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Abstract—Broken rotor bars in an induction motor create
asymmetries and result in abnormal amplitude of the sidebands
around the fundamental supply frequency and its harmonics.
Motor current signature analysis (MCSA) techniques are applied
to inspect the spectrum amplitudes at the broken rotor bar specific
frequencies for abnormality and to decide about broken rotor
bar fault detection and diagnosis. In this paper, we have demon-
strated with experimental results that the use of a lower sampling
rate with a digital notch filter is feasible for MCSA in broken
rotor bar detection with discrete-time Fourier transform and
autoregressive-based spectrum methods. The use of the lower sam-
pling rate does not affect the performance of the fault detection,
while requiring much less computation and low cost in imple-
mentation, which would make it easier to implement in embedded
systems for motor condition monitoring.

Index Terms—Broken rotor bar, fault diagnosis, induction
motors, motor current signature analysis (MCSA), spectral
analysis.

I. INTRODUCTION

INDUCTION motors have dominated in the field of electro-

mechanical energy conversion by having 80% of the motors

in use [1]. The applications of induction motors are widespread.

Some are key elements in assuring the continuity of the process

and production chains of many industries. The list of the indus-

tries and applications that they take place in is rather long. A

majority are used in electric utility industries, mining industries,

petrochemical industries, and domestic appliance industries.

Induction motors are often used in critical applications such as

nuclear plants, aerospace, and military applications, where the

reliability must be at high standards.

The failure of induction motors can result in a total loss of

the machine itself, in addition to a likely costly downtime of

the whole plant. More important, these failures may even result

in the loss of lives, which cannot be tolerated. Thus, health

monitoring techniques to prevent induction motor failures are
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of great concern in industry and are gaining increasing attention

[2]–[7].

Induction motors often operate in hostile environments such

as corrosive and dusty places. They are also exposed to a variety

of undesirable conditions and situations such as misoperations.

These unwanted conditions can cause the induction motor to

go into a failure period, which may result in an unserviceable

condition of the motor, if not detected at its early stages of the

failure period. The early detection of the incipient motor fault is

thus of great concern. Rotor failures are among these failures,

and they now account for the 5%–10% of total induction motor

failures [8]. Since 1980, the broken rotor bar fault detection

problem has created substantial interest among researchers

[9]. Several monitoring techniques have been developed, most

of which are based on vibration, thermal, and motor current

signature analysis (MCSA) monitoring [11]. MCSA techniques

are gaining more attention because of their easiness to use since

they do not require access to the motor [12]. In recent years,

several advanced signal processing techniques have been ap-

plied for MCSA. Some of these techniques are high-resolution

spectral analysis, higher order statistics, and wavelet analysis

[1], [10], [12], [13].

In general, MCSA techniques include parametric, nonpara-

metric, and high-resolution spectrum analysis methods. In the

parametric methods, autoregressive (AR) models have been

fitted with time series of the signal, and model parameters have

been used to compute the frequency spectrum. Nonparametric

methods, on the other hand, are based on Fourier transform

and search for periodicities of the signal. High-resolution

spectrum methods correspond to an eigenvalue analysis of

the autocorrelation matrix of the motor current time series

signal.

One of the classical and widely used nonparametric spectrum

methods as a MCSA technique is the well-known fast Fourier

transform (FFT) [1]. The FFT is an algorithm to compute

the discrete Fourier transform (DFT) of a discrete-time series

function with minimum computational effort. FFT yields com-

putationally efficient results, which makes it a powerful and

conceptually simple MCSA technique. Power spectral density

(PSD) analysis of motor current is another widely used MCSA

technique [1]. There are several approaches to calculate PSD.

The periodogram method, which is known as the classical

way to estimate PSD, is one of the nonparametric spectrum

methods [24]. Welch’s periodogram is another nonparametric

0278-0046/$25.00 © 2008 IEEE
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spectrum method to calculate the PSD estimate [24]. This

method differs from the classical periodogram by splitting

the data into overlapping segments. It then calculates the

periodogram of each windowed segment and takes the av-

erage of the periodograms to find the final PSD estimate.

The eigenvalue-based techniques, such as the multiple signal

classification (MUSIC), are reported to deal with resolution

problems, but, on the other hand, are computationally intensive

[12]. The parametric spectrum methods are used for sensorless

speed estimation of induction machines [14], and there are

only a few reported applications of them in the condition

monitoring area [15]. Burg, Yule AR, covariance, and modi-

fied covariance are well-known parametric spectrum methods.

Among these methods, Yule AR provides a stable model, and

its autocorrelation matrix is guaranteed to be nonsingular [23].

The spectral estimation techniques form the core of the

MCSA techniques. These techniques are extensively elaborated

in the signal processing media considering their pros and cons.

However, there are only a few published works that have re-

cently initiated the discussion of some of the spectral estimation

techniques’ feature extraction performance for the condition

monitoring of rotating machinery applications [12], [15]. In

[12], Benbouzid et al. have investigated high-resolution spectral

analysis methods for motor condition monitoring. In [15],

Cupertino has presented a performance comparison of several

spectral estimation techniques on their proposed diagnostic test,

which is based on the analysis of the current space vector.

However, there is much need to be investigated with these

techniques regarding the discipline of condition monitoring of

rotating machinery systems. One important aspect is related

to the selection of signal processing and filtering techniques

to enhance the feature extraction performance and lessen the

computational cost in implementation. The contribution of this

paper is to show by experimental results that a lower sampling

rate with a digital notch filter is feasible with discrete-time

Fourier transform (DTFT) and AR-based spectrum methods for

MCSA in broken rotor bar detection.

The broken rotor bar specific frequencies, which are also

called the sideband frequencies, are located around the main

line frequency. The difference (in frequency) between the clos-

est sideband and the main line frequency depends on the motor

slip factor. The motor slip factor is found using the motor

rotor speed, where higher slip values indicate higher motor load

conditions and lower slip values correspond to lower load con-

ditions. The difference (in frequency) between the closest side-

band and the main line frequency narrows down as the motor

goes to a lower load condition. Thus, the frequency resolution

must be selected higher than the difference between the closest

sideband and the main line frequency; otherwise, the computed

spectrum amplitudes at the sideband frequencies will not be

detected since the resolution would not be adequate enough to

show the sidebands. In spectral analysis, in addition to the type

of the windowing function and the length of the window, the

sampling rate determines the frequency resolution. Thus, the

selection of the sampling rate is important. In previous works

regarding the spectrum analysis of the broken rotor bar fault,

in [20], 2 kHz is applied, in [15], 1.5 kHz is used, and in [12],

1 kHz is applied as the sampling rate. However, there is not

much discussion specific to the selection of the sampling rate.

The use of notch filters has also been discussed in some previ-

ous works for enhancing the capture of sideband components.

In [12], an analog 50-Hz notch filter has been used to reduce the

fundamental component (50 Hz). In [25], an analog 50/60-Hz

notch filter is introduced to mainly cope with resolution prob-

lems related to magnitude differences between fundamental and

sideband components. Because the magnitudes of the sideband

components are considerably smaller than the magnitude of the

fundamental component, the dynamic range of 12-bit analog-

to-digital (A/D) converters is not sufficient to cope with this

issue. In [25], it is demonstrated that by using an analog notch

filter, 12-bit A/D converters can be used for proper capture

of the sideband components. In this paper, we have applied

a lower sampling rate of 200 Hz. One of the reasons that we

select 200 Hz is that the sidebands of interest are in the region

of 0–100 Hz; thus, higher frequency regions will not provide

any information, and a sampling rate of 200 Hz is believed

to provide a good performance without any aliasing effects.

With the applied 200-Hz sampling rate and different windowing

functions used with the nonparametric spectrum methods, the

frequency resolution in this paper takes a value between 1 and

6 Hz, where the difference between the closest sideband and

the main line frequency is 9.30 ± 0.77 Hz. Another reason is

that a digital notch filter, which will not cause any significant

suppression at the sidebands, can be designed efficiently at a

lower sampling rate of 200 Hz when compared with digital

notch filter designs made at higher sampling rates. In addition

to these reasons, from a general point of view, the use of a lower

sampling rate results in much less computation and low cost in

implementation. Thus, it would be easier to design embedded

systems with respect to software and hardware implementation

for motor condition monitoring applications.

In this paper, the induction motor current data used are

collected from an actual experiment setup in a laboratory

environment. The experiments have been carried out under the

full-load condition of the motor. The healthy and one broken

rotor bar motor current data are sampled at 10 kHz to allow a

wide range of study with the sampling rate. The detection of

the faults is performed at this rate. Then, the data are decimated

to decrease the original sampling rate that is applied in the

experiments to a lower value of 200 Hz and show that the use

of the lower sampling rate does not affect the performance of

the fault detection. Two nonparametric spectrum methods (i.e.,

DTFT and Welch’s periodogram) and the Yule AR parametric

method have been applied with the higher and lower sampling

rates. Throughout the spectrum computation, only the spectrum

amplitudes at the lower and upper sideband broken rotor bar

fault specific frequencies are computed, rather than computing

the overall spectrum. In this way, exact spectrum amplitudes

are obtained, which improves the healthy–faulty discrimina-

tion performance and considerably decreases the computational

cost. The results indicate that the sidebands can be clearly seen

with the nonparametric-based methods, whereas the sidebands

cannot be detected with the Yule AR method. Thus, a second-

order digital notch filter is designed to suppress the main

line frequency and isolate the broken rotor bar specific

sideband frequencies for the Yule AR method. This allows
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the identification of the characteristic sidebands. The spectrum

amplitudes of the healthy and one broken rotor bar motor data

resulting from each technique are evaluated using a statistical

measure based on a hypothesis test with respect to determining

the feature extraction performance. Experimental results affirm

that a lower sampling rate with a notch filter can be used with

DTFT and AR-based spectrum methods for broken rotor bar

detection, and a significant discrimination is obtained between

the healthy and faulty data sets.

This paper is organized as follows: Section II discusses

the frequencies of interest to detect the broken rotor bar

fault. Section III describes the fundamental properties of the

three MCSA techniques. Section IV presents the experiment

setup and motor data specifications. Section V introduces the

decimation and digital notch filter design process. The ex-

perimental results and statistical analysis are also described

in Section V. Finally, Section VI concludes the findings of

this paper.

II. MOTOR CURRENT SPECTRAL COMPONENTS

FOR THE BROKEN ROTOR BAR

Kliman [16], Thomson and Stewart [17], Filipetti [18], and

Elkasabgy et al. [19] used MCSA methods to detect the bro-

ken rotor bar faults by investigating the sideband components

around the supplied current fundamental frequency fo (i.e., the

line frequency). Thus

fb = (1 ± 2s)fo (1)

where fb are the sideband frequencies associated with the

broken rotor bar, and s is the per-unit motor slip. The slip s is

defined as the relative mechanical speed of the motor nm with

respect to the motor synchronous speed ns, i.e.,

s =
ns − nm

ns

. (2)

The motor synchronous speed ns is related to the line fre-

quency fo, as follows:

ns =
120 fo

P
(3)

where P is the number of poles of the motor, and the constant

“120” is used to express the motor synchronous speed ns in

revolutions per minute (r/min) unit.

The broken rotor bars also give rise to a sequence of other

sidebands, which is given by [18]

fb = (1 ± 2ks)fo, where fb > 0 (4)

and is conceptually depicted in Fig. 1.

Fig. 1 shows the frequency components specific to a broken

rotor bar fault, which is given in (4) for k = 1 and 2. These

frequencies are located around the fundamental line frequency

and called lower sideband and upper sideband components, as

indicated in Fig. 1.

Fig. 1. Sideband frequencies around the fundamental line frequency.

III. MCSA TECHNIQUES FOR BROKEN ROTOR

BAR FAULT DETECTION

MCSA techniques, in general, include nonparametric, para-

metric, and high-resolution spectrum analysis methods. In this

section, the general principles of the three investigated MCSA

techniques are briefly discussed. Two of the techniques are

among the nonparametric spectrum methods, i.e., DTFT and

Welch’s periodogram. The third technique is a parametric

spectrum-based method, i.e., Yule AR.

A. DTFT

To review the basics of the DTFT, consider a sequence of

N equispaced samples of a finite discrete-time series signal

x[n], which is defined for 0 ≤ n ≤ N − 1. The DTFT of x[n]
is a representation of this sequence in terms of a complex

exponential sequence {e−jωn}, where ω is the real frequency

variable (0 ≤ ω ≤ 2π). The DTFT of x[n] is depicted as

X(ejω). X(ejω) is defined as

X(ejω) =

N−1
∑

n=0

x[n]w[n]e−jωn (5)

where w[n] is the window function. In this paper, ω needs to

be evaluated only at two frequencies, i.e., (1 ± 2s)fo; thus, the

entire DFT need not to be computed. In the fault analysis with

respect to the DTFT method, |X(ejω)| is used as the feature.

The selection of w[n] is important and affects the resolution.

The resolution of the nonparametric-based methods such as

DTFT and Welch’s periodogram depends on the sampling rate

Fs and the window length Nw, i.e.,

∆f = β
Fs

Nw

(6)

where ∆f is the resolution, and β depends on the applied

window function w[n]. For the windows used in this paper,

1 ≤ β ≤ 3.

B. Welch’s Periodogram Method

In Welch’s periodogram method, the data sequence x[n],
{x[0], x[1], . . . , x[N − 1]}, is first partitioned into Z segments.

The length of each segment consists of L samples, and these

segments can be overlapping on each other with (L − S)
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overlapping samples, where S is the number of points to shift

between segments. Thus

Segment 1 : x[0], x[1], . . . , x[L − 1]
Segment 2 : x[S], x[S + 1], . . . , x[L + S − 1]

...

Segment Z : x[N − L], x[N − L + 1], . . . , x[N − 1].

The weighted zth segment will consist of the following

samples:

xz[n]=w[n]x[n+zS], for 0≤n≤L−1; 0≤z≤Z−1.

(7)

The window function w[n] is applied to the data at each

segment before the computation of the segment periodogram.

The sample spectrum of the weighted zth segment is depicted

for the real frequency value ω, as follows:

P z
xx(ejω) =

1

UL
Xz(ejω)

[

Xz(ejω)
]∗

=
1

UL

∣

∣Xz(ejω)
∣

∣

2

(8)

where U is the discrete-time window energy, i.e.,

U =

L−1
∑

n=0

w2[n] (9)

and Xz(ejω) is the DTFT of the zth segment, i.e.,

Xz(ejω) =

L−1
∑

n=0

x(z)[n]e−jωn. (10)

Finally, Welch’s PSD estimate P̂W has been found by aver-

aging the periodogram values of the Z segments, i.e.,

P̂W (ejω) =
1

Z

Z−1
∑

z=0

P z
xx(ejω)

=
1

Z

Z−1
∑

z=0

1

UL

∣

∣

∣

∣

∣

L−1
∑

n=0

x(z)[n]e−jωn

∣

∣

∣

∣

∣

2

. (11)

The factor U is used to remove the effect of the window energy

bias in the Welch’s PSD estimator [22].

C. Yule AR Method

Yule AR is a parametric spectrum method based on the

AR model. To compute the spectrum of x[n], {x[0], x[1],
. . . , x[N − 1]}, which is given over a finite interval 0 ≤ n ≤
N − 1, first, x[n] is modeled with an AR model. Then, the AR

model parameters of x[n] are estimated by using the autocorre-

lation estimates of x[n] in the autocorrelation normal equation.

Finally, the power spectrum is computed using the AR model

parameters by a technique derived from the Wiener–Khintchine

theorem [22].

In the following, the Yule AR spectrum method will be

briefly introduced without going into further details. For further

information, please see [21] and [22]. Suppose x[n] is modeled

with a p-order AR model, i.e., AR(p). The AR parameter

TABLE I
INDUCTION MOTOR CHARACTERISTICS USED IN THE EXPERIMENT

estimates âp(m) and ρ are computed by solving the following

autocorrelation normal equation:









r̂x(0) r̂∗x(1) . . . r̂∗x(p)
r̂x(1) r̂x(0) . . . r̂∗x(p − 1)

...
...

...
...

r̂x(p) r̂x(p − 1) . . . r̂x(0)

















1
âp(1)

...

âp(p)









= −









ρ

0
...

0









(12)

where 1 ≤ m ≤ p.

In (12), r̂x(h) denotes the autocorrelation estimate and is

mathematically expressed as follows:

r̂x(h) =
1

N

N−1−h
∑

n=0

x(n + h)x∗(n) (13)

where 0 ≤ h ≤ p. Note that the autocorrelation matrix in (12) is

Hermitian Toeplitz and positive definite [22], and r̂∗x(h) denotes

the complex conjugate of r̂x(h), and thus, r̂x(−h) = r̂∗xx(h) is

satisfied.

After solving the autocorrelation normal equation in (12),

the AR model-order estimates âp(m) and ρ are found and put

in (14) to find the Yule AR power spectrum P̂AR at the real

frequency value ω, i.e.,

P̂AR(ejω) =
ρ

∣

∣

∣

∣

1 +
p
∑

m=1
âp(m)e−jωm

∣

∣

∣

∣

2 . (14)

IV. EXPERIMENT SETUP AND MOTOR

DATA SPECIFICATIONS

To investigate the feature extraction performance of the

three investigated MCSA techniques for the broken rotor bar

detection problem under a lower sampling rate, we performed

experiments on an actual induction motor. The characteristics

of the three-phase induction motor used in our experiment are

listed in Table I. The motor was tested with a healthy rotor and

with a faulty rotor that had one broken rotor bar. The broken

rotor bar fault was induced by filling a small crack-size piece

in one of the rotor bars full with anchoring cement before the

die-casting process. Anchoring cement is a high-strength fast-

setting gypsum cement with low conductivity. The overall data

collection scheme and the actual experiment setup picture are

depicted in Figs. 2 and 3, respectively.

The induction motor was fed through a three-phase ABB,

ACS 501 inverter. A Tektronix TM 5003 current amplifier
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Fig. 2. Motor data collection scheme.

Fig. 3. Actual experiment setup to collect healthy and faulty motor data.

Fig. 4. DTFT of healthy and faulty motor current data with Hanning window
(no filtering applied, Fs = 10 kHz). Vertical lines indicate the location of the
fault specific sidebands.

amplifies the induction motor stator currents before being sent

to the interfacing Pentium PC through the oscilloscope. The

needed load condition of the induction motor was established

by connecting the test motor to a dc motor, which is used

as a generator and is capable of simulating any desired load

Fig. 5. DTFT of healthy and faulty motor current data with Hanning window
(no filtering applied, Fs = 200 Hz).

Fig. 6. Yule AR spectrum of the decimated data (Fs = 200 Hz,
model order = 30).

condition. The speed of the induction motor was measured by a

digital stroboscope.

The experiments involved collecting three-phase stator in-

duction motor current and speed data for the full-load condition

of the motor both with one broken rotor bar fault and without

any fault. The motor load condition is determined according

to the motor nameplate information given in Table I. Thus,

there are two different experiment cases: 1) healthy motor

(no broken bar) under full load and 2) motor with one broken

rotor bar under full load. For each individual case, 20 sets

of motor current data were collected with a sampling rate of

10 kHz, i.e., Fs = 10 kHz. Thus, each motor current data set

contains 10 000 samples for a duration of 1 s.

V. EXPERIMENTAL RESULTS AND ANALYSIS

As described in Section II, broken rotor bar fault specific

frequencies depend on motor’s slip, which is a function of
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Fig. 7. Notch filter designs with Fs = 10 kHz. (a) rp = 0.85. (b) rp = 0.99.

motor’s synchronous speed and motor’s actual speed. In this

paper, the spectrum amplitudes of the motor current (phase a)

at the two frequencies specific to the broken rotor bar fault are

investigated. These two frequencies are the first lower and upper

sidebands, i.e., (1 − 2s)fo and (1 + 2s)fo, respectively, which

are derived from (4).

Finding the spectrum amplitudes at the actual frequency

components fb, which are specific to the broken rotor bar

fault, is important to make an accurate decision about the

existence of a fault. These frequency components are com-

puted by first incorporating the actual motor speed data

values into (2) to find the slip values. The computed slip

values are then used in (1) to find the frequency components.

According to the experimental data, the motor speed under

the full-load condition varies between 1649 and 1672 r/min.

Thus, using (1), the lower sideband frequency location is

found to vary between 49.93 and 51.47 Hz, whereas the

upper sideband frequency location varies between 68.53 and

70.07 Hz.

Fig. 4 depicts the DTFT spectrum of healthy and one broken

rotor bar motor current data at the original sampling rate of

Fs = 10 kHz, with Hanning window applied. The lower and

upper sidebands should be examined at 51.07 and 68.93 Hz

according to the corresponding speed data. These frequency

locations are marked with vertical lines in Fig. 4. The solid line

represents the spectrum of the healthy motor data, whereas the

dashed line corresponds to the spectrum of the broken rotor bar

data. The motor current data are decimated with a decimation

rate of 50. In this way, the sampling rate is reduced by a factor

of 50, i.e., Fs = 200 Hz. In Fig. 5, the DTFT spectra of the

decimated healthy and faulty motor current data with Hanning

window are depicted. From Figs. 4 and 5, it can be clearly seen

that the sidebands of interest can be detected with the DTFT

method both with the higher sampling rate of Fs = 10 kHz and

the lower sampling rate of Fs = 200 Hz. For the feature ex-

traction performance analysis of the three investigated methods,

the DTFT at only the two sideband frequencies (1 ± 2s)fo are

computed, which are indicated by the vertical lines in Figs. 4

and 5. Fig. 6 depicts the Yule AR spectrum of the decimated

healthy and faulty motor current data with a model order

of 30. Unlike the DTFT method, the two sidebands cannot be

seen since the dominance of the main line frequency does not

allow the sidebands to appear with the Yule AR method. Thus, a

filtering process is needed to suppress the main line frequency.

In Section V-A, the filter design process is introduced, which

will enable the Yule AR method to be applicable for broken

rotor bar detection.

A. Notch Filter Design

The motivation behind applying a notch filter is to isolate

the two sidebands of interest by suppressing the dominance

of the main line frequency, such that Yule AR method can be

successfully applied for broken rotor bar detection.

The transfer function of a second-order notch filter N(z) can

be mathematically expressed as

N(z) = Ngain

(

z − rze
jωc

) (

z − rze
−jωc

)

(z − rpejωc) (z − rpe−jωc)
(15)

where ωc denotes the notch frequency (0 < ωc < 2π), rz de-

notes the zero radius (0 ≪ rz ≤ 1), rp denotes the pole radius

(0 ≪ rp < 1), and Ngain denotes the gain.

We have set rz and Ngain to 1 and considered several

different values for rp, i.e., in the range 0.85 < rp < 0.99.

It is observed that the 60-Hz (fo) second-order notch filter

design for the higher sampling rate of Fs = 10 kHz causes

high attenuations at the two sidebands. Fig. 7 depicts the

magnitude responses of the notch filters for Fs = 10 kHz, with

rp = 0.85 and 0.99, respectively. From Fig. 7, it can be seen

that the sidebands (1 − 2s)fo and (1 + 2s)fo are significantly

attenuated, in addition to the attenuation of fo. To obtain a lower

attenuation at this sampling rate, the poles would have to be

much closer to the unit circle. This will produce unacceptable

instabilities caused by numerical roundoff. Thus, we do not

further consider this case.

At the lower sampling rate of Fs = 200 Hz, the notch filter

can be effectively implemented for reasonable pole radii. We

have evaluated the magnitude responses of the filter designs
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Fig. 8. Notch filter magnitude responses with different pole radii and output data after filtering. (a) rp = 0.99. (b) rp = 0.91. (c) rp = 0.85.

and considered their transient response when applied to motor

current data. Fig. 8 depicts notch filter magnitude responses

and their application to motor current data for rp = 0.85, 0.91,

and 0.99. From the magnitude responses of the investigated

notch filter designs, it is observed that as the rp value ap-

proaches 1, a sharper filter magnitude response is obtained.

However, a notch filter with a sharp magnitude response pro-

duces a long transient response in the output data. Thus, there

is a tradeoff between designing a sharp notch filter and ob-

taining enough number of steady samples needed for motor

current spectrum computation. Since steady-state responses of

the notch filtered data are needed to compute the spectrum, the

sharpest filter could not be used since its transient response is

longer than the window. The notch filter design with rp = 0.99,
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Fig. 9. Yule AR spectrum of the notch filtered data with Fs = 200 Hz.

Fig. 10. DTFT of the notch filtered data with Fs = 200 Hz.

which is depicted in Fig. 8(a), demonstrates this case. As can

be seen from the magnitude responses, although the notch

filter provides a sharp response, the output data consist of only

transient response but no steady-state response.

The spectra in Fig. 9 correspond to the same healthy and bro-

ken rotor motor current data pairs that were used in Figs. 4–6.

A model order of 30 has been applied in the Yule AR method.

Before applying Yule AR, the decimated motor current data

are filtered with a second-order notch filter with an rp value

of 0.91. Thus, Fig. 9 verifies that the lower and upper side-

bands can be successfully detected after notch filtering with the

Yule AR method with a lower sampling rate of Fs = 200 Hz.

From Figs. 4 and 5, it is seen that the DTFT method (with

Hanning window) reveals the sidebands of interest without

applying filtering both with the higher and lower sampling

rates. Fig. 10 illustrates that the sidebands can also be seen

with the notch filtered data using DTFT (with Hanning window)

under Fs = 200 Hz.

To illustrate that the lower sampling rate with a notch filter

can be successfully applied for broken rotor bar detection with

the three investigated spectrum methods, we have incorpo-

Fig. 11. DTFT amplitudes of the notch filtered healthy and faulty data sets at
the lower sideband.

rated a performance measure in our analyses. The performance

measure is based on a hypothesis test that statistically shows

the difference among the observed spectrum estimates of the

healthy and broken rotor bar data sets. The hypotheses are

stated in the list that follows.

H0: The mean of healthy motor spectrum estimates is the

same as the mean of faulty motor spectrum estimates at

the inspected frequency.

H1: The mean of healthy motor spectrum estimates is not

the same as the mean of faulty motor spectrum

estimates at the inspected frequency.

We apply these hypotheses on the two specific frequencies

under investigation for the three spectrum methods. We then

use t-test p-value results to determine if the hypothesis test is

significant with the spectrum data under investigation [23].

In general, the t-test allows us to assess whether the means

of two groups are statistically different from each other. The

t-test evaluates the means of the compared groups relative to

the variability of their samples. In our case, the two groups

under comparison are healthy and faulty spectrum estimates

under the full-load condition of the motor. The numerical value

that the p-value yields is a probability value, which gives

information on whether the two groups differ from each other

and at what degree. If the p-value is smaller than a predefined

significance level, then the null hypothesis H0 is rejected. This

implies that the difference between the means of the compared

groups is statistically significant. Otherwise H1 is rejected. In

other words, as the p-values become smaller, the discrimination

between the two groups becomes more significant. A signifi-

cance level value of 0.05, which is also interpreted as a 95%

confidence interval, is the most commonly used significance

level in statistics for classification problems [23].

To give a visual insight to the reader about the relation

between the p-value and the discrimination rate, the DTFT

amplitudes of the notch filtered healthy and faulty data sets with

Fs = 200 Hz for the lower and upper sidebands are depicted in

Figs. 11 and 12, respectively. In Figs. 11 and 12, the applied

second-order notch filter has an rp value of 0.91, and the DTFT

amplitudes are computed with a Hamming window that has
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Fig. 12. DTFT amplitudes of the notch filtered healthy and faulty data sets at
the upper sideband.

a window size of 150. From Figs. 11 and 12, it can be seen

that as the p-values become smaller, the discrimination of the

two groups becomes more significant (a p-value of 5.11e−24

has no overlapping samples, whereas a p-value of 1.01e−08

has a few).

In the remaining parts of this section, we will show the

feature extraction performance of the three investigated meth-

ods. For DTFT and Welch’s periodogram, we will consider

three cases: 1) higher sampling rate with no filtering; 2) lower

sampling rate (after decimation) with no filtering; and 3) lower

sampling rate with notch filter. For the Yule AR method, we

will only consider the lower sampling rate with no filtering and

lower sampling rate with notch filter cases. This is because with

the Yule AR method, the sidebands of interest cannot be seen

without filtering. Thus, the case of higher sampling rate with

no filtering is of no use.

B. Feature Extraction Performance of DTFT

In this paper, we have considered several windowing tech-

niques when applying the DTFT and Welch’s periodogram

methods since the type of the windowing technique is a signif-

icant factor that affects the feature extraction performance. We

have applied eight different windows with the DTFT method:

1) rectangular; 2) triangular; 3) Hamming; 4) Gaussian;

5) Hanning; 6) Parzen; 7) Nuttall; and 8) Chebyschev (100 dB).

Figs. 13 and 14 depict four of these windows and their mag-

nitude responses, respectively. In Fig. 13, the x-axis represents

the width of the discrete-time window function in samples. In

this particular demonstration, the window functions consist of

64 samples. In Fig. 14, the magnitude responses of the four

windows are depicted. The x-axis in Fig. 14 corresponds to

the frequency and is scaled with respect to the sampling fre-

quency (digital frequency), which is common in digital signal

processing. Fig. 14 provides an illustration about how a signal,

whose frequency is actually located at zero, “leaks” into the

neighboring frequency bins.

Tables II and III depict the p-values for the DTFT method

with eight windows for the three cases at the lower and upper

Fig. 13. Four of the windows used in the DTFT method.

Fig. 14. Magnitude responses of the four windows.

sidebands, respectively. According to Tables II and III, for

the higher sampling rate with no filtering and lower sampling

rate with no filtering cases, the Hanning, Parzen, Nuttall, and

Chebyschev (100 dB) windows are observed to provide high

healthy–faulty discrimination performance (because of low

p-values), whereas the rectangular, triangular, Gaussian, and

Hamming windows are not satisfactory. This is caused by the

leakage of the main line frequency. The rectangular, triangular,

Hamming, and Gaussian windows barely suppress the main

line frequency and are not adequate for suppression of 50 dB

and above. On the other hand, Hanning, Parzen, Nuttall, and

Chebyschev (100 dB) provide adequate suppression. Regarding

the lower sampling rate with notch filter case results, all win-

dows are observed to provide satisfactory results by providing

low p-values. In addition, the p-values in Table III were lower

than the p-values in Table II, indicating that the upper sideband

(1 + 2s)fo has more discriminative information than the lower

sideband (1 − 2s)fo.
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TABLE II
p-VALUES FOR DTFT WITH DIFFERENT WINDOWS FOR THE LOWER SIDEBAND FOR THE THREE CASES

TABLE III
p-VALUES FOR DTFT WITH DIFFERENT WINDOWS FOR THE UPPER SIDEBAND FOR THE THREE CASES

TABLE IV
p-VALUES FOR WELCH’S PERIODOGRAM METHOD UNDER DIFFERENT WINDOW SIZES AND OVERLAPPING

SAMPLES FOR THE LOWER SIDEBAND WITH NO FILTERING AND Fs = 10 kHz

TABLE V
p-VALUES FOR WELCH’S PERIODOGRAM METHOD UNDER DIFFERENT WINDOW SIZES AND OVERLAPPING

SAMPLES FOR THE LOWER SIDEBAND WITH NO FILTERING AND Fs = 200 Hz

C. Feature Extraction Performance of Welch’s Periodogram

The rectangular, Hamming, Hanning, and Chebyschev win-

dows are applied in Welch’s periodogram. Tables IV–VI depict

the p-values for the Welch’s periodogram method at the lower

sideband for the three cases. In Tables IV–VI, it is seen that for

some combinations of overlapping samples and window sizes,

the Welch’s periodogram method has generated lower p-values

for the lower sideband when compared with DTFT, e.g., for the
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TABLE VI
p-VALUES FOR WELCH’S PERIODOGRAM METHOD UNDER DIFFERENT WINDOW SIZES AND OVERLAPPING

SAMPLES FOR THE LOWER SIDEBAND WITH NOTCH FILTERING AND Fs = 200 Hz

TABLE VII
p-VALUES FOR WELCH’S PERIODOGRAM METHOD UNDER DIFFERENT WINDOW SIZES AND

OVERLAPPING SAMPLES FOR THE UPPER SIDEBAND WITH NO FILTERING

TABLE VIII
p-VALUES FOR WELCH’S PERIODOGRAM METHOD UNDER DIFFERENT WINDOW SIZES AND OVERLAPPING

SAMPLES FOR THE UPPER SIDEBAND WITH NO FILTERING AND Fs = 200 Hz

10-kHz case, a Chebyschev (100 dB) window size of 5000 and

an overlap of 4000 data samples generated a p-value of 2.81e−9

(see Table IV); for the 200 Hz with notch filtering case, a

Hanning window size of 100 and an overlap of 50 data samples

generated a p-value of 2.39e−9 (see Table VI). In addition, it

is observed that for the lower sampling rate with notch filter

case, all applied windows provided satisfactory results, whereas

for the other two cases, the rectangular and Hamming windows

were not adequate enough to suppress the main line frequency

and thus decrease the spectral leakage.

Tables VII–IX depict the p-values for the Welch’s peri-

odogram method at the upper sideband for the three cases.

Different from the lower sideband results, there was no obser-

vation showing that Welch’s periodogram method improved the

healthy–faulty discrimination when compared with the DTFT

method in terms of yielding lower p-values. It is also seen that

for the lower sampling rate with notch filter case, all applied

windows worked well, providing lower p-values.

In Tables IV and VII, it is noticed that a Hanning window

with a window size of 5000 and less generates poor p-values

when compared with a Chebyschev (100 dB) window with the

same window size. The p-values in Tables IV and VII corre-

spond to the Welch’s periodogram method with respect to the

higher sampling rate with no filtering case. Fig. 15 illustrates

the Welch’s periodogram spectrum estimates for window sizes

of 5000 and 10 000 with the Hanning and Chebyschev (100 dB)

windows. From Fig. 15, it is seen that as the window size

decreases to 5000, some significant distortions occur around

the main lobe with the Hanning window, which results from

spectral leakage. The leakage problem has not been observed

with the Chebyschev (100 dB) window at this window size.

D. Feature Extraction Performance of Yule AR

Table X depicts the p-values with respect to the Yule AR

method at the lower and upper sidebands for the lower sampling
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TABLE IX
p-VALUES FOR WELCH’S PERIODOGRAM METHOD UNDER DIFFERENT WINDOW SIZES AND OVERLAPPING

SAMPLES FOR THE UPPER SIDEBAND WITH NOTCH FILTERING AND Fs = 200 Hz

Fig. 15. Hanning and Chebyschev windows applied to Welch’s periodogram method (Fs = 10 kHz). (a) Window size = 10 000. (b) Window size = 5000.

TABLE X
p-VALUES WITH RESPECT TO YULE AR FOR THE LOWER AND UPPER SIDEBANDS (NO FILTERING, Fs = 200 Hz)

TABLE XI
p-VALUES WITH RESPECT TO YULE AR FOR THE LOWER SIDEBAND (NOTCH FILTERING, Fs = 200 Hz)

rate with no filtering case. From Table X, it is seen that no use-

ful classification is possible without suppressing the dominant

main line frequency because all the yielded p-values had large

values, indicating a poor classification performance.

Table XI depicts the p-values with respect to the Yule AR

method at the lower sideband for the lower sampling rate

with notch filtering case. In Table XI, the p-values correspond

to different combinations of model orders and pole radius of

notch filters. It is observed that a p-value as low as 3.26e−9

is obtained with rp = 0.91 and model order = 30 (highlighted

in Table XI). Similarly, Table XII depicts the p-values with

respect to the Yule AR method at the upper sideband for the

lower sampling rate with notch filtering case. It is examined that

a p-value of 5.70e−22 has been obtained with rp = 0.85 and

model order = 90 (highlighted in Table XII). The “X” marks in

Tables XI and XII indicate that the Yule AR spectrum cannot
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TABLE XII
p-VALUES WITH RESPECT TO YULE AR FOR THE UPPER SIDEBAND (NOTCH FILTERING, Fs = 200 Hz)

be computed since the data length is smaller than the applied

model order for these cases. With respect to Tables XI and XII,

as the poles of the notch filter become closer to the unit circle,

the impulse response of the filter becomes longer, and the length

of the usable data becomes smaller. Thus, we obtain no results

or poor p-values for these cases.

Before applying filtering, Yule AR results are useless be-

cause of not providing any information in terms of healthy–

faulty discrimination, as can be seen from the large p-values

depicted in Table X. After filtering, the dominance of the main

line frequency is suppressed, and the sidebands are significantly

isolated.

The decimation results indicate that a lower initial sampling

rate can be used for broken rotor bar fault detection with DTFT

and Welch’s periodogram methods. It is the applied window

function that makes a deep impact on the feature extraction

performance with the nonparametric spectrum methods. For

example, applying a rectangular window without notch filtering

of the motor current data generates misleading results both

for the DTFT and Welch’s periodogram methods. There is no

need for filtering with the DTFT and Welch’s periodogram

methods if a window function that can significantly reduce

the spectral leakage effects is applied. To apply the Yule

AR method for broken rotor bar detection, the dominance of

the main line frequency must be suppressed. Otherwise, the

sidebands of interest cannot be extracted, even if high model

orders are used. The suppression of the main line frequency

and isolation of the sidebands can be performed by applying

a second-order notch filter. After notch filtering, Yule AR can

be successfully applied and provide accurate healthy–faulty

discrimination as the DTFT and Welch’s periodogram

methods.

In this paper, the digital notch filter design is performed

under the assumption that the induction motor runs under a

fixed main line frequency (60 Hz). For inverter-driven induc-

tion motors, where the fundamental frequency is not fixed

but varies according to the variable-frequency drive to yield

the desired motor torque or motor speed, the fixed-frequency

notch filter is not applicable since the fundamental frequency

is not anymore constant at 60 Hz. To cope with the vary-

ing fundamental frequency, the digital notch filter parameters

need to be adjusted according to the varying fundamental

frequency. The digital filter has an advantage to be used in

this case since it is easy to detect the fundamental frequency

and change the notch filter parameters accordingly with digital

filters.

VI. CONCLUSION

This paper has used experimental results to illustrate that

a digital notch filter design combined with a lower sampling

rate can be successfully applied with the DTFT and AR-based

spectrum methods for the broken bar detection problem. The

utilization of a lower sampling rate is significantly important

because a lower sampling rate means less computation and

low cost in implementation, which could lead to more effective

and less costly embedded system designs for motor condition

monitoring applications.
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