A^1 \E[(x(t + h)-x(t))x(s)]\2dsj

i xno(h).

(7) > 1/2

Now let {>>„; «= 1, 2, 3,...} be a sequence of mutually independent standard
Gaussian random variables. Then, for any t e [0, 1], the series

^     1y(t, «0=2, -jT M«Mi(0

converges in the square mean (cf. M. Loève [6, p. 478]), and by the three series
theorem, converges with probability 1. So the Gaussian system Y={y(r); Oár^ 1}
where r denotes rational number is equivalent to the system X' = {x(r); 0^r^ 1}.
Next we consider the events é"(a) and S"(a;f) defined by

\x(r)-x(r')_S\a) > ; lim sup   -
hio    L

-;0 ^ r,r' ^ 1,0 < |r —r'l ^ «
g(\r-r'\)

r(a;j) = {tu; lim sup [g ^2&0fyn; 0 , r, r> , 1,
J * "}

0 < |r-r'| < « < a

j = 1, 2, 3,
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where r and r' denote rational numbers. Since X and g are continuous, the
equivalence of X' and Y implies

P(S(a)) = P(ê'(a)) = P(S\a; 1)).

Moreover (7) and the assumption on a(h)\g(h) tells

S"(a;l) = S"(a;j),       j= 1,2,3,....

Therefore, using the fact that S"(a;j) is a tail event, i.e. S"(a;j) depends only on
yn with n^j, we can see by Kolmogorov's 0-1 law P(S"(a; 1)) = 0 or 1, and
accordingly P(S(d)) = 0 or 1.    Q.E.D.

4. Proof of Theorem 2. We proceed along the line of T. Sirao [7], but the proof
is somewhat complicated. So we divide it into several lemmas.

Lemma 1. Theorems 2 and 3 are true if they hold under the assumption that for
t>eev a(a)

(8) {2 log i}1'2 S ?(t) S {2 log r+(7/«) log(2) ?T'2(9).

Proof. Cf. T. Sirao [7, Lemma 1]. (The proof given there does not need any
change for the present case.)

By Lemma 1, we may assume in the following proofs of Theorems 2 and 3 that
(8) holds for any t^a and accordingly y(t) tends to infinity with /. Moreover
Theorems 2 and 3 treat the Holder continuity of stationary processes. So it is enough
to consider the behavior of x(t) in the time interval [0, 8]. (Divide [0, 1] into
2([1/S]+1)(10) subintervals of [k8, (k+l)8], [(k +1/2)8, (k + 3/2)8], k = 0, 1, 2,...,
[1 /S] + 1, and consider a pair of (t, s) such that 11 — s \ < 8/2, if necessary.) Therefore,
despite the unnaturalness of assuming (A.l) in (0, 1), we may assume that the
condition (A), especially (A.2), holds in (0, 1) if we regard [0, 8] as [0, 1] for the
convenience of description. Further we may regard by the same reason that a2
is monotone nondecreasing in (0, 1).

Now we define the event E(p ; k, I) by

E(p;k,l) = {co; x((k + 0/2", «.)-x(k¡2", u>) ̂  ct(//2>(2>//)},
0 S k ^ 2\   0 S / S plla,   P

Then we have

Lemma 2. For any c e (0, 1), we have
OO GO [P1!a]

2   2       2      P(E(p;k,l)) < oo    or    =co
p=l fc= 1 1= [cpKoj + l

(8) a v b = max (a, b) and aAb = min (a, b).
(9) The coefficient 7 on the second term has no special meaning except that the integral (2)

for right hand side is finite.
(10) [x] denotes the greatest integer which does not exceed x.

1   2  3i, ¿., j, . . ..
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according as

nrtO^expt-VCO]
Ja

dt < oo    or    =oo.

Proof. By the monotonicity of <p, we may assume without loss of generality that
a is sufficiently large so that <p(t)> 1 and accordingly <p(t) exp [ — cp2(i)/2] is non-
increasing in t ig a. Then for (p, I) with 2"jl ä a, we have

2¿F2¿)exp["M?,i)1

(10) < P(E(p; k, I)) = 7y^I7ïï f"     exp [-x2/2] dx
(2tt)'   Jv&m

<^R2V)exp[-^2^-
We can further see by the monotonicity of <p that

^exp[-I,2(I^)]<p((llc)p

(11) a£^exp[-V(2>/0]

exp [-içp2^-1'^")],        [c/»1'«] S / S rj»1/e].= (p(p-^V)

So if ^o and C5 are so large that

90o-1,a2p°) a (po-1/or2"o) > a   and    C, fc 7=-^™ /1 ■(27T)1'2 T    2(l-po_1)1/a

then it follows from (10), (11) and (8) that
00       2f [p1'«]

2 2     2     P(E(p;k,l))
P = Po fc-1 l = lcp1<a] + l

fyCO^^expI-VCO]*.
Ja

Similarly we can see the existence of C6 such that
00       2P [pl/c]

2 2     2    P(E(p;k,l))
P = Po k=l ! = [cpl«"]+l

fl — A     Ä ^n1'"

= Q rfO^expr.-VCO]*.
Jc-lpo 1'a2Po

.    =Po
(13)

>
—    — o

P = P0
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Now (12) and (13) prove Lemma 2.    Q.E.D.
According to Lemma 2, we can see in the present case

co       2V       [pi/«]

(14) 2  2     2     P(E(p;k,l))< co.
P=l k=l ¡=[pl/«/2]

This means by Borel-Cantelli's lemma that for almost all tu there exists p0(oi) such
that p >p0(co) implies

x((k + l)l2", co)-x(kßp, w) < 0(112^(2^1),   0 ^ k S 2", [\plta] <, l Ú [p1"].

It is our purpose to show that the above inequality holds for any pair (s, t) with
0< \t — s\ < l/2"o(M). To show this, we consider the following events F(q; m, n) for
fixed (p, k, I). Let c be a large number which makes ec an integer and satisfies
inequalities

i (2/tt)1'2 exp [-^ (e^\2)2^- »] < Cie - *», ^ 2

C7(ec'4/2)ato-1) > 2C8

where C7 and C8 are positive constants to be defined later. Now let us set bx=k\2p,
b2 = (k + l)l2p, hq = exp [-qc]/2p and

F(q ;m,n) = <co; x(b2 - mh<¡, <o) -x(bx+ nhq, co)

^ o(b2-bi-(m + n)hq)L + ̂ - 2 ¿}|'

0 :£ m, n S exp [qc],

where <p denotes cp(2p¡l) = <p(l¡(b2-bx)). Further set

S„ = {m; 0 ^ m ¿ exp [qc]},       Fq =   \J   F(q; m, n),
m.neSq

and denote the smallest integer/?' satisfying (16) by pi

(16) 2p + 1^plla,       />log2 ä 2 log/>/<*.

The following lemma plays an essential role, and we need several lemmas to
prove it.

Lemma 3. Under the assumption of Theorem 2, there exists an absolute constant^1)
Cg such that for p¡ípi

(17) P(Fq)ïC9P(E(p;k,l)),       q£l.

Proof. We consider a fixed triple (p, k, I) with relation of p^px. Denoting the

(") An absolute constant means a constant independent of (p, k, I) and q.
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complementary event of F by F', we have

P(Fq) = P(Fq_1)+P(Fq--xnFq)

(18) iP(Fq-i)+  2    P(Fq-i^F(q;m,n)),       q * 2.
m.neSq

Let us denote the second term in the right-hand side of (18) by Px and estimate it.
We denote the interval (bx + nhq, b2 — mhq) by I(q ; m, n). Next, for each pair

(m, n) of m,ne Sq, we choose two elements mx, nx of Sq-i in such a way that

(19) \mhq -«!!«,_! |, !««„-«!«„_! |  ¿ «,_„

and, if p is convex in (0, 8), I(q; m, «)<=/(# — 1 ; w1; «,) and, if p is concave in (0, 8),

I(q;m,n)-I(q-l;mx,nx) # 0,       I(q-\;mx,nx)-I(q;m,n) # 0.

Then we have

F,=    2   P(Fq-ir>F(q;m,n))
mtneSq

(20) =   2 i,(f(?-i;mi,«1)'^(?;»i(«)).
m,neSg

To estimate the right-hand side of (20), we use the following lemmas.

Lemma 4. (i) If the correlation function p is convex in (0, 1), then it holds that for
any pair of nonoverlapping intervals (a, b), (c, i/)<=(0, 1)

(21) E((x(b)-x(a))(x(d)-x(c))) Ï 0,

and for (c, d) <= (a, b)<=- (0,1)

(22) a\d- a) + o2(b - c) ^ o\b - a) + o\d- c).

(ii) If the correlation function p is concave in (0, 1), then it holds that for any pair
of nonoverlapping intervals (a, b), (c, d)^(0, 1)

(23) E((x(b) - x(a))(x(d) - x(c))) ^ 0,

and for any pair of overlapping intervals (a, b), (c, d)<=(0, 1)

(24) c2(d- a) + o2(b-c)^ o2(b -a) + o2(d- c).

Proof. We prove only (i) because (ii) can be proved similarly. Let 0 ^ a ^ b :£ c
■¿d^l. Then we have

E((x(b)-x(a))(x(d)-x(c))) = {p(d-b)-p(d-a)}-{P(c-b)-p(c-a)}.

Since (d-b)-(d—a) = (c-b)—(c-a) and p is convex in (0, 1), the right-hand side
of the above equality is nonpositive. So we have (21).
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Next, letO^aác^í/áo^l. Then we have

{a2(d- a) + a2(b - C)} - {a2(b -a) + a2(d- c)}

= 2{P(b -a) + P(d- c)} - 2{P(d- a) + P(b - c)}

because d- c ̂  (d- a)/\(b-c)^b-a and (b - a) + (d- c) = (d-a) + (b- c).    Q.E.D

Lemma 5. Let (U, V) be a two dimensional Gaussian random variable with
F(t/) = F(K) = 0 and E(U2) = E(V2)=l. Then, for a pair (a, b) with 0<a<b, the
functionp(a, b; p)=P(U<a, V>b) is monotone decreasing in p = E(UV).

Proof. See Lemma 2 in T. Sirao [7].
Let us set, for any m,neSq and mu flieS,_! which are chosen by the way

stated already, a = biJ\-nhq, b = b2 — mhq, c = bi + nihq_i and d=b2 — m1hq_i.

Lemma 6. Let p be the correlation coefficient between x(b) — x(a) and x(d) — x(c).
Then there exists a positive constant C10 such that

(25) p ^ l-C10(l/p)exp [-(q-l)ca¡2].

Proof. We can see from (22) and (24) that

a2(d-a) + a2(b-c) è a2(b-a) + a2(d-c).

Hence we have

E((x(b)-x(a))(x(d)-x(c))) = \{a2(d- a) + a\b - c) - a2(d- b) - a\c - a)}

^ W\b- a) + o2(d- c) - a2(d- b) - a2(c - a)}.

So it follows from the monotonicity of a2 that

^ ,    1 a2(d-b) + a2(c-a)
P á I-ö

^ 1-

2    a(b-a)a(d-c)

Q2(hq+1)

a2(b2-bi-2hqexp [qc])
Now put

M = sup (l-2)aexo[(q-\)ca¡2\
£log2-log(/-2)
plog2 + (q-l)c ;p^Pi,q^2,

iylla] s i ¿ [plla], c ^ i\-

Evidently, by (16), M is finite. Then we have by (A.l)

P = 1-7T
/

> 1

C3 U/-2)exp[(?-l)c]
Ci M

plog2-log(/-2)
plog2 + (q-l)c

C3 p exp [ — (q— l)ca/2].

So, putting Ci0 = CíM¡C3, we have (25).    Q.E.D.
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Now let us go back to the estimation of Pi. Let Fand Z be mutually independent
Gaussian random variables with E(Y) = E(Z) = 0 and F(F2) = £(Z2)=1. Then,
using the notations in Lemma 6, we have

P(F(q-1 ; mx, nx)' n F(q; m, n))

= p(x(b)-x(a) ^ o(b-a)L + — 2 2~A,

(26) x(d)-x(c) < o(d-c)(^ + ̂  2 2_ai))

/ 2c V1 2c "-^       \= P[ Y^ <p + — 2 2-ai,(l-p2)ll2Z+PY«p + - 2 2-mj-

Put p0= 1 — C10 exp [ — (q— l)ca¡2]¡p, and we can see from (25), (26) and Lemma 5
that

P(F(q-l; mx, nx)' n F(q; m, «))

^p(y^(?) + ?£212-ai,(l-p§)1'2Z<(l-p0)(«p+^222"ai)

-Pof2— >)
= FÍy^ 9 + —"% 2-ai)p(z< (1-pg)-1'2

= P2 (say).

Now we have by Lemma 1

<P = <p(2pll) ̂  {2p log 2 + 7 log log p/a}112.

Hence there exist absolute constants c, C8 and C7 such that they satisfy (15) and
the following two inequalities

(i-/>e)-i'2(i-p0)(«p+^222-ai) ^ c
«JL2

"8 < °°,

(l-Pg)-"aPo^ ^ C7exp [i«(?-l)c].

So we can see by (15) and (10)

P2úP(Y^ <p)P(Z < C8-C7(ec,4/2)a<<!-1))

^ P(Y ^ <p)p(z > & (ec'4/2)ato-1>]

(27) '/1 \1/2 2 r   c2 ~\^(^â <p)í¿J    ^- (e^)-««"1' exp   -^ (ec/4y2)!««»-i)

< e-3qcP(E(p; k, I)).
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Then it follows from (27) that

P(F(q-1 ; mu nf)' n F(q, m, «)) ^ e~3qcP(E(p; k, I)),       m, neSq,q^2,

and accordingly

(28) Pi^e-^P(E(p;k,l)).

Since

P(Fi)û   2   F(F(l;«2,«)) = e2cF(F(/>;M)),
m, neSi

we get from (18) and (28)

P(Fq) Ú (e2c+ 2 e-Ap(E(p; k, I)),       q ä 2,

which proves Lemma 3.   Q.E.D.
Now we are in a position to prove Theorem 2. Set

G(p;k,l)= Ü O Fq
n—X q=n

and

H(p; k, I) = {co; sup «Ù0°> ï 9<2>//)+^ | 2-},

where s and t runs over the intervals [k2 " ", (A +1)2 " "] and [(& + / -1 )2 _ p, (A; +1)2 " p]
respectively. Then it follows from the continuity of Jf and Lemma 3 that

P(tf(/>;Â:,/))iiP(G(F;M))
^ lim inf P(Fq)

^C9F(F(/> ;£,/))•

Therefore we have by Lemma 2

oo        2" [p1'«]

(29) 2   2       2      P(H(p;k,l))<n.
p = Pl fc=0 I=[pl/«/2] + l

According to Borel-Cantelli's lemma, (29) shows that for almost all to there exists
p2(co) such that

co i H(p; k, I)   forp ^ p2(co),       0 ^ k ^ 2",    [iplla] < I ^ [p1'"].

Now, for any pair (s, t) satisfying 0^s<r^l and 0<t-s<p2(oj)1""l2~p2(-'ú\
choose p, k and / such that

(p + l)lla ^ .         PUa        k^        k+l     k+/-l            k + l
—-— < r— v < *■— — S v < - < - < t < -•2p + i     = '   a      2" '       2P = 2" 2" 2"
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Then it holds that p2(co)^p, 0 = k<2p and pVa\2<íl-íp1,a. Accordingly the fact
that tu £ H(p ; k, I) implies

x(t, co)-x(s, co) < «t-syL&ity+jßffi 2 2'ai}

^crit-s^m-s^^^p-j.

Then, taking into consideration the symmetry of a Gaussian process, we can see
that <p + 2c'l<p belongs to ÛUV-, where c' = c2£o l/2ai. Since this result is obtained
from the assumption of convergence of (2), the same result also should hold for
y(t)=<p(t)-3c'l<p(t), because <p is nondecreasing, continuous on [a, co) and further
the integral (2) for f is finite. Moreover y(t) + 2c'lf(t) < <p(t) for large t, as is easily
seen. Hence <p should belong to W.    Q.E.D.

5. Proof of Theorem 3.    We shall use the same notations as in §4.
According to Lemma 2, the divergence of integral (3) implies

co       2" [P1'"]

(30) 2  2       2     P(E(p; k, l)) = co.
P=l k = 0  ¡=[p1/«/3]

By the definition of JS?", the function <p belongs to JS?" if E(p; k, I) occurs "infinitely
often" for almost all tu. To prove this is the case, we apply the Chung-Erdös
lemma(12).

In the sequel, we often denote E(p; k, I) by En, where the subscript n is given in
the following way. Let En = E(p; k, I) and Em = E(p';k', /'). Then « stands before
m if and only if either one of the following hold: (i) p<p', (ii) p=p' and /'</,
(iii) p—p', 1=1' and k<k!. Hence «<«i implies I'\2P'^//2r', where (p,l) and
(p', I') correspond to En and Em respectively.

Now, by the Chung-Erdös lemma and (30), it suffices to prove the following
Lemma 7 and Lemma 8.

Lemma 7. For every pair of (n, h) with n = h, there exist c(h)>0 and H(n, h)>n
such that for any m^H(n, h)

(31) P(EJEn n En + i n • ■ ■ n E'n) ä c(h)P(Em)(13).

Lemma 8. There exist two absolute constants Kx and K2 with the following
property: to each E¡ there corresponds a set of events {Eh; i=\, 2, 3,..., s}<=
{En; «= 1, 2, 3,...} such that

(32) 2 HPt n Eh) i KiP(Et),
i=l

(12) See [2].
(13) P(E/F) denotes the conditional probability of E under the condition F.
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and that for all Ekj=Eu (/= 1, 2, 3,..., s) provided k>j

(33) P(E,- n Ek) è K2P(E0P(Ek).

Before we prove Lemma 7, we shall state a remark and Lemma 9. For each
En=E(p; k, I), we define Un—U(p; k, I) by

£/„ = U(p; k, I) = x((k+l)l2»)-x(kl2%
where U(p ; k, I) is used when we want to emphasize that Un corresponds to
E(p ; k, I). Then we have for every «

(34) lim P(Un, Um) = 0,
m-* oo

where p(U, V) denotes the correlation coefficient between U and V. In fact, (34)
is proved in the following way. Let Un = x(b) — x(a) and Um = x(d) — x(c). Since we
may regard <t2 as a monotone and concave function as was remarked already, it
holds by (21)

a2(d-c)
p(Un, Um) Ú a(b — a)a(d—c)

a(d—c)
a(b — a)

because d—c tends to 0 as m -> oo.

> 0   as m -*■ oo,

Lemma 9. Let {Xu X2, ■ ■., Xk, Ym;m=l,2,3,...} be a sequence of standard
Gaussian random variables, and assume that pm = max{[piim|; O^i^k} -^0 as
m -»oo, where pim denotes E(X¡Ym). Then, for any sequence of Bor el sets Bm<=
[pmc, Pm] provided 0^c< 1 and for any bounded Borel sets A{ (/= 1, 2,. .., k), it
holds

P(Ym 6 BJXi e Ai, i =1,2,..., k)¡P(Ym e Bm) -> 1    as m -> oo.

Proof. See Lemma 4 in T. Sirao [7].
Now we shall prove Lemma 7.
Proof of Lemma 7. Let us set for Un= U(p; k, I) and c>0

Fn(c) = {co;<p(2»//) S UJa(lßp) ^ ?(2pll) + c},
En(c) = {co;Un + c^0}.

Then we have by (10)

™ ^ 2W2 iexp ["W1- (ê)1,2e"c" ¿exp [-^]

^iF(Fn)(l-2e-cH

where cpn denotes <p(2v¡l). So, for a given pair («, «), we can take c>0 such that

(35) F(Fm(c)) ^ iF(Fm),       m ä «,
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and

p(n(E[nEt(c))) £¿*(Q#)-

Then it holds that

P(Em¡E¿nEUir\---nEU
(36) = P(Em nE'hnE'h+1n---n E'n)\P(E'h n E'^n- ■ • n F^

On the other hand, if we put

Xi = (7h+i,       4 = [-c, 9(2»>lli)],       i = 0,1,2,..., n-h,
and

Ym = t/m,       5ra = [<p(2pm//m), 9(2p».//m) + c],       m = n+1, n + 2,

then, applying Lemma 9, we have for large m

p(Fm(c)/n (El n Ft(c))) > *P(Fm(c)).

Therefore (35) and (36) show that there exists an H(n, «)>« such that

P(EJEi nE»+in..-nE:)^ F(Fm)/12,       m ^ H(n, «),

which proves Lemma 9 for C(«)= 1/12.   Q.E.D.
The proof of Lemma 8 is complicated and we need some lemmas for it.

Lemma 10. Let (U, V) be a two dimensional Gaussian random variable with
E(U) = E(V) = 0 and E(U2) = E(V2)=l. Then for any a,b>0, there exist positive
constants K and d such that (i)

(37) P(U > a,V > a) S Kexr, [-d(\-p2)a2]P(U > a),

where p denotes p(U, V), and (ii) if p< l¡ab, then

(38) P(U > a,V> b) ^ KP(U > a)P(V > b).
Proof. See Lemmas 3 and 4 of Chung-Erdös-Sirao [3].
Now, for each E¡ = E(p; k, I), let F; be the collection of En = E(p'; k', T) such

that « >j and

(39) p(U„ Un) ̂  {«p(2p//)cP(2p7/')}-1.
Then we have

Lemma 11. For each E¡ = E(p; k, l), E¡ is a finite set. More precisely, there exists
an absolute constant Cn such that for En = E(p'; k!, T) e E¡

(40) P' < P + Ciilogp.
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Proof. Let us set a = k/2p, b = (k + l)l2p, c = k'\2p' and d=(k'+1')¡2P'. Since P
is convex, we can see from Lemma 4 that p(U¡, Un)^0 if the intervals (a, b) and
(c, d) are disjoint. So each En e E¡ should satisfy either one of the following:

(aj a = c^b^d,
08) a<.c<,d<,b,
(y) c = a-¿dúb.
In the case (a), using (21) again, we have

E((x(b)-x(a))(x(d)-x(c))) = o\b-c).

Hence the monotonicity of o2 implies

„, n   n \ <       a\b-c) o(d-c)
P(Uj, un) = a(b_a)lJ(d_c) = a<p_a)

Similar computation in the cases (JS) and (y) shows that in all cases (a), (/?), (y), we
have

(41) P(Uh Un) Ú e(d-c)lo(b-a),       EneEj.

Combining this with (39), we have

{^//VOT')}-1 S o(l'l2p')lo(ll2p).
Therefore we can see from (8) and (A.l) that there exists an absolute constant
L > 0 such that

(p'ipy-ß > j i \1/2w2<P'-P)«

or

^' + 2^2 l0^' <F+^loi2{(2^1)log^-logL},

which implies the existence of Cxx satisfying (40).   Q.E.D.
Next, let us put

E, = {Eu;i = 1,2, ...,s),
E¡ = E(p; k, I),       Eh = E(j>{; kt, It),
a = k/2",       b = (k + l)!2p,       ax = kt¡2\       bt = (Â:, +/,)/2p<,
<P = <p(ll(b-a)),       <pi = 95(1/(^,-0,)).

Then it holds that bt — a, ̂  b — a, 93 ̂ <p¡, i = 1, 2,..., s, because j\ >j.
Now it follows from Lemma 10, (i) that

P(E} n Eit) í P(U, = o(b-a)<p, Uh ^ o(bi-ai)<p)
úKexp[-d(l-P2)<p2]P(E¿,
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where p¡ denotes p(U¡, Ult). Hence, for the estimation of the left-hand side of (32),
it suffices to do

2 exp[-rf(l-p;V].
<=i

To do this, we divide the above summation into two parts denoted by 2cl) and
2C2) as follows :

(44) 2 exp [-dO-ftV] = 2a) exP ["¿O -ft2)9'2]+2(2) exp [-d(l - Pf)<p2],
i = l

where 2C1) expresses the summation over all Fs such that

(45) ft ^ (1-^p-1'2)1'2,

and 2(2> expresses the summation of remainder.

Lemma 12. There exists an absolute constant CX2 such that

(46) 2wexp[-d(\-pl)<p2]úCi2.

Proof. It suffices to prove the boundedness of 2<2) for large p. So we may assume
that

/>log2-(l/a)log/> > pß.

Since we have for all i considered in 2<2) 1 -pf>P~ll2> it follows from (8) that

(47) (1 -ftV > P'1I2{P log 2-(l/«) logF} > iP112.

Then Lemma 4, (i) shows

(48) (a,b)n(ai,bt)¿ 0(14).

Now let #(/>') be the number of i which is considered in 2(2) and satisfies the
relation pt =p'. Using (48) and Lemma 11, #(j?') is estimated as follows.

#(J7') < (ô-fl)2'W

^ (ppyi*2*'-»
<pcii+2i"(l + CXilogplp)1"'.

Combine this with (40) and (47), and we can see the existence of an absolute
constant C12 such that

2<2) exp [-d(l -Pf)<p2] < pc^2<"(l + Cxx logplpyCn logp exp [-idp1'2]
¿ C12. Q.E.D.

Lemma 13. There exists an absolute constant CX3 such that

(49) ^xPt-^-rtV^C"-
(14) 0 expresses the empty set.
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Proof. The proof is divided into several steps.
Using the notations given in (42), we first note that there exist three cases :
(a) a-^a^b^bi,
(ß) aúa^bab,
(y) Oiúa&b&b.
Io. There exists an absolute constant C14 such that for ally's considered in 2(1)

(50) P ■= Pi Ú p+Cit.

In fact, as was shown in (41) already, pi = p((Vi, £/,.) satisfies p¡^ct(o¡ — aOla(b — a).
And accordingly we can see by (45) and (A.l) that for large p

Then Lemma 11 shows the existence of C15 such that

1-F"1'2 è C152-<p<-p)a,

which implies (50).
2°. In the case (a), there exists an absolute constant C16 such that

(51) pi^l-C16(ki-k2">~"yip.

To prove this, we first remark that (41) and (45) imply

,.     a(b-aO      ..     a(bi-a¡)      ,hm -—- = hm -+¡-r = 1.

Then we have

(52)

a(b — a)      p-kx> a(b — a)

,.     a(a< — a)      ,.     a(a¡ — a)      „hm -+¿—é = hm -+¿-{ = 0,
p-»oo a(b — a)      p->x> a(b — a¡)

because we have by Lemma 4, (i)

E((x(b)-x(a))(x(b)-x(aQ))
Pi S

(53)
a(b — a)o(b¡ — at)

a2(b -a) + a2(b - aQ - g2(a¡ - a)
2a(b — a)a(bi — a¡)

and pi —> 1 as p-*-co. Moreover we can see from (50) that for any e>0 there
exists p(e) such that

(54)    1 ^
log(at-a)
log(o-a)

pilog2-log(A:t-A:2p.-p)
/>log2-log/ <  1+e,        p ^ p(e),

because at > a in the case (a).
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Now, if we remark that for large p

a2(ai-a)-{a(b-a)-a(b-ai)}2

ä a2(at -a)- {(a2(0i -a) + a2(b - ad)112 - a(b - a»)}2<15)

ä; a2(0i -a)- a2(b - a,X(l + cr2(fli - a)ja2(b - a,))1'2 -1}2

fca"fo-a)/2,       (by (52)),
it follows from (53), (54), and (A.l) that for large/?

2a(b - a)a(b - aO + {a(b -a)- a(b - at)}2 - a2(ai - a)
Pi^

^ 1

2a(b — a)a(b¡ — aO
1 a2(ai-a)
4 a2(b-a)

^ \-\(\+B)-^(ai-df(b-a)-«

Ú l--.(l+eYw^(ki-k2^-"yi-a2-^i-^a

Ú 1 -\ (1 + e)-m ^r (kl-2k*i-vyp-12-^-»)'x.

Then (50) implies (51).
3°. In the case (y), we have similarly as in 2°

(55) ft á 1 -C17P + l)2*i-»-(ki + h)Ylp,

where C17 is an absolute constant.
4°. In the case (ß), we have by Lemma 4, (i) p¡ g p(x(o) — x(a¡)> x(o¡) —x(t7¡)).

So, if we put k2pi-p = ki in (55), it follows from (55) that

(56) Piú l-C17(/2p."p-/,)«//>.

5°. Let us divide the summation 2a) into three parts as follows:

where 2<a>> 2W> an(l 2<r> denote the summations over all i"s corresponding to the
cases (a), (ß), (y) respectively. Then we can see from (8), (51), (55) and (56) that
there exists an absolute constant dy > 0 such that

d(l - pf)<p2 ̂ dx(ki - 2"i-pky,   for the case (a),

(57) ^ di(ll*i - * - h)",   for the case (ß),
^ di((k + l)2pi-p-(ki + h))",   for the case (y).

(15) a2 is concave.
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Next, for fixed p' (^p) and k', we consider the numbers #(/>', k'; a) of i which
corresponds to the case (a) and satisfies the relations />,=/?' and ki = k'. Then we
have #(/>', k' ; a) ̂  k' - k2p " p.

Further, for given/)', /', «', let us set
#(/»', /'; jS) = the number of i which corresponds to the case (y) and satisfies the

conditionsPi=p' and /, = /'.
jt(p', h';y) = the number of i which corresponds to the case (y) and satisfies the

conditions Pi =p' and /;:, + /,=«'.
Then it holds that #(/>', l';ß)^l2p'""-/', #(//,«'; y) ̂ (fc + /)2p'-p-«'.
Now we have by (50) and (57)

2<Uexp[-^l-P.V]

=   2   i     2       (¿'-A:2p'-p)exp[-i/1(A:'-2A:I,'-p)a]

¡2P' - P

+ 2   (/2"'-I'-/')exp[-i/1(/2p'-p-/')a]
¡' = 0

+     2     ((A: + /)2p'-p-«')exp[-t/1((^ + /)2p'-p-«T]^
00

< 3C14 2 ^exP l-dika]
k = o

< co,

which proves (49).    Q.E.D.
Now we shall prove Lemma 8.
Proof of Lemma 8. For any E¡, let us take E¡ (the collection of En satisfying

(39)) as the set {Eu ; /= 1, 2,..., s} in Lemma 8. Since (39) and Lemma 10 imply
(33), it suffices to prove the validity of (32).

According to (43), we have

2 P(Ei O Eit) í K 2 exp [-d(\-pf)92]P(E,).
i=l (=1

Then we get from (44), Lemmas 12 and 13

2 P(Ei n Eh) í K(CX2 + CX3)P(E¿.
i = l

This shows that (32) holds for KX = K(CX2 + CX3).
Thus we have completed the proof of Theorem 3.    Q.E.D.

6. Proof of Theorem 4. The proof of Theorem 4 proceeds parallel with the
one of Theorem 2.

Lemma 14. Theorems 4 and 5 hold if they do under the following condition:

(58) {2 log,» O1'2 = 0(0 = {3 log«, t}112,       t^e'v a.
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The proof is analogous to the one of Lemma 6 in T. Sirao [7], and we omit it.
In the following discussion, we shall always assume (58). Let us define E(p; k) by

E(p;k) = {w,x(k¡2p)-x(0) ^ a(k¡2p)<l>(2p¡k)},
p=\,2,3,...,k= l,2,3,...,2p.

Then we have the following one corresponding to Lemma 2.

Lemma 15. For any c e (0, 1),
00 [(lOg P)1'«]

2     2     p(£(f; k))
p = l fc = [c(logp)1'«]

converges or diverges according as

j™]<f-(t)2l"-1™p[-W(t)]dt

converges or diverges.

Proof. By the similar way as in the proof of Lemma 2, we can see that there
exist p0 and px such that

to [(log p)i"»]

2        2       P(E(p;k))
P=P0  )C = [0ÜOgp)1"I]+l

<     2      f   f     2p 2"-1       }(logp)2la
= (2.)1'2p4\(logp)1'«   OogCp-1))1'"/      2"

.¡—±^^^[-m2^ogpr^)]
2 »       |.2P(logp)-l/« (logj,)

(2
2 ™        f2*(logp)-l/« /J -vl/or

4l72  2    i,  , „T^F2- W(2P(logp)-1'a)}2'°-1
"V        p=p0 J2p-1(l0g (p-1))-1'" ¿

<

•expt-^^Oog^)-1"")]*
2

Ï75 £" J ^O8'8"1 exp [-#»(/)] A,(2t)
and similarly

» Klogp)1'«] i />x  i

2 2        KEip; k)) ä —-ijjä       i ¿(O2'""1 exp [-<A2(0] A.
P = Pl fc = [cdog p)l""] ¿\¿m)       Ja/c '

These two inequalities prove the lemma.    Q.E.D.
According to Lemma 15, it holds that under the assumption (4)

00 [(lOg P)l'«]

(59) 2        2       P(E(p;k))<œ.
p = l fc = [(logP)l'«/31

Now, for a given pair of (p, k), we set

b = k2~",       hq = 2-" exp [-qc],       ^ = <l>(\¡b),       q= 1, 2, 3,...,
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where c is a large number which makes e° an integer and satisfies the following
inequalities where absolute constants C18 and C19 will be chosen later.

C18(ec'4/2)a(Q-1) > 2C19.

Then the set Sq and the events F(q; m), F(q) are defined by Sq = {m; OSmáe"},

r r   2c 9~l
F(q;m) = •( tu ; A:(è — mhq) — x(0) > a(b — mhq)<ifi + -r- 2 2~

g ^ 1, m e S,
and Fq = (JmeSqF(q; m).

Lemma 16. There exists an absolute constant C20 such that

f(Cj^) = C20P(E(p;k)).

Proof. For any meSq, q^2, we choose mxeSq_x such that \mhq — mxhq-x\
èft9-!. And we set Um = x(b — mhq) — x(0), Vmi = x(b — mxhq-x) — x(0). Then we
have by Schwartz's inequality and (A.l)

ai    v  \     g2(fe-mhq) + o2(b-mxhq-.x)-o2(mhq-mxhq_x)
2a(b — mhq)o(b — mxhq _ x)

i
ê 1 1       o2(mhq-mxhq_x)

2 o(b — mhq)o(b — mxhq _ x)

Moreover we can see, by the same way as in the proof of Lemma 6, that there
exists an absolute constant M such that

P(Um, Vmi) ä 1-Mj^exp [-^-^a] = Po (say).

Now put

c19 = su? {(î-pgrni-*,)(*+j 222-ai);F ^eM v e>v =2}'

and choose C18 which satisfies (60) and the following

(l-pt)-ll2Po- ^ C18exp [ka(q-l)c],       p^eM,q^2.

(Evidently we can choose such triple (c, C18, C19) if we take sufficiently large c.)
Then we have by the procedure as was used in Lemma 6

P(F(q-1 ; mx)' n F(q; m)) ^ e~2^P(E(p; k)),
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and accordingly

P(Fq) Ú P(Fq.x)+ 2 P(F'q-i O F(q; m))
(61) meS"

iP(Fq_x) + e-*°P(E(p;k)),       q ^ 2.

Since P(FX) ̂  ecP(E(p ; k)), (61) proves the lemma.    Q.E.D.
Next, let H(p; k) be the collection of tu such that there exists t satisfying (k—l)ßp

^ t<kßp and

x(t,co)-x(0,co) ^ o(t)L(2plk) + 2c(<f<(2plk))-1 2 2-4-

Then we can see by Lemma 16 and the continuity of X

P(H(p;k)) S liminfP(Fg) Í C20P(E(p;k)),
q-* co

and accordingly
CO KlOg P)1/"]

2     2    p(H<j>''k» < °°»
p=po )c=[aogp)i/«/3]

where p0 = [eM V e] +1. Now the procedure used in the proof of Theorem 2 implies
Theorem 4.    Q.E.D.

7. Proof of Theorem 5.   We have by Lemma 15

co [(log P)1«*]

2        2       P(E(p;k)) = co,
P = P0 Jc = [2(logP)1'l»/3]

where p0 denotes a sufficiently large integer so that for ptp0, we can do all the
computations in the sequel which are available for large p(ie).

As in §4, we denote E(p ; k) by En, where the subscript « is given as follows :
If En=E(p;k) and Em=E(p'; k'), then «<m if and only if either one of the
following holds :

(i)F</>
(ii) p=p' and k' <k.

So « < m implies Â;'/2P' ̂ &/2p.
Now it suffices to show that Lemmas 7 and 8 hold for our sequence

{EfJ = 1, 2, 3,...}.
For En = E(p;k) and  Em = E(p';k'),  put b = kßp,  b' = k'ßp',   Un = x(b)-x(0),
Um = x(b')-x(0).

Then we have by (34) limm_c0 p(Un, Um) = 0, or more precisely

(62) P(Un, Um) = o(b')¡o(b)

(16) This assumption does not take any loss of generality.
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as was obtained in §3. Therefore the proof of Lemma 7 is valid for the present
case if we replace there <p and //2P by <¡> and k\2p respectively, i.e. Lemma 7 holds
for our sequence {F;;y'= 1, 2, 3,...}.

Next, we shall consider Lemma 8. For each Ej = E(p; k), let E¡ be the collection
of events En = E(p' ; kO such that n >j and

(63) p((7„ Un) ̂  m*ikWFikr)ri.
Then we have

Lemma 17. For each E¡ = E(p; k), Et is a finite set. More precisely, there exists
an absolute constant C2i such that for En = E(p'; A:') e E¡

p' < p + C21loglogp.

Proof. Since we have for En e E¡

{mmr1 ^ m, eg ̂  »(»xft)
where b=kßp and b'=k'¡2p, it follows by (A.l) that there exists an absolute
constant L > 0 such that

1      (lo&PY/pV >        L
2r-'*\logp)\p')   -logp log/

which proves Lemma 17.   Q.E.D.
Now let

Ej = {Eh; i = 1, 2,..., s},       E] = E(p; k), Eu = F(/>t; kt),
b^k\2p,   bi = kil2p>,       0 = 0(1/6),   and   Pl = P(Uj, Uh).

According to Lemma 10, the validity of Lemma 8 for our sequence

{£,;;= 1,2,3,...}
is obtained from the boundedness of

(64) ¿expt-dU-pDn

where d denotes an absolute positive constant. To show the boundedness of the
above series, we divide it into two parts as follows :

(65) 2exp[-d(l-p2W] = 2a) exp [-4(1 -P?W] + 2<2> exp [-d(l -P2Wl

where 2(1) expresses the summation over all Vs such that p4^(l — (log/0-1)1'2
and 2<2> does the summation of remainder. Then we have

Lemma 18. There exists an absolute constant C22 such that

2<2)exp[-¿(l-p?)02]<C22.
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Proof. Since it follows from the definition of 2<2) that for any i considered in
2(2), 1 — pf > (logp)~1/2, we have by Lemma 14

(1-pfW ä (logp)112 logp ä (log/7)1'2.

On the other hand, the cardinal number of collection of k! satisfying k'ß"'
^kßp for previously given p' does not exceed 2p'~p(logp)lla. Moreover we can
see by Lemma 17

2p'-p(logp)1'a < (log/>)c2i + 1/a.

Then we have

2<2)exp[-¿(l-ft2)>/.2] ^ (log/>)C2l + 1/aexp[-i/(log/?)1/2],

which proves Lemma 18.    Q.E.D.

Lemma 19. There exists an absolute constant C23 such that

Zwexp[-d(l-p?W]ïC23.

Proof. Io. For any / considered in 2(1>> it holds by (62) and (A.l) that

l-(logp)-1'2 < p2 < ^ < 2^2p'-p)"i^^ (¿-Yiiogp)       5 ft 5 a2(b) =¿c/ logp> \pl) ■

So we can see that there exists an absolute constant C25 > 0 such that

(66) pSp'<p + C25.

2°. Considering the special case of 03) in the proof of Lemma 13, where a = a, = 0
and bi<b, we can see from (56) that for a properly chosen absolute constant
C25pi^l-C25((b-bi)lb)a because the term (/2P<~P-/,)"//> in (56) comes from
o2(b — bi)lo2(b — a) and now a = 0. Therefore we have by (A.l)

Pi í l-C2b(k2p'-p-k'niogp
or

(67) I-pf > C25(k2p'-p-k'T¡logp.

3°. We have by (66), (67) and Lemma 14

2(1) exP [-d(l-PfW] = 2(1) exP [-¿C25(Â:2p'-p-Â:y]
oo

^ C24 2 exp [-dC25ka] < co,
Jc = l

which proves Lemma 19.    Q.E.D.
Now we can get from (65), Lemmas 18 and 19 the boundedness of series in (64),

as was to be proved.   Q.E.D.

8. Proof of Theorem 6 and Corollary 6.1. At first we shall prove the following
lemma which was stated in §2 as a sufficient condition to make X a process satisfying
the condition (A).
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Lemma 20. Let f be the spectral density function of stationary Gaussian process X.
If f satisfies the following conditions, then X satisfies the condition (A).

(i) There exist positive constants C3, C4 and K such that

(68) C3 ^'f(x)xa + 1(logx)e ^ d,       x^K,

where 0<a<2, —oo</3<oo.
(ii) g(x) = x2f(x) is two times differ entiable in x, and for some 0<£< 1, either one

of the following (a) or (b) holds.
(a) x3~eg"(x) is bounded from below, and lim infJ._co x3~sg"(x)>0.
(b) x3~eg"(x) is bounded from above, and lim sup*.^ x3~eg"(x)<0.

Proof. For the process X with a spectral density / satisfying (68) and p(0) = 1,
we have

a2(h) = 2(1 -p(h)) = 4 i" sin2 (hx/2)f(x) dx

= 4 {   sin2 (hxß)f(x) dx + 4 f °° sin2 (hx¡2)f(x) dx
Jo Jk

= 4(F(«) + /2(«))       (say).
Then we have

(69) lim F(«)/«2 =  f* x2f(x) dx\4
h^O Jo

and
/»CO /»CO

(70) C3       sin2 (hxß)fi(x) dx ^ I2(h) è Ci       sin2 (hx¡2)f1(x) dx,
Jk Jk

where f1(x) = x~<-a + 1)(log x)~ß. Taking a computation on the integral in (70), we
have

/•CO /»CO

sin2 (hx/2)fi(x) dx = ««(log 1/«)""       sin2 (x/2)x-(a + 1)| 1 -(log x/log h)\~» dx,
Jk JhK

and accordingly

(71) C3Ki ú limI2(h)¡ha(log I/A)"' Ú CiKu
h-0

where Ki=j™ sin2 (xß)x~(a + 1) dx.
Now (69) and (71) implies (A.l).
Next, we shall prove the convexity of a2 if (a) and (ii) hold. Let «>0 and

consider the quantity

A^ct2 = a2(hi + 2h) + a\hi)-2a2(hi+h).
Then we have

(72)

/»OO

A^'o-2 = 4       {sin2 ((«! + 2«)x/2) + sin2 (hlX¡2) - 2 sin2 ((hx + h)xß)}f(x) dx
Jo

Jo        x       l«1 + 2«/\«1 + 2«r«7Ui/      A1 + «/l«1 + «/J
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Putting/(/z; x) = (xlh)f(xlh), g(x) = x2f(x), we get

Ï—-{*©+«ír©+©>0}—-vw».
So it follows from (72) that

A<>2 = 4 f " x-1 sin2 (xß)tth2)f(hx; x) dx

.  r sin2 (xß)     h2x       J    x    \   , an,
=  4 -1-L-L 77-TTTTq Í?     1-777 I ¿*, 0  <   6   <   2.J0 x       (hx + 6h)36 \hx + ehj     '

Then by (a) and Fatou's lemma

,(A(,2V)(«1 + 2«)£lim inf -
Ä.A1-.0 4«2

r -£) sin2 (x/2) lim inf (x¡(hx + 6h))3-Eg"(x¡(xx + Oh)) dx > 0,
Ä,ftl->0

which proves the convexity of o2 in a small interval (0, 8).
If (b) holds, then we can prove the concavity of a2 in a similar way.    Q.E.D.
Using Lemma 20, we can prove Theorem 6 as follows.
Proof of Theorem 6. According to the preceding lemma, there exists a stationary

Gaussian process Y={y(t); 0¿/^ 1} with 0-mean which is independent of X and
satisfies the condition (A) for a given pair (a, ß) with 0<a<2, — co<ß<oo(17).
For an arbitrary e > 0, let us consider a stationary Gaussian process

Z = {z(/);0¿ tú 1}

defined by

z(t) = (l+«'")-1«{x+«X0},       0 Ú t ¿ 1.

Then we have F(z(?)) = 0, p2(0) = F(z(f)2)= 1 and for small «>0 and a properly
chosen constant C26>0

r       g      <   2ÍM < (C4 + e'2C26)/ig
C26 |log«[" = °Áh) = (l+£'2)|log«|«

where

<r2(«) = E((z(t+h)-z(t)n

Since the concavity or convexity of a2 is obtained from those of a2 and a2, where
<T2(«) = F((j(/ + /i)—XO)2)» the process Z satisfies the condition (A). Then it follows
from Corollary 3.2 that for an arbitrary e" > 0 and for almost all tu there exists an

(1T) See Remark 3 in §2.
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«0(co) such that 0 < « < h0(to) implies

sup{|z(? + A, co)-z(7, co)|;0 S t £ 1-A} < cT2(«){(2 + £")log(l/«)}1/2

<   ß+e'2C26ICiV'2((2 + e")Ci^Y'2
= \      l+£'2      /    UlogO/A))»-1/

and
h"        11/2.sup{|Xí+A)-K0|;0 á < ̂  1-A} < {(2 + OC*^

So we have for « < A0(co)

sup{|x(r + A)-x(r)|;0 £ Í 5 1-A}
g (l-rV2)1/2sup{|z(í + A)-z(/)|;0 £ r á 1-A}

(73) +«'sup{|Xí + A)-X0|;0 ^ í ú 1-A}

- {C* (log (f/A))"-1}1^0 +c'acWC4)1/3 + «'}(2 + 01/a-

For any £ > 0, if we take e' and s" such that

{(l+£'2C26/C4)1'2 + £'}2(2 + 0 < (2+e),

then (73) proves Theorem 6.    Q.E.D.
As an application of Theorem 6, we can prove Corollary 6.1.
Proof of Corollary 6.1. According to Theorem 6, it suffices to show that the

relation

(74) i"" xa|log (1 +x)\> dF(x) < oo
Jo

implies

(75) a2(A) = o(Aa/(log(l/A))*)(18).

To show this we first consider the function

s(A;x) = ^»VcosAx).

Let 8 (< 1) be a positive number such that x~a|log x\e is monotone decreasing in
x e(0, S) and x2_or|log x\ß is monotone increasing in x e(0, 8). Then, for 0<A<S,
it follows that for x^ 1/A

g(A,x) á 2A-a|logA|a g 2xa(logx)a,

and for S<x< 1/A

,,     , ^ (log(l/A))gA2x2      ,2_an       .g(h;x) ^        A"       ~2~ =        |logA|"x2/2

= x«|logx|5/2.

(la)f(x) = o(g'x)) expresses \imx^0f(x)lg(x) = 0.
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So we have g(h; x)¿2xo;|logx[A, 8<x<co.
Now (74) shows that x^logxl" is integrable with respect to the measure dF.

So we have
..    o2(h)(log(llh)Y      ..        r» ,        ,hm ,g = hm 2       g(«; x) ¿F(x) = 0,
7¡-0 « Ä-.0       Jo

as was to be proved.   Q.E.D.
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