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Abstract 

 A new spectrum–based model for describing the behavior of time–dependent materials is 

presented. In this paper, unlike most prior modeling techniques, the time–dependent response of 

viscoelastic materials is not expressed through the use of series.  Instead, certain criteria have 

been imposed to select a spectrum function that has the potential of describing a wide range of 

material behavior. Another consequence of choosing the spectrum function of the type used in 

this paper is to have a few closed form analytic solutions in the theory of linear viscoelasticity.  

The Laplace transform technique is used to obtain the necessary formulae for viscoelastic Lame' 

functions, relaxation and bulk moduli, creep bulk and shear compliance, as well as Poisson’s 

ratio.  By using the Elastic-Viscoelastic Correspondence Principle (EVCP), material constants 

appearing in the proposed model are obtained by comparing the experimental data with the 

solution of the integral equation for a simple tensile test.  The resulting viscoelastic functions 

describe the material properties which can then be used to express the behavior of a material in 

other loading configurations.  The model’s potential is demonstrated and its limitations are 

discussed.      

Keywords:  viscoelasticity, spectrum function, constitutive model, Elastic-Viscoelastic 

Correspondence Principle, Volterra integral equation, epoxy polymer. 
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1. Introduction 

 In the discussion about precise formulations in viscoelasticity, Kelvin and Maxwell were the 

first to give exact solutions to describe the linear viscoelastic phenomena in usable form.  Their 

contributions were important in that their solutions, in the form of an exponential, formed the 

basis for future, more elaborate models.  Thus far, most depictions of viscoelastic behavior use 

the elements of Kelvin-Voigt, Maxwell, or a combination of these models [1,2,3,4].  These 

representations are based on simple discrete elastic and viscous elements which are modeled by 

series.  Depending on the complexity of the response, numerous terms are sometimes required to 

represent the phenomena appropriately.  It is also well known that not all materials can be 

modeled using simple Kelvin-Voigt (K-V) or Maxwell elements.  Therefore, the primary focus 

of this study is to present a methodology that describes general viscoelastic behavior that 

encompasses both K–V and non K–V materials through the use of a continuous distribution, 

rather than as a combination of simple mechanical elements.  This approach generates closed 

form solutions for various viscoelastic moduli. 

 The attraction of using a spectrum function to model viscoelastic behavior is obvious, mainly 

the possibility of producing closed form solutions from which the material properties can be 

extracted.  Nevertheless, most researchers remain loyal to the series representation due to the 

inherent difficulties with the use of some functions.   Use of distribution functions to model 

viscoelastic phenomena implies movement between the Laplace and the time domain through the 

use of operational calculus techniques, and depending on the chosen spectrum function, this may 

prove to be a difficult task.    Even so, the appeal of producing a fully contained model to express 

all properties of interest deserves another look, for the resulting expression may not be solved 

analytically, but it can always be determined numerically.   
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 Using distribution functions to model viscoelastic phenomena is not a new practice.  In fact, 

the use of spectral representations to model linear time-dependent behavior has been in existence 

since the late nineteenth century.  An excellent summary and review of efforts made in the area 

of empirical mathematical modeling of viscoelastic behavior is given by Tschoegl [5].   Much of 

the efforts from the 1940’s to the 1960’s resulted in discrete representations [6] or power law 

representations [5] of time–dependent behavior.  Surveying the various functions that were 

selected, it seems that generally the distribution functions were chosen more for their simplicity 

rather than their ability to describe realistic viscoelastic behavior.  For example, a “box function” 

or step function was used either singly or in combination with a “wedge” or power law 

distribution function. By describing these functions at some intermediate time range, these 

functions effectively avoided the singularity at time t = 0.  In this paper, a continuous spectrum 

function that is valid for all times is considered. 

 In Ref. [7], Eringen suggests the use of memory functions by using a spectrum function to 

represent viscoelastic behavior.   However, he does not suggest the manner in which this 

distribution function should be chosen.  In this study, a spectrum function that satisfies certain 

criteria is selected to develop the basic viscoelastic functions resulting in a method that allows 

for the mapping of a continuous distribution to describe the viscoelastic behavior of the material.  

Though the chosen spectrum function for this study is not a unique function, it does produce 

results which are consistent with the time–dependent behavior of viscoelastic solids.  Other 

functions were selected for modeling, but these proved to be mathematically cumbersome.  The 

distinctive quality of the selected spectrum function is that it not only represents typical 

viscoelastic response, but it also produces closed form representations for several important 

time–dependent properties.    
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2. Problem Formulation 

Typically, the constitutive relationship is described using moduli or compliances.  However, 

for this study, the fundamental Lame' parameters as functions, which are necessary to express all 

properties of interest, are used to develop the viscoelastic response functions. 

From the Boltzman-Volterra theory, the constitutive equation describing a time–dependent 

linear isotropic viscoelastic solid in Cartesian coordinates is given as  
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where a repeated index implies a sum and err is the trace of the strain tensor e.  From Ref. [7] the 

relaxation bulk modulus K(t) and shear modulus G(t) are defined as 
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where eλ and eµ are the Lame' elastic constants and λv(t) and µv(t) are the viscoelastic functions 

of the material.  In terms of K(t) and G(t), the stress in Eq. (2.1) is written as  
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The strain is obtained if the stress in Eq. (2.3a) is inverted as   
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where B(t) is the creep bulk compliance and J(t) is the creep shear compliance.  If the material is 

unstressed for t < 0, then the integration limit in Eqs. (2.1) and (2.3) will be 0 to t.  In this case, 

taking the Laplace transform of Eqs. (2.3) while using the convolution theorem, results in 
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where for a function f (r,t), the Laplace transform is 
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 If the indices k and l are equated in Eqs. (2.4), i.e., k = l, and a sum is performed, the simple 

and well known relationship between the Laplace transforms of the relaxation modulus K and the 

creep bulk compliance B is found to be 

                                              2
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ζ
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whereas, for k ≠ l in Eqs. (2.4), a direct correlation between the Laplace transforms of the shear 

modulus G and the creep shear compliance J is described by 
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It can be seen that if the Laplace transforms of K(t) and G(t), denoted by )(K ζ and )(G ζ , 

respectively, are known, then B(t) and J(t) can be obtained by the inverse Laplace transforms. 

 

3. The Spectrum Function 

As noted from the above equations for the relaxation bulk modulus and shear modulus in Eq. 

(2.2), it is imperative that the Lame functions λv(t) and µv(t) be determined.  The most general 

form of the Lame functions is obtained from Eringen [7] and is formulated as  
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where φ1(α) and φ2(α), called the relaxation spectrums, satisfy two criteria: 

 ( ) ( ) 10 2.12,1 ≤∞φ≥αφ     (3.2) 

To demonstrate the methodology, the case of φ2(α) = φ1(α) = φ(α) is considered for this study. 

As a consequence of this simplification, it must be noted that all relaxation properties are 

proportional to the same time-function, and that the Poisson behavior is characterized through a 

constant Poisson ratio, i.e., 

  µv(t) = C1 λv(t),    µ(t) = C2 λ(t) = C3K(t) = C4 E(t)   (3.2b) 

with C1, C2 ,C3 and C4 denoting appropriate constants, and Poisson’s ratio being given by 

  
)µ(λ2

λ
ν

ee

e

+
= = constant   (3.2c) 

These characteristics do not apply to viscoelastic materials in general. This special case is further 

discussed below. 

 At this point, it should be noted that all inter-functional relaxation functions, except for the 

inverse (creep) functions, can be generated from elastic parameters. 

 

3.1 SELECTION OF φ(α)   

 There are many choices for the spectrum function, φ(α).  A number of known functions were 

tried, but these yielded expressions for which the Laplace inversion became very difficult.  The 

spectrum function that satisfies the criteria of being non-negative, bounded, monotonic, and able 



 7

to produce constant values in a particular limiting condition is selected.  The proposed form 

chosen for this research and quoted in Ref. [8] is  

                                                 ( ) ( )222 αrkπ
rαφ
+

=     (3.3) 

where r and k are the temperature dependent parameters that are assumed to be material-specific.  

In Eq. (3.3), k is non-dimensional and r has dimension of 1/sec.  Here φ is regarded as a general 

spectrum function which is continuous and continuously differentiable.  For general viscoelastic 

modeling, from Eq. (3.3), material constants n and no are introduced as  
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having dimension of [1/sec] and then, φ(α) can be expressed as 
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3.1.1.  Similarity in Functional Behavior  

 From Eqs. 3.1 with φ2(α) = φ1(α) = φ(α) it is obvious that choosing one spectrum function 

φ(α) will produce similarity in the functional behavior of the viscoelastic moduli.  Particularly, 

the ratio 
e

v

e

v

µ
µ

=
λ
λ implies that a constant Poisson’s ratio will be obtained.  Although Poisson’s 

ratio does not vary dramatically, it is certainly time-dependent for viscoelastic materials [9,10].  

For this methodology, the limitation can be remedied by choosing separate functions φ1(α) and  

φ2(α) for λv and µv, respectively, as expressed in Eq. 3.1. However, this choice also introduces 

additional constants to be determined and the closed form solutions are not possible. 

 To use the current methodology, for cases where Poisson’s ratio must be modeled as a time-

dependent property, a sort of empirical approach is used.  This procedure, demonstrated in 

Section 4.2, is based on the moduli obtained in this study.   
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3.1.2.  Power Law Behavior 

 As stated before, most viscoelastic phenomena are well represented by various power laws 

due to their inherent ability in emulating actual time-dependent behavior.  The selected spectrum 

function given in Eq. 3.5 is simply a continuous distribution, valid for all times.  But, for very 

large values of the argument, this function behaves like a power law with power two, i.e., 

2
0 )tn(

π
n)α(φ −≈ , for tn0 » 1.  This behavior and the chosen spectrum function’s applicability 

for various time periods are demonstrated in Section 5. 

 

3.2  MODELING VISCOELASTIC LAME' FUNCTIONS USING φ(α) 

Having satisfied all the necessary criteria for the spectrum function, the form of φ(α) as given 

in Eq. (3.5) is used as the general spectrum function. It must be stated here that no limiting 

procedures are used for the development of any viscoelastic Lame' functions – the complete form 

of the spectrum function will be used.  The validity of this φ and the values of the constants will 

be established through comparison with the experimental data.   

The spectrum function in Eq. (3.5) is substituted in Eqs. (3.1) and the necessary integration is 

performed to obtain  
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and  

 )tn(cos)tn(si)tn(sin)tn(ci)t(F oooo +=      (3.6d) 

where si, Si, ci, Ci are the sine and cosine integral functions defined as 

( )

∫

∫

∫

∫

−
++γ=

+
π

==

−=

=

∞

∞

x

0

x

0

x

x

dz
z

1)zcos()xln()x(Ci

xsi
2

dz
z

zsin)x(Si

dz
z

zcos)x(ci

dz
z

zsin)x(si

    (3.7) 

and γ is the Euler’s constant = 0.5772.  Using the definitions in Eq. (3.7), F(t) can also be written 
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The Laplace transform of the integral in Eq. (3.8) is obtained from Erdelyi [11] as 
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Two functions of ζ are defined as λ(ζ) and µ(ζ), where 
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The form of these functions is consistent with the result of the Laplace transform of the 

equilibrium equation.  Upon taking the Laplace transform of Eqs. (3.6) and using the result in 

Eqs. (3.11), λ(ζ) and µ(ζ) are expressed as  
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4. Closed Form Solutions 

It must be noted that, based on the choice of the spectrum function φ(α), Eqs. (3.1) are the 

closed form analytical formulae for λv(t) and µv(t).  Since the Lame' functions have now been 

developed, the viscoelastic response functions, i.e., moduli, compliance, etc., can be obtained.  

Certainly, as discussed in Section 3.1.1, the functional similarity extends to all properties being 

expressed through the use of Eqs. 3.12.   

 

4.1  MODELING OF MODULI & COMPLIANCES 

 Although the bulk modulus may be difficult to measure directly, the analytically closed 

forms of K(t) and G(t) from Eq. (2.2), under the restriction imposed by Eq. (3.6), is      
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where the identical time dependence for the two functions is apparent. The determination of the 

material constants n and no, and hence m will be discussed in Section 4.3.   

 Unlike K(t) and G(t), there are also properties of interest that are not directly expressed as 

analytical functions of time.  However, since the Lame' functions have been expressed both in 

the time domain (Eqs. (3.6)) and also in the Laplace domain (Eqs. (3.12)), viscoelastic response 

functions are obtainable as long as the properties are available in either domain.  For example, 

direct analytic expressions for tensile modulus E(t), bulk compliance B(t), and shear compliance 

J(t) are commonly expressed only in the form of their Laplace transforms [4,5,7,8]. 
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With the availability of λ(ζ) and µ(ζ) as given in Eqs. (3.12), the above properties can be 

expressed in the Laplace domain. The full expression for the Laplace transform of E(t) is 

obtained by substituting Eq. (3.12) into Eq. (4.3a) and performing the Laplace inverse to obtain 
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To obtain the closed form expression for the bulk compliance B(t), the forms of λ(ζ) and µ(ζ) as 

given in Eqs. (3.12) are used in Eq. (4.3b) to obtain  
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The Laplace inverse of Eq. (4.6) is difficult to obtain.  Therefore, a Volterra integral equation for 

B(t) is formulated by using the convolution theorem.  The expression in Eq. (4.6) is first written 

as 
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Following the same procedure for the shear compliance, J(t) is determined to be 
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Although the functions B(t) and J(t) as given in Eqs. (4.8) and (4.9) are not in closed analytic 

forms, the formulated integral equations can be solved by an iterative method. 

 

4.1 MODELING OF POISSON’S RATIO  

 It must be restated here that the following development does not follow the assumptions 

stated in Eq. (3.2b) which result in a constant Poisson’s Ratio.  However, to demonstrate the use 

of the present methodology, it will be shown how the time-dependent Poisson’s Ratio can be 

formulated by using the spectrum-based moduli E(t) and K(t).   

 The expression for the transformed Poisson’s ratio in terms of the transforms of the bulk and 

shear moduli is given as [10] 
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Using Eq. (4.11) in Eq. (4.10), Poisson’s ratio is now expressed as 
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For some polymeric materials the bulk modulus does not change dramatically over the time 

interval considered, and therefore, if K is approximated as a constant [10,12,13], its transform is    
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For comparison with the above expression for ν(t), an expression obtained from Hilton [10] is 

considered with K0 = 3Ke:   
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From Eq. (4.7), it is noted that for K(t) = Ke, both Eqs. (4.14) and (4.15) are equal, as expected.  

The time-dependent behavior of Poisson’s ratio, using the same deformation history as that 

depicted in Figure 1 and expressed by Eqs. (4.14) or (4.15), is shown in Section 5.  

 

4.3  DETERMINATION OF n AND nO 

Material property constants n and no, and subsequently m, must be determined to express the 

properties of interest as given by Eqs. (4.1), (4.2), (4.4), (4.8) and (4.9).  The determination of 

these constants requires experimental data, which is easily obtained from a simple uniaxial 

tensile creep test.   For such a test case, only one stress component exists and that is in the 

direction of the applied load.  Hooke’s Law for linearly elastic isotropic materials in uniaxial 

tension is 

        
e

11
11 E

T
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where Ee is the elastic tensile modulus and has been defined in Eq. (4.5).  The Principle of 

Correspondence (EVCP), which is often used in the formulation of viscoelastic functions 

[14,15], is applied to Eq. (4.16).  This mathematical tool simply states that if the linear elastic 

solution exists, then the corresponding linear viscoelastic solution can be found by replacing the 

parameters with corresponding substitutions.  The Correspondence Principle is applied to Eq. 

(4.16) and the strain as a function of the Laplace parameter ζ is obtained as 
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Substituting the viscoelastic memory functions, λ(ζ) and µ(ζ) from Eqs. (3.12) into Eq. (4.17) 

results in an expression for the strain as a function of the Laplace parameter ζ which when 

inverted becomes  
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Using the Laplace tables [11] and the convolution theorem, and observing that T11(t) = σ = 

constant for a tensile creep experiment, the strain as a function of time is  
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Equation (4.19) is a Volterra integral equation and it can be solved by the method of iteration 

as 
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where ( )p
11 e  is the (p)th approximation and ( )1p

11 e +  is the (p+1)st approximation.   

 The time dependent strain is calculated by first determining no by choosing the initial time, 

final time, and an intermediate time.  The value at the intermediate time which produces the 

value of no that best fits the experimental strain data is selected.  The resulting transcendental 

equation is solved for no and this value is then used to calculate n and the remaining properties.   
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5. Discussion of Results 

 Experimental tensile and creep data at various temperatures and stress levels were obtained 

for a vinyl ester polymer matrix material [16].   Figure 1 shows the creep response of the resin 

samples at 66 °C and at a stress level of 14 MPa, in both real time (inset) and in log-log scales. 

As a first approximation, n and no were computed based on the iterative solution of the 

integral equation given in Eq. (4.19). The figure shows that the correct choice of the material 

constants produces very good agreement between the experimental and analytical data, 

particularly after about thirty seconds.  For larger times, the model begins to behave like a power 

law with power two.   The percent standard deviation, shown in Table 1, is computed based on 

the experimental and calculated strain and log(strain) values.  The largest variation is computed 

to be approximately 4% around 2000 seconds.  Some error also results from the authenticity of 

the experimental data which is sometimes quite unreliable in the very early stages of testing. A 

more accurate determination of the material constants could be accomplished if some 

experimental data had been available for E(t).  This is due to the fact that no approximations 

have to be made in the calculation of the tensile modulus (Eq. 4.4). The extracted viscoelastic 

material property constants n and no, are now used in the formulae for the remaining properties of 

interest. 
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Figure 1.Creep Strain Response: 14 MPa, 66 °C 

 
 
 

Table 1.  Percent Difference in Experimental and Computed Strain Values (14 MPa, 66 °C) 
 

Time 
(sec) 

*
1∆  

*
2∆  

30 1.19E-02 8.78E-01 
1000 8.39E-02 4.04E+00 
2000 1.02E-01 4.13E+00 
4000 9.40E-02 3.15E+00 
6000 7.42E-02 2.24E+00 
8000 3.74E-02 1.05E+00 
10000 2.18E-02 5.82E-01 
12000 7.77E-03 2.00E-01 
14000 1.60E-06 4.00E-05 

   *
1∆ = Percent standard deviation between experimental and computed strain values. 

   *
2∆ = Percent standard deviation between experimental and computed log(strain) values. 

 
 

Having obtained the values for n and n0 (hence 
0n

nm = ), for each test case the modulus as a 

function of time is generated by Eq. (4.4).  As mentioned previously, the expression for the time–

dependent modulus in Eq. (4.4) is amenable to direct evaluation.  The tensile viscoelastic 
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modulus is one of the properties that is not generally obtained by simply inverting the 

compliance and, therefore, is not directly obtainable via experiments.  Using this methodology, 

the modulus response can be simulated.  Figure 2 shows the degradation in the modulus for the 

polymer component at 66º C and at a stress level of 14 MPa.  This figure also shows the 

variation of the bulk modulus K(t) and shear modulus G(t) from Eqs. (4.1) and (4.2). Plotting 

these moduli on a logarithmic ordinate results in the curves being parallel and the multiplication 

factor being equal to the constants designated in Eq. (3.2b). 
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Figure 2.  Computed resin modulus response using one distribution function: 14 MPa, 66 °C 

 
Figure 3 is a depiction of the time-dependent behavior of Poisson’s ratio using either Eq. (4.14) 

or (4.15).  The reader is again reminded that this depiction of Poisson’s ratio is determined solely 

for the purpose of demonstrating the methodology of using the distribution function.  This is 

generated based on assuming a constant bulk modulus and using the generated tensile modulus 

based on one distribution function.  The reader is referred to Sec. 4.2. 
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Figure 3.  Poisson’s Ratio response (14 MPa, 66 °C ) for demonstration of the present 
            methodology.  (c.f. Section 4.2) 
 

6. Concluding Remarks 

A selected spectrum function φ(α) is used to develop the fundamental Lame' functions to  

express mechanical properties of interest of linear viscoelastic materials.  It is quite obvious that 

the chosen spectrum function φ(α) is not unique.  In fact, other functions may also model the 

data quite well, but results from the use of these functions may not be easily obtainable and may 

require further approximations.   The Principle of Correspondence is used to express creep 

strains and moduli in the Laplace domain.  The inversion process results in the corresponding 

numerical solutions in the time domain which are compared to the available experimental data.  

For time dependent strain, the resulting Volterra integral equation is solved and the computation 

of the material constants is based on the first approximation of this integral equation.  

It was shown that the chosen distribution function has the capability of simulating viscoelastic 

behavior during the early stages as well as the later time periods.  Some discrepancy is seen in 

the very early time periods and the difficulty in modeling this initial behavior could be due to the 
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uncertainty in initial experimental data.  However, as the time increases, the match between the 

experimental and analytical data also increases, producing excellent agreement for large times. It 

is also possible that a more accurate determination of the constants could be made if some tensile 

modulus data was available.  This is due to the fact that the time-dependent modulus is directly 

computable and approximations would be unnecessary.  Because of its availability, the time-

dependent strain data was used purely as a demonstrative tool for this methodology.   

 Functional proportionality is observed due to using the same distribution function for 

developing both λv(t) and µv(t).  Foremost, the ratio of the Lame’ functions produces a constant 

viscoelastic Poisson’s ratio.  To demonstrate the versatility of developing the basic Lame’ 

functions by a proper choice of the spectrum function, a time-dependent Poisson’s ratio was 

generated by using a constant bulk modulus and the developed time-dependent tensile modulus.    

Although the problem becomes more complex, functional similarity becomes non-existent by 

simply using different spectrum functions for the Lame functions.   

This methodology demonstrates the potential of using a realistic distribution function to 

characterize viscoelastic behavior.  Properties that are either not computable from experimental 

testing (moduli) or that are difficult to measure, such as Poisson’s ratio, can be modeled.  The 

development of the memory functions through the use of this spectrum function allows for a 

compact and complete representation of the pertinent viscoelastic functions.  
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