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On the Usage of Low-Cost MEMS Sensors,

Strapdown Inertial Navigation and Nonlinear

Estimation Techniques in Dynamic Positioning
Robert H. Rogne, Torleiv H. Bryne, Thor. I. Fossen and Tor A. Johansen

Abstract—In this article we suggest that a strapdown inertial
navigation system based on MEMS inertial sensors is a useful ad-
dition to a vessel with dynamic positioning. We conduct full-scale
experiments with MEMS inertial sensors on board a Dynamically
Positioned (DP) offshore vessel operating off the Norwegian
coast. The vessel operates in different scenarios, and the purpose
is to showcase how low-cost MEMS sensors may complement
or replace existing DP sensor systems. Employing nonlinear
observers for estimating attitude, heave, velocity and position,
we go through the benefits and disadvantages, and some caveats,
for the sensors and methods used in this article. Two different
MEMS units are evaluated, aided by gyrocompasses and position
reference systems. We evaluate the attitude, heave and dead
reckoning capabilities obtained with the presented estimators,
in relation to relevant class notation, ultimately motivating the
inclusion of new sensors and methods for dynamic positioning.
The results related to attitude and heave are compared with data
from well-proven industry standard vertical reference units while
dead reckoning is evaluated with respect to the onboard position
reference systems.

Index Terms—Nonlinear Observers, Navigation, IMU, MEMS,
Dynamic Positioning

I. INTRODUCTION

Inertial sensors have been vital in the development of

automatic control of ships since the first operational gy-

rocompasses were introduced prior to World War I. These

gyrocompasses based on gimbal inertial sensor technology

and physical self-alignment has been established as the main

source of heading information on ships and free floaters.

Other types of gyrocompasses also exist, the primary ones

being Fiber Optic Gyroscopes (FOG), Hemispherical Resonant

Gyroscopes (HRG) and Ring Laser Gyroscopes (RLG), [1].

Position Reference (PosRef) systems were introduced in

more recent times, and include radio, laser, taut wire, hydroa-

coustic and satellite-based systems. The latter type has the

benefit of world-wide coverage, and these systems are known

collectively as Global Navigation Satellite Systems (GNSS),
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the most famous of which is the Global Positioning System

(GPS).

In addition, so-called Vertical Reference Units (VRUs) are

commonplace on a variety of vessels [2]. While gyrocom-

passes provide heading, VRUs complements them by provid-

ing the roll and pitch signals of a ship’s motion. In some

use cases the vessel’s heave motion is also provided by this

sensor. The roll and pitch estimates from VRUs are typically

applied in lever arm compensation of position reference system

measurements [3]. Other usages where the roll and pitch of

a ship are of interest might include for instance ballasting

systems. Heave estimates are of interest in heave compensation

of cranes or drill floors during marine operation in waves, in

heave displacement control of high-speed surface effect ships

and for onboard decision support systems for e.g. weather

prediction and sea state estimation.

For the usage of these types of sensors and systems in

Dynamic Positioning (DP) vessels, the International Maritime

Organization (IMO) has issued guidelines to reduce the risk

of position-loss [4]. Maritime classification societies, such as

DNV GL, American Bureau of Shipping (ABS), and Lloyd’s

Register (LR), have defined vessel class notations ranging

from 1 to 3 based on the guidelines from IMO, where the

class number depends on type of vessel and operation, and

the potential consequences if loss of position occurs.

Generally in the class notations, a single fault must not

lead to loss of position. To adhere to this fundamental rule,

redundancy in all active components is usually required, where

redundancy is defined by [5] as:

Redundancy. The ability of a component or

system to maintain its function when one failure has

occurred. Redundancy can be achieved, for instance,

by installation of multiple components, systems or

alternative means of performing a function.

Specifically for class 2 and 3, MSC/Circ. 645 [4] states:

• Equipment class 2: Redundancy in all active components.

• Equipment class 3: Redundancy in all active components

and physical separation (A.60) of a set of components.

where A.60 refers to a specific fire protection requirement.

Class 1 allows for a single failure to lead to a loss of position,

and will consequently not be dealt with further in this article.

Table I describes in short the requirements for equipment class

2 and 3, and their equivalents by DNV GL, ABS and LR.

With regards to sensor systems, the demands stated by the

equipment classes is typically implemented by just installing
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TABLE I
DP CLASSIFICATIONS

Description IMO Class notations

Demands related to position and heading control: DP Class DNV GL ABS LR

Single fault excluding loss of a compartment.
Two independent computer systems.
Specified maximum environmental conditions.

Class 2 DPS 2
DYNPOS-
AUTR

DPS-2 DP (AA)

Single fault including loss of a compartment due to fire or flood.
Two (or more) independent computer systems.
Extra back-up system separated by A.60 class division).
Specified maximum environmental conditions.

Class 3 DPS 3
DYNPOS–
AUTRO

DPS-3 DP (AAA)

three of everything. In the authors’ opinion, this strategy

does not fully exploit the advantages of inertial sensors, and

specifically not the recent developments of Micro-Electro-

Mechanical System Inertial Measurement Units, or MEMS

IMUs, and the awareness of the pros and cons of the typical

vessel sensors and position reference systems. For instance, in

the case of position reference systems, having three completely

independent systems may be hard to achieve, as often only

one or two independent systems are available at a given time.

Installing three GNSS receivers and antennas will protect

you from electronic failure of the components, but you are

still vulnerable to external common mode failures related to

satellite coverage. Chen et al. [6], investigates five different

critical incidents from the North Sea where differential GNSS

errors resulted in a drive-off or loss of position.

Bryne et al. [7] proposed an alternative sensor configuration

for DP, using MEMS IMUs and appropriate software to

• provide an independent measurement principle for head-

ing and position fault management,

• remove the need for dedicated VRUs,

all while potentially reducing the cost of DP sensor systems

without compromising safety. In this article some of these

principles are put to the test in a full-scale experiment to see

if these claims have merit.

A. More on sensors and systems

In current vessels, MEMS inertial sensors together with an

embedded computer and software are the foundation of the

aforementioned VRUs [8].

In contrast to the gyrocompass and VRU, a full Iner-

tial Navigation System (INS) applies tri-axial accelerometer

and angular rate measurements to estimate three-degree-of-

freedom Position, Velocity and Attitude (PVA) in a dead

reckoning fashion. This entails that PVA is estimated rela-

tive some departure point by keeping track of the trajectory

traveled. This is carried out by mechanization of the angular

rate measurements and accelerometer measurements through

the strapdown equations, (2), (6) and (7). Because of errors in

the inertial sensor, such as noise and biases, dead reckoning

is insufficient to maintain accurate estimates over time. To

prevent the INS from drifting, aiding by position reference

systems is often necessary, and an aided INS is often referred

to as an integrated INS.

PosRefs are exposed to both natural degradation and de-

liberate outages. Natural degradation can be caused by signal

distortion from reflection of nearby objects, known as mul-

tipath, loss of signal due to sun storms or loss of line of

sight to the satellite. Deliberate outages can be because of

signal jamming. During loss of PosRef, good dead reckoning

capabilities are vital for the INS to provide accurate PVA

estimates to the user, or to enable the INS’ abilities to detect

errors in the aiding sensors. As stated, DP classes require up

to three independent PosRefs for safety reasons, but complete

independence could be hard to achieve. In these cases, INS can

serve as a technically independent system, providing position

information through the integration of accelerometer data.

Methods for combining INS and GNSS in a traditional way

may be found in [9]–[11].

B. Nonlinear Estimation

The improvement of cost-effective MEMS IMUs over the

last three decades has spurred the research on attitude esti-

mation in general using NonLinear Observer (NLO) theory,

such as [12]–[18]. The NLO of [16], based on [14], has been

extended to make use of the translational motion obtained in a

PosRef aided INS to improve the attitude observer’s estimates,

based on the theory of [19]. Examples of such results are [20],

[21] where a three-degree-of-freedom position measurement

is assumed available. Furthermore, [22]–[24] have tailored the

result of [20] for marine surface navigation by replacing the

need for a vertical PosRef measurement as navigation aid, with

a Virtual Vertical Reference (VVR) measurement. In [25], the

attitude observers of [26] and [20] were compared with regards

to fault tolerance of heading and position reference errors.

The type of NLOs employed in this article have, unlike the

Extended Kalman Filter (EKF), proven semiglobal exponential

stability [20], [22]. Consequentially, we have some guarantees

for robustness and convergence regardless of initialization.

Additionally, since we do not need to propagate any Riccati

equations as for the EKF, NLOs have the potential for being

less of a computational burden.

Examples of heave estimation based on MEMS inertial

sensors, using both linear and nonlinear methods, are presented

in [22], [23], [27]–[29]. [27] and [29] are based on linear

bandpass filtering, while [22], [23] is applying NLOs to

estimate heave. In [24], a more sophisticated method evolving

from [22], [23] is used, estimating wave motion parameters

and employing these in the estimator.
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C. INS in dynamic positioning

Considering ships with DP systems, the idea of fully in-

tegrated INSs is far from novel, as proposed in an industrial

context almost 20 years ago [30], and later [31]. Up to present

time such solutions have applied high-end IMUs, with FOG-

or RLG-based angular rate sensors. The main aspiration of

these products has been to filter PosRefs before applying them

in the DP system. Also, [32] proposed that INS should be

put in tandem with an acoustic system to detect anomalies in

the GNSS and improve the performance of the DP system.

However, many of the high-end integrated INS products for

DP are subjected to strict export restrictions, limiting the

market potential and increasing the cost of installation due

to a possibly lengthy approval process before installation.

MEMS-based IMUs are significantly less expensive and rarely

subjected to export restrictions, which in it self motivates the

investigation of applying these at the core of the onboard INS.

This could also pave the way for cost-effective MEMS-based

INS on a variety of ships from fishing vessels to bulk carriers

and tankers.

D. IMUs for improving DP classes

Table II presents the current DP sensor classifications by

DNV GL [5], based on the guidelines put forward by the

IMO [4]. These provide intuitive and straightforward triple

redundancy, where one faulty sensor can be outvoted by

the remaining ones. However, as pointed out in [7], this is

not optimal as the gyros and accelerometers of the vertical

reference systems are not typically integrated directly with the

rest of the system, and thus cannot be used for fault detection

in position reference systems or gyrocompasses. Table III

presents an alternative sensor configuration, where the IMUs

are used in a more unified manner. This way, the IMUs may

be used in a fault detection framework based on redundant

estimators. Three IMUs each consisting of an accelerometer-

and a gyro-triad can themselves be made into a fairly reliable

source for motion data [33]. Also, the VRU solution follows

inherently from these sensors, which we will se later.

In the configuration in Tab. III the wind sensors are also

optional, as the IMUs can measure the forces exerted on a

vessel directly, as opposed to wind sensors which may provide

data that is detrimental for usage in dynamic positioning [34].

As an alternative to reducing the number of sensors as in

Tab. III, one could imagine still using the classic approach

of Tab. II while including integrated MEMS IMUs. In this

way, one may improve the redundancy and uptime of the DP

system in the case of sensor failures, at a comparatively low

upgrade cost. A DP operation would continue unhindered until

a replacement sensor could be installed.

E. Main Contribution

The main contributions of this article comprise applying

low-cost MEMS IMUs in the navigation system of a DP

vessel, full-scale verification of different nonlinear observers

for attitude estimation for ships, and showing how the IMUs

may be a useful addition to or take the place of existing sensor

TABLE II
CURRENT NUMBER OF SENSORS REQUIRED FOR DP BY DNV GL [5]

(SIMPLIFIED)

Sensors DPS 2 DPS 3

PosRef 3 2+1

External sensors
Wind 2 1+1

Gyro compass 3 2+1

VRS/VRU 2 2+1

+1 indicates A.60 fire proof physical separation of sensors.

TABLE III
ALTERNATIVE NUMBER OF SENSORS REQUIRED FOR DP INCORPORATING

MEMS IMUS [7]

Sensors Class 2 Class 3

PosRef 2 1+1
Gyro compass 2 1+1
MEMS IMU 3 3+3
Wind (1) (1)

+x indicates A.60 fire proof physical separation of sensors.

systems, while maintaining safety in the context of DP class

notations. We choose to use nonlinear observers in this article

because of their proven stability properties, simplicity and

intuitive structure. However, any method for position, velocity

and attitude estimation could be employed in this context,

where the most obvious alternative is the EKF.

The obtained results are compared to those of well-proven

industrial sensor systems providing roll, pitch and heave

measurements for marine surface vessels. Furthermore, to

evaluate the aggregate performance of the navigation solution

(combination of sensor quality and algorithm) we perform a

dead reckoning test. The evaluation consist of:

• Applying two nonlinear observers — [14] and [23] —

for ship attitude estimation.

• Applying the nonlinear observers and IMUs during two

operation conditions: DP and turning maneuvers.

• Evaluation of heave estimation performance using a Vir-

tual Vertical Reference (VVR) signal, [22], [23].

• Testing the potential of the underlying fault-tolerance

properties of the integrated INS solutions by evaluating

the dead reckoning capabilities of the IMU-and-estimator

combinations.

Parts of this article are based on the preliminary work found

in [35] and [36]. The work has been expanded with slightly

better tuning to reflect the performance achievable with NLOs,

low-pass filtering of IMU signals, comparison with EKF,

and applying the VVR to a new observer. In addition, we

discuss the philosophy of [7] and explore its plausibility with

experimental data.

II. PRELIMINARIES

A. Notation

‖ · ‖2 the Euclidean vector norm

In n× n identity matrix

(·)⊺ the transpose of a vector or a matrix
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Fig. 1. Definitions of the BODY, NED (tangent), ECEF and ECI reference
frames.

{·} coordinate frames

S(·) skew symmetric matrix, ∈ SS(3)
za
bc a vector z, to frame {c}, relative {b}, decomposed in

{a}, ∈ R
3

⊗ the Hamiltonian quaternion product

(·)† the right Moore-Penrose pseudoinverse

Rb
a the rotation matrix from the given frame {a} to the given

frame {b}, ∈ SO(3)
ωa

ab angular velocity of {b} relative {a}, decomposed in {a},

∈ R
3

qb
a unit quaternion representing rotation from {a} to {b}.

qb
a = (s, r⊺)⊺ where s ∈ R

1 and r ∈ R
3.

φ roll

θ pitch

ψ yaw

B. Coordinate Reference Frames

This article employs four reference frames; The Earth

Centered Inertial (ECI) frame, the Earth Centered Earth Fixed

(ECEF) frame, a tangent frame equivalent of an earth-fixed

North-East-Down (NED), and the BODY reference frame,

denoted {i}, {e}, {t} and {b}, respectively (see Fig. 1).

ECI is an assumed inertial frame following the Earth as it

orbits around the sun, where the x-axis points towards vernal

equinox, the z-axis is pointing along the Earth’s rotational axis

and the y-axis completes the right hand frame. As for the

ECEF frame, the x-axis points towards the zero meridian, the

z-axis points along the Earth’s rotational axis, while the y-

axis completes the right hand frame. The Earth’s rotation rate

ωie = 7.292115 · 10−5 rad/s is given by the WGS-84 datum.

It is decomposed in the ECEF and NED frame as

ωe
ie =





0
0
1



ωie, ωt
ie =





cos(µ(0))
0

− sin(µ(0))



ωie, (1)

where µ is the latitude, while the longitude is denoted λ.

Moreover, the navigation frame is a local Earth-fixed tangent

frame, {t}, where the x-axis points towards north, the y-axis

points towards east, and the z-axis points downwards. The

BODY frame is fixed to the vessel. The origin of {b} is located

at the nominal center of gravity of the vessel. The x-axis is

directed from aft to fore, the y-axis is directed to starboard

and the z-axis points downwards.

C. Kinematic Strapdown Equations

The attitude representation most comprehensible for the user

is the attitude between the BODY and the NED (tangent)

frame. This is also the most intuitive representation for DP

control and lever arm compensation purposes. Using a rotation

matrix representation, the attitude kinematics in this article is

given as

Ṙ
t

b = Rt
bS(ω

b
ib)− S(ωt

it)R
t
b, (2)

or equivalently,

q̇t
b =

1

2
qt
b ⊗

(

0
ωb

ib

)

−
1

2

(

0
ωt

it

)

⊗ qt
b, (3)

using the unit quaternion attitude representation. ωt
it is the

angular rate of the navigation frame relative to the inertial

frame where ωt
it is given as

ωt
it = ωt

ie + ωt
et = ωt

ie, (4)

since a tangent frame representation of the strapdown equa-

tions is chosen, resulting in ωt
et = 03×1. Moreover, ωb

ib is

the angular rate of the navigating object relative the inertial

frame, decomposed in {b}. Furthermore, from [3, Eq. (2.56)]

and reference therein, the rotation matrix R(qt
b) := Rt

b is

obtained from qt
b using

R(qt
b) = I3 + 2sS(r) + 2S(r). (5)

When using the tangent frame as the navigation frame, the

rotational and translational motion is related with

ṗt
tb = vt

tb, (6)

v̇t
tb = −2S(ωt

ie)v
t
tb +Rt

bf
b
ib + gt

b, (7)

where pt
tb ∈ R

3 is the position, relative to the tangent frame,

pt
tb(0) := 03×1 based on µ(0) and λ(0). Furthermore, vt

tb ∈
R

3 is the linear velocity. It follows that gt(µ, λ) ∈ R
3 is the

local gravity vector which may be obtained using a gravity

model based on the vessel’s latitude and longitude. f b
ib =

(Rt
b)

⊺(at
ib − gt

b) ∈ R
3 is the specific force decomposed in

{b}, where at
ib is the accelerations decomposed in the tangent

frame, measured by the IMU. Moreover, (6)–(7) can be further

extended for marine surface craft with the auxiliary variable

[23]:

pttb,I = lim
T→∞

1

T

∫ T

0

ptz(t)dt = 0, (8)

where I stands for Integrated. The augmentation is motivated

by the fact that the mean vertical position of the vessel is zero

over time since the wave-induced motion of the craft in heave

oscillates about the mean sea level. Based on (8) we augment

the strapdown equations (6)–(7) by introducing pttb,I as a state

with

ṗttb,I = pttb,z, (9)
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by integrating the vertical (down) position associated with the

heave motion.

III. IMU AND SHIP SENSOR CONFIGURATION

A. IMU and Error Sources

A strapdown IMU is a sensor unit measuring tri-axial

angular velocity and tri-axial specific force of the unit in

BODY frame relative the inertial frame,

f b
IMU =

(

f bx; f
b
y ; f

b
z

)

, ωb
IMU =

(

ωb
x;ω

b
y;ω

b
z

)

,

where the subscripts x, y and z, denote the forward, starboard

and downwards axes, respectively, in the BODY frame. In

addition to the specific forces and angular velocity, each

measurement is contaminated with sensor biases, errors and

noise. Sensor errors may consist of nonlinearity, scale factors,

cross-coupling and g-sensitivity errors, where the latter only

affects the angular rate sensor’s reading. In addition to internal

noise sources, external noise may arise due to e.g. electrical

and magnetic interference or stem from mechanical sources

in the form of vibrations. In this article, we assume that

error sources related to sensor nonlinearity, scale factors, mis-

alignment, cross-coupling and g-sensitivity are compensated

for in calibration, or are otherwise neglectable. Temperature-

dependent sensor biases may also be compensated for by

in-silico temperature sensors. For a summary on IMU error

sources, see [9, Ch. 4.4].

Nevertheless, some time-varying bias instability and run-

to-run and in-run instability is often present with MEMS

IMUs. Therefore, we model the angular rate and accelerometer

measurements as

ωb
IMU = ωb

ib + bbgyro +wb
gyro, (10)

f b
IMU = f b

ib + bbacc +wb
acc, (11)

where ωb
ib and f b

ib are the true angular rates and specific

forces, respectively. Moreover, the respective sensor biases are

denoted bbgyro and bbacc, while wb
gyro and wb

acc represent the

zero mean sensor noise and vibration induced noise contained

in the respective measurements. Both the angular rate/gyro and

accelerometer biases are assumed slowly time-varying,

ḃbgyro = wb
b,gyro, ḃbacc = wb

b,acc, (12)

where wb
b,gyro and wb

b,acc represent small variations in the

biases (zero mean).

For more detailed information on inertial sensors and iner-

tial sensor errors, [10, Ch. 4–8] may be advised.

B. Ship Sensor Configuration

Several IMUs were installed on an offshore vessel operating

in the Norwegian sea, equipped with a Rolls-Royce Marine

DP system. The ship in question is owned and operated by

Farstad Shipping (now Solstad Offshore). In this article we

will present results obtained using ADIS16485 and STIM300

MEMS IMUs. The sensor configuration of the vessel, based

on the kinematic formulation of (3), (6)–(7), (9) for fusing

IMU, compass, GNSS and VVR measurements in an aided

INS, was:

TABLE IV
VRU SPECIFICATION

Static

roll and pitch

Dynamic

roll and pitch

Heave

RMS error 0.02◦ 0.02◦ 5 cm or 5%

TABLE V
IMU SPECIFICATIONS FROM MANUFACTURER

ADIS16485 STIM300

In-run Gyro Rate Bias Stability 6.25 deg

h
0.5 deg

h

Angular Random Walk 0.3 deg
√
h

0.15 deg
√

h

In-run Accelerometer Bias Stability 0.032 mg 0.05 mg

Velocity Random Walk 0.023
m/s
h

0.06
m/s
h

• 1x differential GNSS position measurement, pt
GNSS =

(ptx; p
t
y) at 1 Hz (we only use horizontal position).

• VVR: pttb,I = 0, for all t ≥ 0 at 1000 Hz. By using the

VVR, other vertical references based on ranging with re-

duced precision due to the vertical ranging geometry, such

as with GNSS-based and hydroacoustic-based PosRefs

are avoided. For more details on the VVR measurement

principle, see [23] and [24].

• Two different IMUs, ADIS16485 and STIM300, provid-

ing

– Tri-axial angular rate measurements, ωb
IMU

– Tri-axial accelerometer-based specific force mea-

surements, f b
IMU

both interfaced at 1000 Hz.

• Yaw measurements from a triple-redundant gyrocom-

passes solution, ψc, at 5 Hz.

The IMU measurements are filtered with a 6th order low-pass

Butterworth filter with a cutoff frequency of 5 Hz.

In addition, we use roll (φ) and pitch (θ) signals for

comparison, obtained from a VRU at 5 Hz, see Tab. IV for

specifications from the manufacturer. The specifications of the

IMUs installed on the offshore vessel are presented in Tab. V.

1) Lever arm and sensor orientation: The IMUs are

mounted aligned with the body frame of the vessel, and the

axes of the VRU. Since the IMUs are mounted right next to

the VRU the lever arms (on the decimeter level) between these

sensors are considered to be negligible, considering the scale

of the vessel. The lever arm from the VRU and the IMUs to

the GNSS antennas is rbb = [15.73,−0.54,−32.68]⊺ in meters,

provided by the VRU vendor.

C. Effect of Sensor Biases and Mounting Errors on the Atti-

tude Estimation

The IMU sensor biases has a direct effect on the attitude

estimates. The gyro bias influences the attitude dynamically,

while the accelerometer biases affect the attitude estimation

statically. As stated in e.g. [11, Ch. 10], roll and pitch angles



6

may be obtained in static conditions using accelerometers or

inclinometers,

φ = atan2(f bIMU,y, f
b
IMU,z), (13)

θ = atan2(−f bIMU,x,

√

f b
2

IMU,y + f b
2

IMU,z). (14)

making the initialization of roll and pitch (known as leveling)

susceptible to accelerometer biases. Similar to accelerometer

bias, mounting (alignment) errors also contribute to static roll

and pitch errors.

Akin to using accelerometers in static condition, also using

them as measurement vectors in the attitude estimation of

(15)–(16) may be problematic since the angular rate sensor

biases and accelerometer biases are not mutually uniformly

observable, [11, Ch. 11.9]. However, in most situations it is

the only option to obtain a roll and pitch like reference. The

theory of [16], [20] assumes zero accelerometer bias or that

it is possible to compensate for it by estimation, subject to

an additional persistent excitation requirement. Accelerometer

bias compensation for the attitude estimation, using the bias

estimate b̄bacc, can be done statically based on calibration

results or by online estimation. In this article we are applying

constant accelerometer bias compensation obtained in port,

based on the VRU references available, prior to the attitude

observer verification scenarios. Separating the biases from

mounting errors in this way is difficult, so some errors are

bound to get mixed up with the biases using static methods

such as (13) and (14). As presented in [35], static accelerome-

ter bias compensation proved successful for attitude estimation

for the duration of the experiments after the initial calibration

due to the in-run stability of the accelerometers available.

IV. NONLINEAR OBSERVERS

In this article we will compare two nonlinear attitude

observers with aiding [20], [23] and without aiding [14] from

a translational motion observer. An overview of the observer

structure is presented in Fig. 2. Both attitude observers are

based on the kinematics of (3) and the gyro bias model of

(12) resulting in the observer equations,

Σ1 :



























˙̂qt
b =

1

2
q̂
t
b ⊗

(

0

ω̂
b
ib

)

−
1

2

(

0
ωt

it

)

⊗ q̂
t
b,

ω̂
b
ib = ωb

IMU − b̂bgyro + σ̂
b
ib,

˙̂
bbgyro = Proj

(

b̂bgyro,−kI σ̂
b
ib

)

,

(15a)

(15b)

(15c)

where the gain kI is associated with the gyro bias estimation,

and Proj denotes the gyro bias projection algorithm of [16] and

the reference therein. The projection imposes a bound on b̂bgyro
to a compact set. The difference between the two observers

lies in the injection term, σ̂
b
ib, given as

σ̂
b
ib = k1v

b
1 ×R⊺(q̂t

b)v
t
1 + k2v

b
2 ×R⊺(q̂t

b)v
t
2, (16)

where vb
1 and vb

2 are the measurement vectors and vt
1 and vt

2

are the reference vectors, calculated using

vb
1 = f b, vb

2 = f b × cb,

vt
1 = f t, vt

2 = f t × ct.

TABLE VI
NLO REFERENCE VECTORS CONFIGURATION

Vector ct Vector f t

NLO A Unit vector North −gt
b/‖ − gt

b‖2
NLO B Unit vector North f̂ t

ib/‖f̂
t
ib‖2 through feedback from

VVR and PosRef injection

An overview of the main differences of NLO A and B can

be found in Tab. VI. For both, cb = (cos(ψc); − sin(ψc); 0)
and ct = (1; 0; 0) as posed in [22]. Both cb and ct are natu-

rally normalized. By using normalized measurement/reference

vector pairs, the gains k1 and k2 can be considered as the

NLO’s complementary filter cut-off frequencies having unit

rad/s. Hence, for motion frequencies higher than k1 and k2, the

angular rate measurements are the primary sources of attitude

information, while for frequencies lower than k1 and k2, the

respective measurement vectors are the primary sources of

attitude information.

A. Nonlinear Attitude Observer A

For attitude observer A, σ̂
b
ib,A is implemented with f b and

f t based on the injection term of [14] with

f b =
f b
IMU − b̄

b

acc

‖f b
IMU − b̄

b

acc‖2
, f t =

−gt
b

‖ − gt
b‖2

, (17)

where the local gravity vector is utilized as reference vector

based on the assumption that the specific force in the naviga-

tion frame is dominated by −gt
b.

B. Nonlinear Attitude Observer B

Regarding attitude observer B, the reference vector f t, in

the calculation of σ̂
b
ib,B is chosen as

f t =
satMf

(f̂
t

ib)

‖satMf
(f̂

t

ib)‖2
, (18)

where f̂ t
ib is estimated using a modified version of the

feedback-interconnected observer framework [20], using the

Translational Motion Observers (TMO) of [22], [23], where

the VVR aiding concept is applied. Moreover, by providing

the specific force estimate f̂ t
ib, to Σ1, the attitude estimate is

potentially more accurate when the vessel is accelerated than

it is when using −gt
b as reference vector. f̂ t

ib, provided to

attitude observer B, is estimated using the TMO Σ2 (see Fig. 2

and below), which has injection from a PosRef in addition to

the VVR measurement. The TMO used to estimate f̂
t

ib used
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Fig. 2. Observer structure for strapdown inertial navigation. Depending on configuration, the Attitude and Heading Reference System (AHRS) may be aided
internally by a Translational Motion Observer, itself aided by PosRefs and VVR measurements.

by NLO B takes the form of

Σ2 :































































































˙̂pttb,I = p̂ttb,z + ϑKpIpI
p̃ttb,I ,

˙̂pt
tb = v̂

t
tb

+ ϑ2
(

02×1

KppI

)

p̃ttb,I + ϑ

(

Kpp

0 0

)

p̃t
tb,

˙̂vt
tb = −2S(ωt

ie)v
t
tb + f̂ t

ib + gt
b

+ ϑ3
(

02×1

KvpI

)

p̃ttb,I + ϑ2
(

Kvp

0 0

)

p̃t
tb,

ξ̇
t

ib = −R(q̂t
b)S(σ̂

b
ib,B)

(

f b
IMU − b̄bacc

)

+ ϑ4
(

02×1

KξpI

)

p̃ttb,I + ϑ3
(

Kξp

0 0

)

p̃t
tb,

f̂ t
ib = R(q̂t

b)
(

f b
IMU − b̄bacc

)

+ ξtib,

(19a)

(19b)

(19c)

(19d)

(19e)

where p̃ttb,I = pttb,I − p̂
t
tb,I , p̃t

tb = pt
GNSS−(p̂ttb,x; p̂

t
tb,y). K[·]pI

and K [·]p are fixed gains, while ϑ ≥ 1 is a tuning parameter

used to guarantee stability. Since the VVR provides ptI = 0
for all t ≥ 0, the vertical estimates of Σ2 are self contained

regardless of GNSS precision and accuracy or GNSS position

fix. The gains may be chosen such that the feedback intercon-

nection Σ1 − Σ2 possesses uniform semiglobal exponential

stability [23].

In state-space form, the aiding TMO is represented as:

˙̂xa = Aax̂a +Baua +ϑL−1
ϑ KaEϑ (y −Cx̂a) +Da (20)

with the state space, measurements and input vectors

x̂a =
(

p̂ttb,I ; p̂
t
tb; v̂

t
tb; ξ̂

t

ib

)

,

y =
(

pnI ;p
t
GNSS

)

,

u =
(

f b
IMU − b̄bacc;−S(σ̂)(f b

IMU − b̄bacc)
)

,

and matrices and vectors,

Aa =









0
(

0 0 1
)

01×3 01×3

03×1 03×3 I3 03×3

03×1 03×3 03×3 I3

03×1 03×3 03×3 03×3









,

Ba =









01×3 01×3

03×3 03×3

R(q̂t
b) 03×3

03×3 R(q̂t
b)









,

Ca =
(

I3 03×7

)

,

Da =
(

0; 03×1; −2S(ωt
ie)v

t
tb + gt

b; 03×1

)

,

Ka =





















KpIpI
01×2

02×1 Kpp

KppI
01×2

02×1 Kvp

KvpI
01×2

02×1 Kξp

KξpI
01×2





















,

Lϑ = blockdiag

(

1,
1

ϑ
I3,

1

ϑ2
I3,

1

ϑ3
I3

)

,

Eϑ = CaLϑC
†
a,

where Eϑ satisfies EϑCa = CaLϑ such that the semiglobal

exponential stability follows from [22].

C. Translational Motion Observer

Even though the gyro and accelerometer biases are not

mutually uniformly observable, [11, Ch. 11.9], without the

vessel accelerating and rotating, some accelerometer bias

compensation has to be performed in order to obtain an INS

with reasonable dead reckoning capabilities. For Σ1 − Σ2,

a fixed pre-compensated accelerometer bias b̄
b

acc is applied

for attitude estimation. However, some accelerometer errors

may be present owing to some in-run bias instability, w.r.t.

Tab. V. To atone for this, we create a new TMO including

an estimate of the residual accelerometer bias b̂
b

acc, inspired
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by the observer of [3, Ch. 11.5.1]. Observer Σ3 for additional

accelerometer bias estimation can be described as follows:

˙̂x = Ax̂+Bu+K (y −Cx̂) +D (21)

with x̂ =
(

pttb,I ; p̂
t
tb; v̂

t
tb; b̂

b

acc

)

,

y = (pnI ;p
t
GNSS) and u = f b

IMU − b̄bacc, resulting in

A =









0
(

0 0 1
)

01×3 01×3

03×1 03×3 I3 03×3

03×1 03×3 03×3 −R(q̂t
b)

03×1 03×3 03×3 03×3









,

B =









01×3

03×3

R(q̂t
b)

03×3









,

C =
(

I3 03×7

)

,

D =
(

0; 03×1; −2S(ωt
ie)v

t
tb + gt

b; 03×1

)

,

Considering R(q̂t
b) as an external signal to Σ3, A is treated

as time-varying and the TMO’s error dynamics is rendered

exponentially stable by employing a Riccati-equation and gain

similar to the Kalman-Bucy filter [37],

K = PC⊺R−1, (22)

Ṗ = AP + PA⊺ −KRK⊺ +GQG⊺. (23)

Q and R are covariance matrices chosen according to sensor

noise and desired tuning, see Section V. Furthermore, the

process noise disruption matrix is chosen to be

G =









01×3 01×3

03×3 03×3

R(q̂t
b) 03×3

03×3 I3









, (24)

such that the process noise associated with the accelerometer

in Q is related to the navigation frame, {t}, through R(q̂t
b).

The actual implementation of the observer is done in discrete

time, as in for instance [9], using the discrete time versions

of the Riccati equation and Kalman gain.

V. OBSERVER TUNING

Observer tuning is usually dependent on both the properties

of the sensors and the system in which one is trying to

estimate states. In our case, we found that external noise

sources, i.e. vibrations, dominate those originating internally.

Therefore, we opted to use the same observer tuning for both

the ADIS16485 and STIM300. For Σ1 we used the gains

k1 = 0.1, k2 = 0.1, kI = 0.05.

For Σ2, the parameter ϑ = 1 was chosen. For the gains

K[·]pI
and K [·]p, we employed the continuous-time steady-

state Riccati equation, similar to the Kalman-Bucy filter [37],

and akin to Σ3,

Ka = P a,∞C⊺

aR
−1
a

0 = AaP a,∞ + P a,∞Aa −KaRaK
⊺

a +BaQaB
⊺

a

using the following covariance matrices for process and mea-

surement noise

Qa = blockdiag(0.12 · I3, 0.15
2 · I3),

Ra = blockdiag(352, 22 · I2),

where the first element of Qa is the variance associated with

the input f b
IMU, and the second element is associated with the

cross product of σ̂ and f b
IMU as seen in (19d). The first element

of Ra is a value representing VVR measurement uncertainty,

and the second element is the GNSS horizontal measurement

variance. This resulted in the the following gains:

KpIpI
= 0.6368,

KppI
= 0.2028,Kpp = 0.7950 · I2,

KvpI
= 0.0378,Kvp = 0.3160 · I2,

KξpI
= 0.0035,Kξp = 0.0612 · I2.

For Σ3 we chose the following covariance matrices to go with

the Riccati equation:

Q = blockdiag(0.12I3, 0.001
2 · I3).

R = blockdiag(202, 22 · I2).

As for Σ2, the first element of Q is the variance associated

with f b
IMU, but the second element is the process noise of

the b̂
b

acc state. R represents exactly the same as Ra, albeit

tuned a bit differently for the VVR measurement because of

the different dynamics of Σ2 and Σ3.

All matrices are tuned in continuous time, and then con-

verted to discrete time equivalents in the actual implementa-

tion, see for instance [9] for methods for discretization.

VI. FULL-SCALE TESTING: ATTITUDE

In this section, we present the results of the attitude estima-

tion using two distinct attitude observers and two particular

MEMS IMUs, during two different operations undertaken by

the offshore vessel. The first operation is station keeping

during DP. The second is a maneuvering operation, where the

vessel changes heading while surging forward. Plots of the

respective path tracks over two hours are shown in Fig. 3. The

attitude estimation is evaluated using the mean error, Root-

Mean-Square Error (RMSE) and Cumulative Absolute Error

(CAE) metrics, using the onboard VRU as reference. Also,

a comparison with the output of NavLab [38] is provided.

NavLab is a navigation software suite based on the EKF,

and has been applied in industry and defense on a wide

range of systems, maritime and otherwise. The metrics for all

estimators were evaluated for a 90-minutes data set. We do not

generate statistics for yaw estimation error, as this is somewhat

meaningless exercise considering that the gyrocompass, which

is our only reference for heading, is also aiding our attitude

observers.

A. DP

An excerpt of the attitude estimates obtained using the

STIM300 IMU and NLO B in DP is shown in Fig. 4a.

The estimation errors relative the VRU and gyrocompass
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Fig. 3. Two North-East tracks depicting operational situations used to evaluate
the attitude estimation performance. The path tracks are obtained from the
onboard GNSS.
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(b) Attitude estimation error: Roll, pitch and yaw.

Fig. 4. Sample attitude estimation using NLO B and STIM300.

measurements over two hours are shown in Fig. 4b. The

statistics obtained using the attitude estimators in DP are

presented in Tab. VII. One can see that the choice of estimator

to perform the attitude estimation in DP is more important than

the choice of sensor, at least when it comes to our selection of

IMUs. It is evident from the results that both the RMSE and

CAE is improved using NLO B and NavLab compared to the

results obtained with NLO A. This is particularly noticeable in

roll. The mean errors are approximately the same, where the

differences are on such a scale that the practical effects of such

errors, for instance in lever arm compensation, are negligible.

For NavLab, larger differences are observed between the IMUs

than is the case for the NLOs. This could mean that the tuning

of NavLab is more sensor dependent than the NLOs.

B. Maneuvering

The statistics obtained using attitude estimators during ma-

neuvering are presented in Tab. VIII. Results comparable to

what were obtained in DP, are achieved during the maneuvers

as shown in Tab VIII. NLO B and NavLab outperform NLO

A considering RMSE and CAE in roll and pitch, but not as

much as in the DP case. As opposed to the DP case, here

NavLab was in line with the other two estimators and yielded

virtually no difference in output between the two sensors.

C. Discussion

The results obtained during DP and maneuvering gave

approximately similar results for both IMUs. The two different

NLOs however provided varied results when compared to the

onboard VRUs.

During both test cases, the attitude estimation errors com-

pared to the VRU were smaller using NLO B, compared

to using NLO A, particularly in roll. NLO A has a static

specific force injection, (see Sec. IV and Tab. VI) using −gt
b

as reference vector. However, −gt
b is not equal to f t

ib, even

in DP, due to the wave-induced motions of the vessel. The

positive effect of using f̂ t
ib as reference vector is considerable,

as expected from the results of [23], due to the kinematic

coupling between roll, pitch and heave obtained using VVR

as vertical reference in TMO Σ2. However, in light of this, a

peculiar result is that the difference between NLO A and B

decreases from DP to maneuvering even though the dynamics

of the system apparently increase. This may be because the

increase in dynamics is mainly in the horizontal plane, where

the quality of the GNSS position measurement matters more

and the VVR impact is minimal.

The performance of NLO B was comparable to what we

achieved with NavLab. In contrast to the Kalman filter, the

NLOs used here are not designed with optimality in mind,

as in minimum variance, but rather stability and guarantees

of convergence. Still, we managed to get similar stationary

performance for attitude estimation compared to an EKF-

based solution of NavLab. This reaffirms previous results on

GNSS/INS-integration using NLOs [21].

Compared to what was achieved in [35], we see an im-

provement of the nonlinear attitude estimation results. This is

mostly due to the low-pass filtering of IMU data, which was

not done in [35]. Low-pass filtering may be beneficial for the

nonlinear observers employed here, which are derived without

the assumption of sensor and vibration noise.

Since accelerometer measurements dominate the roll and

pitch estimates at frequencies below the NLO’s internal cut-

off frequency k1, the mean error over time is dependent on

the accelerometer sensor biases. However, the accelerometer

biases are not estimated online for the NLO’s, but rather

calculated as a constant in port as much as three days before

the second vessel operation presented. As both IMUs give
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TABLE VII
ATTITUDE ERROR STATISTICS IN DP

NavLab NLO A NLO B

ADIS16485 STIM300 ADIS16485 STIM300 ADIS16485 STIM300

Roll mean error [deg] -0.0193 -0.0094 0.0036 0.0003 -0.0007 -0.0044
Pitch mean error [deg] 0.0463 0.0063 0.0090 0.0070 0.0047 0.0016

Roll RMSE [deg] 0.0417 0.0287 0.1113 0.1151 0.0363 0.0299
Pitch RMSE [deg] 0.0813 0.0628 0.1080 0.1071 0.0670 0.0649

Roll CAE [deg] 881.89 610.79 2361.8 2442.7 759.80 628.99
Pitch CAE [deg] 1731.1 1233.3 2254.9 2239.7 1406.0 1357.5

TABLE VIII
ATTITUDE ERROR STATISTICS DURING MANEUVERING

NavLab NLO A NLO B

ADIS16485 STIM300 ADIS16485 STIM300 ADIS16485 STIM300

Roll mean error [deg] -0.0345 -0.0301 -0.0089 -0.0134 -0.0080 -0.0115
Pitch mean error [deg] 0.0311 0.0081 -0.0245 -0.0041 -0.0188 0.0022

Roll RMSE [deg] 0.0847 0.0817 0.1102 0.1122 0.0870 0.0848
Pitch RMSE [deg] 0.1078 0.1154 0.1161 0.1139 0.1113 0.1193

Roll CAE [deg] 1613.3 1433.3 2442.6 2484.0 1636.3 1575.8
Pitch CAE [deg] 2135.6 2123.5 2638.6 2582.6 2446.2 2500.2

good performance with regards to mean roll and pitch error,

one can conclude that the accelerometer biases do not vary

by much and the sensors are highly in-run stable in the

environment they are located.

It should also be emphasized that we compared the NLOs’

performance to the VRU’s equivalent signals and not to

absolute truth, revisit Tab. IV for the VRU specifications.

Hence, there may exist situations where the combination of

IMUs and NLOs provide more accurate estimates than the

VRU.

VII. FULL-SCALE TESTING: HEAVE

A. DP and maneuvering

Heave estimation is carried out on the exact same data sets

as in Sec. VI, and using the same metrics. Since NavLab does

not provide the VVR functionality, it will not be used for

comparison in this section. A selection of the heave estimates

obtained using the STIM300 and Σ2 and Σ3 is shown in Fig. 5.

The heave estimation error statistics obtained using the same

observers are presented in Tabs. IX–X.

B. Discussion

Considering the heave estimation performance, this appears

to be better when using the ADIS16485 as IMU. Between Σ2

and Σ3, there appears to be some differences in favor of Σ2.

While the attitude estimates showed practically no difference

between the IMUs, the use of ADIS16485 gave better heave

estimates than those obtained with STIM300, with the method

used. This might be due to the ADIS16485’s accelerometer

having better velocity-random walk characteristics than the

STIM300. Also, it should be mentioned that the STIM300

unit provided by Sensonor, is an engineering sample. Such

50 51 52 53 54 55
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0.5

1

0 20 40 60 80 100 120

-0.2

0

0.2

Fig. 5. Sample heave estimation and estimation error in DP using Σ2 (yellow)
and Σ3 (red) vs. the onboard VRU (blue).

units are made for testing and do not necessarily fulfill all

of the specifications in the datasheet under all environmental

conditions. Therefore, we cannot guarantee that the results ob-

tained is representative for a commercially available STIM300.

Generally for the heave estimation results, they might be

improved with a tuning emphasizing heave specifically, or

using alternative algorithms, such as in [24]. Even though

low-pass filtering improved the attitude estimation compared

to [35], we do not see the same consistent improvements

compared to the corresponding results for heave.
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TABLE IX
HEAVE ERROR STATISTICS IN DP

Σ2 Σ3

ADIS16485 STIM300 ADIS16485 STIM300

Mean heave error [cm] -0.6511 -0.6005 0.2288 0.1339
RMSE heave [cm] 5.7766 10.523 8.0644 10.274
CAE heave [cm] 1215.0 2207.3 1706.2 2112.6

TABLE X
HEAVE ERROR STATISTICS DURING MANEUVERING

Σ2 Σ3

ADIS16485 STIM300 ADIS16485 STIM300

Mean heave error [cm] -0.2982 -0.2689 0.3831 0.7008
RMSE heave [cm] 6.3318 9.8799 8.5277 12.308
CAE heave [cm] 1462.5 2275.0 1907.4 2699.1

VIII. FULL-SCALE TESTING OF DEAD RECKONING

CAPABILITY IN DP

In this section, the evaluation of the dead reckoning prop-

erties in light of fault detection using the ADIS16485 and

STIM300 is presented. The dead reckoning performance eval-

uation is carried out with data collected in a DP operation

whose GNSS track is shown in Fig. 3a.

First, the heading dead reckoning performance when using

the IMUs available is discussed, and illustrated with an ex-

ample. Then, the position dead reckoning performance during

the particular DP operation is evaluated, applying both IMUs

and NLO A with Σ3.

The resulting statistics are based on running the estimators

60 times on subsets of the DP dataset with an incremental

increase in initial time for each subset. For heading dead

reckoning performance evaluation the datasets are 75 minutes

long, allowing for 15 minutes of estimator settling time and

a 60 minute evaluation window. The duration is chosen to

compare the performance with the sensor specifications, while

the amount of runs is chosen in order to have sufficient

evaluation samples while still maintaining separation of the

starting time of the datasets. For position, the same settling

time is chosen, but we use only 10 minutes of evaluation time

as the position is expected to drift substantially more than the

heading in dead reckoning.

A. Heading Angle Dead Reckoning Capabilities

The heading angle dead reckoning capabilities using the

IMUs available were found to be in compliance with the

IMUs’ angular rate specifications, presented in Tab. V. A total

of 60 one-hour-long heading evolutions of the absolute yaw

angle error

|ψ̃| = |ψc − ψ̂|, (25)

compared to the ship gyrocompass measurements for both

sensors, are shown in Fig. 6. The dead reckoning was carried

out with NLO B, by disabling the observer injection from the

gyrocompass by setting k2 = 0, after an observer initialization

time of 15 minutes. In addition, the average heading error,

of the 60 runs, is highlighted in Fig. 6. Examples of typical

angular rate bias estimates are shown in Fig. 7, exhibiting that

the STIM300’s biases are more in-run stable than those of the

ADIS16485.

Fig. 6. Dead reckoning performance in yaw obtained using the ADIS16485
and STIM300 IMUs. Highlighted graph indicates average error.

B. Position Read Reckoning Capabilities

Evaluation of the dead reckoning capabilities in position is

similar yet more elaborate than for heading since the theoret-

ical growth of errors are a combination of higher order terms,

[9, Ch. 5.7], as opposed to linear growth for heading. In order

to obtain statistically significant results related to the position

drift while performing dead reckoning, each combination of

IMU and NLO was evaluated 60 times by comparing the errors

accumulated when disabling GNSS feedback after t = 15
minutes, and then continuing the estimation for 10 minutes.

The evaluation is done by taking the norm of the difference

between the horizontal components of pt
GNSS and p̂

t
GNSS,

defined p̃t
GNSS := pt

GNSS − p̂
t
GNSS where,

p̂
t
GNSS = p̂

t
tb +R(q̂t

b)r
b
b, (26)
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(a) Typical angular rate bias estimates of the ADIS16485.
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Fig. 7. Typical angular rate bias estimates for the two different IMUs

with rbb being the lever arm from the IMU to the GNSS

antenna position such that

‖p̃t
GNSS‖2 = ‖pt

tb +Rt
br

b
b − p̂

t
tb −R(q̂t

b)r
b
b‖2,

= ‖p̃tb +
(

Rt
b −R(q̂t

b)
)

rbb‖2. (27)

For position dead reckoning, only NLO A is to be considered.

This is because of NLO B’s innate dependency on position

reference measurements. In a dead reckoning case, one would

have to cut the feedback interconnection and use the same

reference vector as for NLO A, effectively making the NLOs

the same. A possibility to get the best of both worlds would

be to create a switching mechanism for using NLO B’s more

accurate attitude estimates as we enter dead reckoning and

switch over to using NLO A afterwards, but that is beyond

the scope of this article.

For the dead reckoning test, an accelerometer bias average

estimate based on the last minute of the b̂
b

acc state is used.

This is to account for any short term fluctuations of the

accelerometer bias and GNSS imprecisions. The same could

be achieved by tuning the matrices Q and R differently, at

the expense of estimator convergence time. Fig. 8 displays

an example of a dead reckoning run with ADIS16485. The

position estimate starts drifting immediately after feedback is

cut at t = 15 minutes. Fig. 9 shows the aggregated drift errors

over 10 minutes, after PosRef injection is disabled, applying

NLO A and Σ3 for both the ADIS16485 and the STIM300

IMU. The statistical results based on the 60 dead reckoning

runs are presented in Tab. XI.

C. Discussions

1) Heading dead reckoning: It is evident, with regards to

Fig. 7, that the gyro bias estimates using the STIM300 is

14 14.5 15 15.5 16 16.5 17

-10

-5

0

p̂
t tb
,x
[m

]

GNSS

Obsv.

14 14.5 15 15.5 16 16.5 17

Time [min]
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10

p̃
t tb
,x
[m

]

Fig. 8. Example of dead reckoning run with prior bias estimation, where
feedback from GNSS is cut after 15 minutes (indicated by vertical line). North
(or x) position on top, position difference between estimator and GNSS in
bottom.

smoother and more in-run stable than those found using the

ADIS16485, resulting in the performance difference seen in

Fig. 6. This is in compliance with the sensor specifications

presented in Tab. V. The asymptotic angular rate bias estima-

tion performances seen in Fig. 7, is representative of what is

seen from run to run.

2) Position dead reckoning: As seen from the “Standard”

column of Tab. XI and Fig. 9, one of the main conclusions

from the six times 60 dead reckoning runs performed over the

data sets collected during DP is that using the STIM300 results

in better performance than using the ADIS16485. Interestingly

enough, for the unfiltered data of the same table the oppo-

site conclusion is reached. According to specifications, the

ADIS16485 has the better accelerometer, while the STIM300

contains a superior angular rate sensor. One could speculate

that by removing the white noise of the accelerometer through

filtering, the errors induced by angular rate sensors become

more important. In any case, from looking at the results of

Tab. XI and Fig. 10 with no accelerometer bias estimation,

one can see that estimating the residual accelerometer biases

as in (21) clearly has a positive effect on the dead reckoning

results.

The results indicate a large spread of dead reckoning errors

over 10 minutes, and this might be due to noise, mechanical

disturbance such as vibration, or insufficient tuning of the

observers. Time synchronization of signals is also an issue,

as the GNSS and gyrocompass signals were acquired from a

system separate from the IMUs’ signal acquisition, with an

unknown, albeit small, delay.

Considering the quality of the results obtained compared to

the results in [39], using either of the two MEMS-based IMUs

available in this work gave worse results than in [39] where an

INS with a FOG gyro was applied. In the results presented in

[39], a position accuracy during GNSS outage stayed within

GNSS accuracy for a period exceeding two and a half minutes.

The mean position drift after a 50 seconds GNSS outage was

less than half a meter. These results are considerably better
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TABLE XI
POSITION DEAD RECKONING ERROR STATISTICS

Standard (Fig. 9) No acc bias (Fig. 10) No pre-filtering

ADIS16485 STIM300 ADIS16485 STIM300 ADIS16485 STIM300

Mean error [m] 1 min 4.3014 3.2885 4.6148 3.9820 4.7580 4.3560
Mean error [m] 5 min 35.125 25.762 54.037 56.256 38.588 44.631
Mean error [m] 10 min 102.12 83.927 211.89 218.51 112.07 139.51

Min error [m] after 10 min 11.639 3.0962 76.464 120.83 4.1972 26.919
Max error [m] after 10 min 264.03 231.74 359.18 362.18 244.97 350.30

RMSE [m] after 10 min 115.74 96.141 220.24 224.94 125.25 159.93

(a) Dead reckoning errors obtained with ADIS16485.

(b) Dead reckoning errors obtained with STIM300.

Fig. 9. Aggregated dead reckoning error over 60 runs using NLO A in minutes
after position feedback is removed. Red indicates the mean error, blue lines
are individual runs.

than the approximately 3-5 meters error obtained after one

minute dead reckoning for both MEMS IMUs. However, in

[39] only 10 runs are presented, making a definite statistical

comparison difficult due to the few dead reckoning trajectories

presented. The FOG-based INS product in question is currently

(a) Dead reckoning errors obtained with ADIS16485.

(b) Dead reckoning errors obtained with STIM300.

Fig. 10. Aggregated dead reckoning error over 60 runs using NLO A, and
no bias estimation in Σ3 in minutes after position feedback is removed. Red
indicates the mean error, blue lines are individual runs.

advertised to have a 20 m error with a 50 % circular error

probability after five minutes of unaided navigation, whereas

we obtain approximately 25 meters averaged error in the same

time frame for STIM300.

As depicted in Fig. 9, a MEMS-based INS may provide
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relatively stable position estimates (around four meters error)

for half a minute, without PosRef injection. From a fault-

tolerance perspective, the results obtained here indicate what

kind of PosRef errors one might detect based on MEMS IMUs.

For instance a PosRef drift of 10 centimeters per second results

in a PosRef error of 3 meters after half a minute, which might

be possible to detect with the results obtained, considering

the average error is two meters with either of the two IMUs.

Moreover, in the situation of PosRef failure during DP, if four

meters is an acceptable error margin, 30 seconds is available

to the DP operator to decide whether the operation should

be aborted or not. This might be sufficient time for PosRef

recovery e.g. if tracking is reestablished with one or more

satellites, resulting in a complete GNSS solution.

The dead reckoning performance is not only dependent on

the sensor biases, but also on the velocity-random walk and

the sensed vibrations on the ship. Integrating these over time,

results in a large error even when averaging them out using

high-rate integration (1000 Hz). Low-pass filtering of the IMU

signals may be beneficial, and compared to [36] where this was

not done, some improvements are made in the drift-offs.

Regarding tuning, more emphasis on tuning for a dead reck-

oning application may accomplish better results. In this article,

the tuning is geared towards attaining the smallest errors in

attitude and heave compared to the onboard VRU. Also, time-

synchronization errors between our IMUs and the onboard

GNSS may result in small errors in velocity and specific force

at the time of disabling GNSS injection, resulting in a steeper

error slope than otherwise obtained if the position and inertial

measurements were synchronized.

IX. CONCLUDING REMARKS

The article set out to explore the credibility of using

MEMS IMUs for complementing existing systems on board

dynamically positioned vessels. A successful verification of

two nonlinear estimators for attitude/vertical reference was

carried out, employing two different MEMS IMUs, namely

the ADIS16485 and STIM300. The full-scale experimental

data was collected on an offshore vessel operating outside the

Norwegian coast. Comparing the observer output to industry

standard VRUs and navigation software based on EKF showed

that favorable performance could be achieved, and that for atti-

tude estimation the method was more important than the IMU

itself. The results also showed that estimating specific force in

the navigation frame improves attitude estimates, in contrast to

assuming that the vessel is not accelerating. Heave estimation

was also compared, revealing more differences between the

IMUs. Seemingly ADIS16485 had a better accelerometer than

STIM300, which reflected upon the results.

Dead reckoning for heading and position using the IMUs

was also considered, where the heading case revealed the great

qualities of the STIM300’s angular rate sensors. For dead

reckoning in position, the IMUs yielded comparable results

with the STIM300 coming out on top, probably because of

the better angular rate sensor. The results showed that it would

be plausible to detect certain drifts of the position reference

system using MEMS IMUs.

All in all, the performance of the INS based on MEMS

IMUs suggests that they would be a valued addition to a

DP system, whether the goal is to reduce the number of

other external sensors and systems, or simply complementing

existing systems.
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