
 Open access Proceedings Article DOI:10.1145/2428516.2428521

On the use of an internal DSL for enriching EMF models — Source link

Filip Křikava, Philippe Collet

Institutions: University of Nice Sophia Antipolis

Published on: 30 Sep 2012

Topics: Object Constraint Language, Modeling language and Scala

Related papers:

 OCLLib, OCLUnit, OCLDoc: Pragmatic Extensions for the Object Constraint Language

 Design principles for internal domain-specific languages: a pattern catalog illustrated by Ruby

 Prototyping domain specific languages as extensions of a general purpose language

 MOCQL: a declarative language for ad-hoc model querying

 Domain-Specific Languages and Standardization: Friends or Foes?

Share this paper:

View more about this paper here: https://typeset.io/papers/on-the-use-of-an-internal-dsl-for-enriching-emf-models-
bh36d77ft2

https://typeset.io/
https://www.doi.org/10.1145/2428516.2428521
https://typeset.io/papers/on-the-use-of-an-internal-dsl-for-enriching-emf-models-bh36d77ft2
https://typeset.io/authors/filip-krikava-40l6pt3tm4
https://typeset.io/authors/philippe-collet-50lkfl516q
https://typeset.io/institutions/university-of-nice-sophia-antipolis-1vadneyw
https://typeset.io/topics/object-constraint-language-2qxmzbfk
https://typeset.io/topics/modeling-language-2zrcu0cr
https://typeset.io/topics/scala-u9uunbof
https://typeset.io/papers/ocllib-oclunit-ocldoc-pragmatic-extensions-for-the-object-3u9pwkmij0
https://typeset.io/papers/design-principles-for-internal-domain-specific-languages-a-5duqd9q92b
https://typeset.io/papers/prototyping-domain-specific-languages-as-extensions-of-a-1uvis0itky
https://typeset.io/papers/mocql-a-declarative-language-for-ad-hoc-model-querying-4fq7iclzi4
https://typeset.io/papers/domain-specific-languages-and-standardization-friends-or-2dnfawzn0z
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/on-the-use-of-an-internal-dsl-for-enriching-emf-models-bh36d77ft2
https://twitter.com/intent/tweet?text=On%20the%20use%20of%20an%20internal%20DSL%20for%20enriching%20EMF%20models&url=https://typeset.io/papers/on-the-use-of-an-internal-dsl-for-enriching-emf-models-bh36d77ft2
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/on-the-use-of-an-internal-dsl-for-enriching-emf-models-bh36d77ft2
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/on-the-use-of-an-internal-dsl-for-enriching-emf-models-bh36d77ft2
https://typeset.io/papers/on-the-use-of-an-internal-dsl-for-enriching-emf-models-bh36d77ft2

HAL Id: hal-01117778
https://hal.inria.fr/hal-01117778

Submitted on 19 Feb 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On the Use of an Internal DSL for Enriching EMF
Models

Filip Křikava, Philippe Collet

To cite this version:
Filip Křikava, Philippe Collet. On the Use of an Internal DSL for Enriching EMF Models. Proceedings
of the 2012 International Workshop on OCL and Textual Modelling, 2012, Innsbruck, Austria. pp.25
- 30, ฀10.1145/2428516.2428521฀. ฀hal-01117778฀

https://hal.inria.fr/hal-01117778
https://hal.archives-ouvertes.fr

On the Use of an Internal DSL for Enriching EMF Models

Filip Křikava
Université Nice

Sophia Antipolis, France
I3S - CNRS UMR 7271

filip.krikava@i3s.unice.fr

Philippe Collet
Université Nice

Sophia Antipolis, France
I3S - CNRS UMR 7271

philippe.collet@unice.fr

ABSTRACT

The Object Constraint Language (OCL) is widely used to enrich

modeling languages with structural constraints, side effect free que-

ry operations implementation and contracts. OCL was designed to

be small and compact language with appealing short “to-the-point”

expressions. When trying to apply it to larger EMF models some

shortcomings appear in the language expressions, the invariant con-

structs as well as in the supporting tools.

In this paper we argue that some of these shortcomings are mainly

related to the scalability of the OCL language and its trade-offs be-

tween domain-specificity and general-purpose. We present an al-

ternative approach based on an internal DSL in Scala. By using

this modern multi-paradigm programing language we can realize

an internal DSL with similar features found in OCL while taking

full advantage of the host language including state-of-the-art tool

support. In particular, we discuss the mapping between the OCL

and Scala concepts together with some additional constructs for

better scalability in both expressiveness and reusability of the ex-

pressions.

Categories and Subject Descriptors

D.3.3 [Programming Languages]: Language Constructs and Fea-

tures; D.2.2 [Design Tools and Techniques]: Object-oriented de-

sign methods

1. INTRODUCTION
OCL is used to complement the limited expressiveness of the

structural constraints of the modeling languages like UML (Uni-

fied Modeling Language) or EMF (Eclipse Modeling Framework).

Such model constraints are captured as state invariants using a side-

effect free expression language that supports first order predicate

logic with model querying and navigation facilities [18, 15]. More-

over, these expressions can be further used to include additional

information to the model such as operation contracts in form of pre

and post conditions, and implementation of derived features and

operation bodies. OCL is also embedded in context of other tools

such as the Object Management Group QVT model transformation.

OCL is an appealing and expressive language, but when applied

to larger EMF models using Eclipse OCL1, we found a number of

shortcomings in the language expressions, the invariant constructs

as well as in the supporting tools. While some of these problems

are already well identified in the literature either as research agenda

or accompanied with some solutions (c.f. Section 2), the lack of an

1http://goo.gl/TECuz

Copyright is held by the author/owner(s).
OCL’12 September 30 2012, Innsbruck, Austria
ACM 978-1-4503-1799-3/12/09.

overall integration eventually led us to look for alternatives. Ac-

cording to us, some of these shortcomings are in general related to

some scalability issues as a result of trade-offs between domain-

specificity and general-purpose.

In this paper we present an alternative approach based on an in-

ternal DSL in Scala2, a statically typed object-oriented and func-

tional programming language that runs on top of a Java Virtual

Machine (JVM). Besides the seamless integration with EMF, some

Scala features, such as support for higher-order functions, rich col-

lection libraries and implicit type conversions, allow us to write

very similar OCL-like expressions, but also leverage from the many

libraries found in the Java and Scala ecosystems. Besides Scala also

comes with state-of-the-art tool support.

The rest of the paper is organized as follows. In Section 2 we

describe the main shortcomings of OCL based on our experience.

Section 3 shows how we use Scala as an alternative approach to

enrich EMF models. It is followed by Section 4 where the im-

plementation details are presented together with an evaluation. In

Section 5, we discuss related work. We briefly conclude and outline

future work in Section 6.

2. SOME SHORTCOMINGS OF OCL
In this section we present a list of shortcomings we came across

while using OCL in an EMF based MDE toolchain, but various

usages of OCL reveal different pros and cons. In our study we

were concerned with the practical side of OCL rather than a formal

one like in [14] or [4].

For each of the point we also report on works in which similar

problems were reported. Despite the fact that many of these issues

have already been identified or addressed, the lack of an overall

integration is a crucial issue, which, according to us, influences the

slow adoption of OCL in the industry.

2.1 OCL Expressions
One of the key points that Anders Ivner mentions in the foreword

to the second edition of The Object Constraint Language [18] is

“Second, it is compact, yet powerful. You can write short and to-

the-point expressions that do a lot”. While this is true for many

of the short and straight-forward expressions, when the complex-

ity grows our ease of reading and writing of these expressions de-

creases radically. This might be especially hard for the new users

when they move from the tutorial like expressions to real world

ones.

Complex expressions are hard to write and maintain

OCL constraints and queries are defined in form of expressions that

can be chained together. The underlying linearity of this chaining

2http://www.scala-lang.org/

often leads to long and complex expressions that are difficult to

understand and maintain. Since the debugging support in OCL is

rather limited, mostly only simple logging or tracing is possible,

maintaining of these expressions is particularly hard.

In [10] Correa et al. provide some refactoring techniques to sim-

plify some of these complex expressions. Ackermann et al. pro-

pose in [1] to utilize specification patterns for which OCL con-

straints can be generated automatically, together with a collection

of OCL specification patterns formally defined. These techniques

might help in certain cases, but in general there is no simple solu-

tion to break the linearity of the expressions. Similar observations

regarding the complexity are also reported in [17].

Limited extensibility and reuse

The operations available in the OCL Standard Library are limited

and thus might not be sufficient to express certain needs such as a

string regular expression matching [6]. Adding new operations is

usually a difficult process3 and is also tool specific. In [7] authors

position a promising approach to define a set of useful and easily

reusable OCL expressions that can be packaged in libraries. An-

other approach based on a modular redefinition of OCL enabling

consistent extension and customization is discussed in [3].

Side-effect free expressions

By design OCL expressions have no side-effects, there are no as-

signment semantics, no possibility of creating new instances di-

rectly and all data types are immutable. This is particularly useful

for capturing constraints, but at the same time, it makes the state

changing operations impossible to be implemented in pure OCL.

In the case of EMF this means that a user always have to fall back

into Java-platform based languages to implement the state changing

operations. There are some OCL extensions proposed to introduce

imperative constructs into OCL like the ImperativeOCL within the

QVT, SOIL [5] or EOL [12], but they are not directly applicable

in the Eclipse OCL. However, an OCL environment might provide

some mutation capability in an appropriately disciplined fashion.

Inconsistency/Confusing issues

There are a number of little inconsistencies and confusions that

have already been reported [19, 20, 6] and that we encountered

during our development, such as: different symbols to navigate

through sets (->) and scalars (.); implicit oclAsSet when ap-

plied onto null object; implicit collection flattening when using

collect operation; logical operators with undefined values;

differences between UML constructs and corresponding OCL ca-

pabilities that have no correspondents in EMF (Ecore) and vice-

versa like oclContainer() resulting in usage of different OCL

meta-models. Also, while OCL has supported generic collections

before Java, it does not allow to work with generic class type pa-

rameters.

2.2 Constraints Capturing Constructs
Structural constraints extend the specification of models with

state invariants. There are numerous problems with these invariants

constructs offered by OCL. In [13], Kolovos et al. gives a detailed

overview of these issues, namely: support for user feedback; for

warning critiques; support for dependent constraints; flexibility in

context definition; support for repairing inconsistencies. To their

list we would only add invariant reuse across different contexts

and different models, so they do not have to be copy and paste.

In the same paper the authors also propose an extension that ad-

dresses the identified shortcomings together with an implemented

3Example of this process in Eclipse OCL http://goo.gl/
fWzBn

in prototype that is part of the Epsilon4 family. However, their so-

lution, EVL (Epsilon Validation Language), is based on yet another

external DSL - EOL (Epsilon Object Language) which tries to tame

some of the OCL problems, but with limited tooling support.

2.3 Tool Support
There is a close relationship between a language and its support-

ing tools. Often a language choice is influenced by the accessibility

of appropriate tools that facilitates the language use. Even though

implementing a solid and feature rich OCL support is a difficult and

resource consuming task, we currently see an impressive number of

OCL tools developed within the academia [8]. Unfortunately, this

trend does not seem to be followed in the industry where there is a

significant lack of commercial tools [9].

In our development, based on EMF, we have chosen the Eclipe

OCL project as it enables a tight integration of OCL expressions

using EMF delegates and has an active community. We worked

mainly with the OCLINECORE editor which embeds the OCL ex-

pressions directly into EMF models by annotating the relevant ele-

ments, which makes it very convenient to work with.

Similarly to many other software applications when they are used

at large scale, one of the main experienced difficulties was related

to scalability and stability when the models started to grow. After

reaching 800 lines the responsiveness of the editor became a seri-

ous problem5. Of course this issue is likely be reduced in future

versions.

Another problem is related to developer feedback and insuffi-

cient debugging capability. The former is associated with propa-

gation of runtime exceptions (null values), which may be difficult

to trace. The later one makes it difficult to narrow bugs in incor-

rect OCL expressions. While the interactive console can help with

the simpler cases, for some complex OCL expressions that include

evaluation of derived features and operations that are also imple-

mented in OCL debugging is really needed. Moreover OCL is ei-

ther directly interpreted or compiled into some other language like

Java, therefore the connection to the original OCL expression is

lost during debugging. In case of Eclipse OCL this might go away

in further versions since new editors are based on Xtext6 that now

includes Java’s debugging support for other languages (JSR-045).

3. INTERNAL DSL APPROACH
From our point of view, the shortcomings identified in the pre-

vious section are mostly related to scalability in the OCL language

itself, as well as in the performance, stability and features offered

by the OCL tools. The problems with OCL starts when used in

the large, having many invariants and complex expressions that go

beyond simple object navigation, etc.

Similar issues can be found in the alternatives that are also based

on external DSL like the EOL/EVL. The underlying problem is that

the creation of an external DSL is an challenging task from both the

language design and the tool implementation perspectives. On the

other hand the main benefit of using DSLs like OCL is in raising

the level of abstraction, which allows one to express the domain

specific concerns more clearly. For example, we could simple use

Java with its powerful ecosystem to implement constraints check-

ing. But with the lack of first-order logic collective operations, as

in OCL, the resulting code would be far from clean and concise and

the expressed concern would be lost among Java commands.

4http://www.eclipse.org/epsilon/
5Tested with Eclipse 3.7, OCL 3.1 on MacBook Pro 2.53 Ghz Intel
i5, 8GB RAM
6http://www.eclipse.org/Xtext/

We advocate that with a general purpose language that delivers

both powerful and flexible constructs together with state-of-the-art

tool support, one would be able to make similar expressions, like in

OCL, with all the benefits of this host language. We thus propose a

pragmatic approach based on an internal DSL i.e., a language that is

represented within the syntax of a general-purpose language with a

stylized usage of that language for a domain-specific purpose [11].

Concretely, relying on a modern multi-paradigm language, in our

case Scala, we define an internal DSL that allows us to enrich EMF

models in the similar fashion as OCL, but without the shortcomings

identified in the previous section.

The examples used in this section comes from the well-known

Royal and Loyal system presented in [18].

3.1 Principles
The main difference between an external and internal DSL is the

level of abstraction they can work with [11]. While in the former,

appropriate concepts can be freely chosen, the latter must always

operate on the concepts found in the host language. In our case

however, thanks to the following features, we can seamlessly write

similar powerful OCL-like expressions:

1. The EMF generator transforms the model concepts into Java code

i.e. model classifiers maps into Java classes, structural and behav-

ioral features into appropriate methods.

2. Scala allows one to omit parenthesis in methods without param-

eters so that similar OCL-like object navigation expressions can

be written:

self.getMembership.getParticipant.getDateOfBirth

The noise generated by successive get calls can be removed from

these expressions by generating (using the EMF code generator

dynamic templates) additional methods without the get prefix

that simply delegate their execution to the corresponding getters.

This way the above expression becomes the same as the one in

OCL:

self.membership.participant.dateOfBirth

3. With the large number of collection operations with support of

higher-order functions we can get OCL-like collection navigation

but in a more uniform way. For example, a selection of customer

cards whose transactions are worth more than 10000 points is ex-

pressed in OCL as follows:

self.cards->select(

transactions->collect(points)->sum() > 10000)

and in Scala:

self.cards filter (

.transactions.map(.points).sum > 10000)

The _ is used to as a placeholder for parameters in the anonymous

function instead of specifying a concrete name:

self.cards filter (c =>

c.transactions.map(t => t.points).sum > 10000)

Besides, since we manipulate the EMF generated Java code, we

have a support for multiple models out of the box as it only means

accessing classes from different packages. The Java generics are

also supported in Scala.

3.1.1 Basics

The main usage of our internal DSL is to enrich EMF models

with 1. structural constraints, 2. derived features definition, 3. op-

erations bodies implementation.. Each of these constructs is rep-

resented as a Scala object method with an appropriate signature

(the actual integration with EMF is shown in section 4.2). The first

parameter of these methods is always the surrounding context rep-

resenting the contextual instance (like self in OCL). The other

parameters and return type depends on the concrete construct:

Derived property

The return type is the type of the property itself. The following

function defines a code that will be executed by EMF when a de-

rived property printedName, defined in a Customer class, is

accessed:

def getPrintedName (self: Customer): String =

self.owner.title + " " + self.owner.name

Operation body

Additional parameters and the return type represent the operation

parameters and its type. Following the same pattern, the func-

tion below defines the code for the getTransaction operation

from the CustomerCard class, which has two parameters of type

Date and returns a set of Transaction references:

def invokeGetTransactions(self: CustomerCard,

until: Date, from: Date): Set[Transaction] =

self.transactions filter (

t => t.date.isAfter(from) &&

t.date.isBefore(until))

The invariant method signature is discussed in section 3.2.

3.1.2 Extensibility

Beside all the functionality that is brought by its standard library,

the Scala language counters the limited expressiveness of OCL by

leveraging the extensive amount of existing Java libraries. To use

any of them is only a matter of adding a new dependency to the

project.

The real Scala extensibility, however, lies in the ability to extend

existing types, statically and in a type safe way. For example, in

Scala there is no logical operator equivalence to OCL implies.

Of course we could simply define a function that takes two boolean

expressions and returns their logical implication, but this would feel

very unnatural to use. With Scala, we can define this function to

be a method on an existing boolean type by using the Pimp my

Library7 approach:

class ExtendedBoolean(a: Boolean) {

def implies(b: => Boolean) = !a || b

}

// add an implicit conversion between the types

implicit def extendedBoolean(a: Boolean) =

new ExtendBoolean(a)

With the above definitions imported one can now use the new method

directly and it feels like being part of the language:

a = true; b = false; c = a implies b

Using the same pattern we can create other missing OCL opera-

tions like closure, but also create completely new constructs.

3.1.3 Reusability

Scala allows both imperative and functional language constructs.

This allows one to break the complex and long expressions into

7http://goo.gl/MfkxZ

smaller pieces and store the intermediate values into local vari-

ables in order to improve the overall readability. The reusability

of expressions can be easily achieved by simply organizing these

expressions into object methods and libraries that can be shared

across models and projects.

We can push the reusability even further as Scala also supports

structural typing. Thanks to this feature one can write a very generic

expression that can be applied across different and completely un-

related models. For example:

def validateNonEmptyName(self:

{def name: String}) = !self.name.isEmpty

represents a generic invariant checking that an attribute name is

non empty. It can be applied to any class regardless of its type.

3.1.4 Handling Undefined and Invalid Values

When evaluated, some expressions in OCL can result into invalid

or undefined values such as when an empty collection is traversed

or an unset reference is navigated. Since neglecting them will lead

to null pointer exceptions, we also need to handle these cases in

Scala.

In order to simplify the code we make use of the Scala class

Option[T]. As the name suggests, it is just a simple abstract

container that wraps around an instance of some type T which rep-

resents an optional value. The two possible instances are Some and

None denoting whether there is an actual value for T.

For instance, in the previous example, we checked if a name

attribute is non empty string. However, if the multiplicity of this

attribute had been defined as 0..1, in the cases where the name

had not been set the code will throw a null pointer exception. The

EMF code generator does not make any difference between 0..1

and 1..1 and outputs the same getter signature:

public String getName();

However, we can simply extend the EMF code generator dynamic

templates and implicitly generate Option return type:

public scala.Option<String> name() {

scala.Option.apply(this.getName());

}

Because we use a different name for getters (without the get) the

resulting class is still compatible with the rest of the EMF world.

As the Scala documentation suggests8 the most idiomatic way

to use an Option instance is to treat it as a collection or monad,

which results in a very concise and null pointer safe implementa-

tion:

self.name.filter(!_.isEmpty).getOrElse(false)

3.1.5 Type Casts

Another often used Scala construct is type pattern matching. It

helps us in simplifying type casts in OCL, which are often used

when constraining metamodels. Instead of an expression like:

if self.oclIsKindOf(Customer) then

self.oclAsType(Customer).someAction()

else

// something else

endif

one can simply write:

self match {

case c: Customer => c.someAction()

case _ => // something else

8http://goo.gl/vNuB

}

3.2 Structural Invariants
The improved support of invariant constructs is addressed by

flexible return types of the invariant functions. We need to be able

not only to specify whether an invariant holds on a certain object,

but in case it does not, we should say why, how severe the problem

is and also be able to provide a support for automatic repair of such

inconsistencies (where applicable).

Therefore a function representing an invariant can return either:

1. A simple boolean representing whether an invariant holds on self.

def validateOfAge(self: Customer) = self.age >= 18

2. A string representing an error message in case it does not.

def validateOfAge(self: Customer): Option[String]=

self.age >= 18 match {

case true => None

case false => Some("The person %s is under age"

format self.printedName)

}

In this case we use the Option[T] construct to avoid using null

as a valid return value.

3. An object encapsulating the additional details.

def validateDefinesGetInstance(self: UMLClazz) = {

self.features

.find(_.name == "getInstance") match {

case Some(_) => Success

case None => Error("Missing getInstance",

QuickFix("Add a getInstance operation", {

clazz: UMLClazz =>

clazz.features += create[UMLFeature] {

op => op.setName("getInsatnce")

// ...

}

}))

}

}

Context definition and invariant dependency are solved by anno-

tations that are processed by the EMF custom validator.

@satisfies("DefineGetInstance")

def validateGetInstanceIsStatic(self: UMLClazz)

The validation functions are not called directly but via a proxy

that ensures each invariant is called for a specific instance at most

once. In order to be able to implement all the above we also need

to extend both the user interface and the runtime part of the EMF

validator.

Since referencing the dependent invariants as strings is not very

practical, we are currently looking into how the upcoming Scala

2.10 macros can help us in building a type safe alternative to the

annotations.

3.3 Drawbacks
Obviously there are also some shortcomings in our approach.

First, since the implementation of an invariant or a derived prop-

erty can contain arbitrary code, by default there is no way to make

sure they are side-effect free. One way to verify this would be by

using external checker such as IGJ ([21]). These checkers work as

Java language extensions and can verify that an object may not be

mutated through a read only reference (a reference annotated by

@ReadOnly annotation).

Second, another problem is in the loss of formal reasoning and

analysis. Nevertheless the analysis part related to performance can

be solved using a regular profiler.

Finally, in the DSL, we do not support some of the constructs

related to postconditions.

3.4 Why Scala?
While there are other languages such as Xtend9 that could be

used to build an internal DSL, we find Scala a particularly good

fit for our purposes. It is a modern general purpose language that

runs on the top of a JVM, and was designed from the start to

be an extensible language for building internal DSLs10. It com-

bines both object-oriented and functional style of programming

with static typing that uses type inference to provide type safety

without adding unnecessary syntactic clutter. It is also well sup-

ported by the major tool vendors and has already established an

active community.

4. IMPLEMENTATION
The internal DSL presented in the previous section has been im-

plemented on the top of a framework called Sigma11.

4.1 Overview of the Sigma Framework
The Sigma framework offers an API that allows one to enrich

EMF models using Java class methods with appropriate signature.

It is a small layer written in Java that acts on the top of the EMF

API notably the EValidator and EMF delegates (see next section).

It allows to delegate computation of model features such as derived

properties, operation bodies and constraints to Java class meth-

ods and it uses EMF model annotations to store information about

where to find these methods. The very similar concept is used by

the Eclipse OCL with the difference that it also uses the annotation

to store the actual code. It is a general framework that can supports

any Java-platform language. We provide a default support for Java

and Scala.

4.2 Integration with EMF
The integration between Sigma Framework and EMF is realized

using the EMF delegation.

4.2.1 Integration Through Delegation

From Eclipse Helios milestone 4, EMF supports a delegate com-

putation of structural invariants, derived features and operation.

This was the initial step to make it possible to define and compute

model extensions in languages other than Java. We build on this

feature and provide a set of delegates for handling the execution

delegation of the supported model extensions.

Following is an example of steps (illustrated in figure 1) to be

done in order to be able to define a structural invariant using our

DSL: Defining a structural invariant using our DSL can be done

through the following steps: 1. register delegation to sigma support

by attaching an annotation on the target model package (only once),

2. attach the Sigma annotation to the class one want to add the in-

variant and set the annotation delegate detail to reference Scala

object that will serve as the delegate for this model class, 3. attach

the Ecore annotation to same class and set the constraints de-

tail, 4. provide the actual implementation of the constraint in the

9http://www.eclipse.org/xtend/
10http://goo.gl/7lhvy
11More information about this framework can be found on
the project web site http://nyx.unice.fr/projects/
sigma/

appropriate method of the Scala object. Similar steps are required

to be performed using the Eclipse OCL, although for example the

OCLINECORE can take care of them automatically.

Figure 1: Sigma delegation represented in EMF

4.2.2 Runtime Overhead

There is some extra overhead caused by using the EMF delega-

tion. A part of this overhead is related to querying the registry in

order to find which delegate should be used. Another and more

significant one is due to the reflection used to find and execute the

target method. To overcome both issues we are currently working

on extending the dynamic templates to generate direct calls to the

appropriate target methods instead of going through the delegation

layer.

4.3 Tool Support
For writing the actual expressions in the internal DSL we can

immediately leverage the tooling support that comes with the host

language. On the other hand, there is no support for maintaining

the synchronization between the model annotations and their dele-

gating method counterparts. Doing this manually can become very

tedious and error-prone, especially in large models. In the current

version of Sigma, we address this issue by providing the following

tools that given an EMF model: 1. generate the appropriate dele-

gate method signatures, 2. attach the appropriate Sigma annotation

to the various model elements. More advanced tooling in form of

Eclipse plugins is currently in progress.

5. RELATED WORK
There has been a lot of work addressing different OCL shortcom-

ings (cf. section 2). Since OCL has become popular in the research

community, there is also a lot of work that reflects on the formal

aspects of the language, its syntax, semantics and expressiveness

comparing to relational calculus [14, 4, 19, 3]. Assessing the OCL

tool support has also been investigated [8, 9]. In [16] authors eval-

uates expressiveness of OCL in the context of their model assess-

ment framework. However, their evaluation is based rather on the

type of queries and checks they can express using OCL and do not

discuss using OCL in large scale model driven developments.

In [7] the authors discuss another challenge in pragmatic OCL

development. Their solution addresses both the conceptual and im-

plementation level challenges proposing new OCL extensions and

tools. We believe that our approach is more pragmatic, at least until

all the promising extensions and production level tools are imple-

mented. Our solution leverages the growing community around

Scala and needs only a tiny API layer where all constructs are in

forms of libraries, not language extensions.

Another alternative is the Epsilon project with the EOL. [12].

While it comes with an Eclipse based environment and a solid doc-

umentation, it has positioned itself not to be a rival to the OMG

standards, but rather a prototype in which one can easily experi-

ment with novel approaches in MDE [13].

In [2], Akehurst et al. question whether the modern program-

ming languages do not make OCL redundant since they offer sim-

ilar expressibility. They provide a concrete examples of writing

OCL-like expressions in C#. While we have the same motivating

idea of using a general purpose programming language, beside the

language choice, we go beyond only enabling OCL-like expres-

sions and we also offer more advanced constructs and improved

invariant support.

The project JS4EMF12 aims at providing Javascript for scripting

EMF and at the same time using EMF objects in Javascript code.

This includes also support for implementing same modeling exten-

sions using the EMF delegates mechanism. The main difference is

that we represent these model extensions as functions so that at the

code level they are first class citizens. In JS4EMF the model ex-

tensions are simply snippets of Javascript code attached to model

elements in the similar fashion as in Eclipse OCL. Therefore we

find the similar shortcomings with regards to constraint constructs

and tool support.

The XCore project13 extends concrete syntax for Ecore that, in

combination with Xbase expression language, transforms it into a

fully-fledged programming language - external DSL. Currently it

does not support definition of constraints and can be seen as a work

in progress.

6. CONCLUSION
In this paper we have presented some shortcomings of the OCL

language that makes it difficult to use in larger EMF based applica-

tions. Addressing these issues we have proposed an internal DSL

based on Scala and have provided an overview of some of the re-

sulting benefits and drawbacks. Current work in progress consist

in improving tool support and EMF integration to provide a solid

set of tools to the community. Next, we need to more precisely

specify the deviations from OCL and its consequences (the differ-

ent semantics between OCL and Scala, unlimited numerals, etc.)

together with the trade-offs of standardization of OCL versus flex-

ibility and extensibility of the DSL approach. Finally, carrying out

more case studies should help us further assess the practicality of

the proposed solution and explore what other advantages of a DSL

approach, beyond the traditional usage of OCL, may benefit users.

This work is a first step into a study how the Scala features could be

leveraged in Model-Driven Engineering in conjunction with EMF.

Acknowledgments

The authors would like to thank R. B. France, E. D. Willink and

the reviewers for valuable discussions and comments. The work

reported in this paper is partly funded by the ANR SALTY project

under contract ANR-09-SEGI-012.

7. REFERENCES

[1] J. Ackermann and K. Turowski. A Library of OCL

Specification Patterns for Behavioral Specification of

Software Components. In Advanced Information Systems

Engineering, Lecture Notes in Computer Science. Springer

Berlin / Heidelberg, 2006.

[2] D. H. Akehurst, W. G. J. Howells, M. Scheidgen, and K. D.

McDonald-Maier. C# 3.0 makes OCL redundant! ECEASST,

9, 2008.

[3] D. H. Akehurst, S. Zschaler, and W. G. J. Howells. OCL:

Modularising the Language. In Proceeding of the Ocl4All:

Modelling Systems with OCL, OCL, page 20, 2007.

12http://www.eclipse.org/js4emf/
13http://wiki.eclipse.org/Xcore

[4] A. D. Brucker and B. Wolff. Semantic Issues of OCL : Past,

Present, and Future. In Proceedings of the 6th OCL

Workshop. ECEASST, 2006.

[5] F. Büttner and M. Gogolla. Modular Embedding of the

Object Constraint Language into a Programming Language.

In Proceedings of the 14th Brazilian conference on Formal

Methods, 2011.

[6] J. Cabot and M. Gogolla. Object Constraint Language

(OCL): A Definitive Guide. In 12th International School on

Formal Methods (SFM), 2012.

[7] J. Chimiak-Opoka. OCLLib, OCLUnit, OCLDoc: Pragmatic

Extensions for the Object Constraint Language. In Model

Driven Engineering Languages and Systems. Springer Berlin

/ Heidelberg, 2009.

[8] J. Chimiak-Opoka, B. Demuth, A. Awenius, D. Chiorean,

S. Gabel, L. Hamann, and E. D. Willink. OCL Tools Report

based on the IDE4OCL Feature Model. ECEASST, 44, 2011.

[9] D. Chiorean, V. Petrascu, and D. Petrascu. How My Favorite

Tool Supporting OCL Must Look Like. In Proceedings of the

8th International Workshop on OCL Concepts and Tools,

volume 15, page 17, 2008.

[10] A. Correa, C. Werner, and M. Barros. Refactoring to improve

the understandability of specifications written in object

constraint language. Software, IET, 3(2):69–90, 2009.

[11] M. Fowler. Domain Specific Languages. Addison-Wesley

Professional, 1st edition, 2010.

[12] D. Kolovos, R. Paige, and F. Polack. The Epsilon Object

Language (EOL). In Model Driven Architecture –

Foundations and Applications. Springer Berlin / Heidelberg,

2006.

[13] D. Kolovos, R. Paige, and F. Polack. On the Evolution of

OCL for Capturing Structural Constraints in Modelling

Languages. In Rigorous Methods for Software Construction

and Analysis. Springer Berlin / Heidelberg, 2009.

[14] L. Mandel and M. Cengarle. On the Expressive Power of

OCL. In J. Wing, J. Woodcock, and J. Davies, editors,

FM’99 — Formal Methods, volume 1708. Springer, 1999.

[15] Object Management Group. OMG Object Constraint

Language (OCL). Technical report, Object Management

Group, 2012.

[16] J. C. Opoka and C. Lenz. Use of OCL in a Model

Assessment Framework: An experience report An

experience report. In Proceedings of the Sixth OCL

Workshop, volume 5 of OCLApps, page 17, 2006.

[17] M. Siikarla, J. Peltonen, and P. Selonen. Combining OCL

and Programming Languages for UML Model Processing.

Electronic Notes in Theoretical Computer Science, 2004.

[18] J. Warmer and A. Kleppe. The Object Constraint Language,

Second Edition. Addison-Wesley, 2003.

[19] C. Wilke and B. Demuth. UML is still inconsistent ! How to

improve OCL Constraints in the UML 2.3 Superstructure. In

Workshop on OCL and Textual Modelling, 2010.

[20] E. Willink. Modeling the OCL Standard Library. In

Workshop on OCL and Textual Modelling, 2011.

[21] Y. Zibin, A. Potanin, M. Ali, S. Artzi, A. Kieżun, and M. D.

Ernst. Object and reference immutability using java generics.

In Proceedings of the the 6th ACM SIGSOFT symposium on

The foundations of software engineering, 2007.

