
6th World Congress on Structural and Multidisciplinary Optimization
Rio de Janeiro, 30 May–03 June, 2005 Brazil

x

On the Use of Analytical Target Cascading and Collaborative Optimization for
Complex System Design

James Allison, Michael Kokkolaras, Marc Zawislak, Panos Y. Papalambros

Department of Mechanical Engineering, The University of Michigan
2350 Hayward, Ann Arbor, Michigan 48109-2125

{optimize,mk,mzawisla,pyp}@umich.edu

1 Abstract

The methods of analytical target cascading (ATC) and collaborative optimization (CO) are studied with respect to their
intended use and applicability. ATC was initially developed as a product development tool, while CO evolved from efforts
to coordinate multidisciplinary analyses using a multidisciplinary design optimization (MDO) formulation. ATC and CO
are used typically to solve object-based and discipline-based decomposed system optimization problems, respectively.
Their mathematical formulations appear to be similar although they were developed with different motivations. The
article defines and compares terminologies for each approach and shows that each has unique applicability and solution
process. Two new analytical example problems are employed to illustrate the distinctions between ATC and CO. The
first example elucidates how each method can be used to solve the same design problem. The second example uses a new
optimization formulation, nested ATC-MDO, to illustrate their complementary nature. In this formulation a system is
partitioned by object, and objects are partitioned by discipline. ATC coordinates the design of system elements and
an MDO method, such as CO, coordinates the multidisciplinary design of an element. The formulation maps well to
organizational matrix structures. The overall study demonstrates the benefits of using complementary solution strategies
in solving complex system optimization problems.

2 Keywords: Analytical Target Cascading, Collaborative Optimization, Complex System Design, Matrix Organiza-
tions

3 Introduction

Design of modern engineering products can be a complex task, and numerous methodologies have been developed
to support this endeavor. One approach is to partition the original design problem into smaller and easier to solve
subproblems, and then coordinate these problems toward a consistent and optimal system solution. A key motivation
for decomposition methods is the nature of design organizations. No single group or computing facility is typically
capable of executing all design activities associated with a complex product, requiring distributed analysis and design.
Existing organizational structures provide a natural means for partitioning a design problem.

One category of decomposition methods is multidisciplinary design optimization (MDO), a field of engineering
based on the needs of multidisciplinary analysis (MDA) and on exploiting the synergy that exists between constituent
components of a system [1]. Single-level MDO methods, such as the individual disciplinary feasible and all-at-once
approaches [2, 3], utilize a single optimizer to make all design decisions. Although typically efficient, these centralized
approaches have heavy communication requirements, and may not map well to many existing design organizations and
analysis tools. In response, multi-level MDO methods have been developed that distribute decision making throughout
the system (providing design groups with some autonomy and ability to utilize existing design tools), and reduce
communication requirements.

This article investigates the distinctions between Collaborative Optimization (CO), a bi-level MDO method, and
Analytical Target Cascading (ATC), a formal product development tool. CO was first presented by Braun [4] in
1996, and ATC was formally presented by Michelena et al. [5] in 1999. Both methods have been actively researched
through the present, producing numerical refinements and extensions to practical applicability. Recent questions have
arisen regarding the distinctions between CO and ATC, owing to similar mathematical formulations and overlapping
terminology. This article examines the formulation and solution process of each method, and clarifies terminology. Two
illustrative examples provide a venue for clarifying and reinforcing arguments made. The first example demonstrates the
solution of a structural design problem first with CO, and then with ATC, utilizing the same partitioning structure in
each case. This provides a clear comparison of solution process, communication patterns, and formulation. The second
example introduces a new formulation for solving complex design problems: nested ATC-MDO. In addition to supplying
a means for observing ATC and CO within the same formulation, nested ATC-MDO exploits the complementary
strengths of ATC and MDO. This approach applies to design problems that can first be partitioned by object, and then
by discipline, and maps well to design organizations with a matrix structure [6]. This article does not attempt to make
performance evaluations or comparisons, but rather focuses on process and paradigm distinctions. It is suggested that

1

flexibility in choosing the methodology or combination of methodologies best suited for a task is an important approach
to solving complex system optimization problems.

4 Review of Collaborative Optimization

This section briefly reviews the background, formulation, and recent refinements of collaborative optimization (CO), an
MDO strategy that facilitates the integration of analyses required for the design of a complex product. Factors motivating
the development of CO include reduced communication requirements, provision for distributed design authority, and
flexibility to accommodate analysis changes. CO was developed under the MDO paradigm, where systems are typically
partitioned along discipline boundaries, which are often dictated by the design organization structure or available analysis
tools. Separate disciplinary analyses, or subspaces, are coupled by interactions, that increase design problem difficulty.
MDO strategies aim at exploiting interactions synergistically to produce superior results.

An implicit emphasis of MDO methods is analysis and input/output relations. An important question pertinent
to structuring an MDO design problem is how to integrate the various analyses best. The CO architecture allows
legacy analysis tools to be used without special modifications, and accommodates specialized optimization techniques
for particular disciplines, such as optimal control or structural optimization.

Before decomposition, quantities of interest are the design variables x, the objective function f(x), and the design
constraint functions g(x) and h(x). After decomposition, other values of interest emerge. The vector of coupling
variables yij is the set of values computed by subspace j required as inputs to subspace i. The collection of all coupling
variables y has no common components with x. In addition, x can be partitioned into local variables x`i that are
pertinent only to subspace i, and shared variables xsi that are inputs to subspace i and at least one other subspace.
The vector xi contains local and shared variables required for subspace i.

A result of CO development under the MDO paradigm is suitability for design problems with a particular structure.
A collection of analyses does not usually have a natural hierarchical ordering—all subspaces are of similar importance.
There is no system level analysis that integrates lower level analyses. In other words, MDO problem structures have
shared variables, but normally lack shared functions. Using the terminology of Chen [7], the associated functional
dependency table is column based. This structure and lack of system-level analysis reinforces emphasis on analysis and
analysis integration. An implication of this structure is the sufficiency of a bi-level problem structure for CO. The top
level performs the coordination, and all subspaces are located at the lower level. Since analyses are of equal importance,
it is not necessary to extend the CO hierarchy to multiple levels. In cases where an analysis hierarchy does exist or
system analysis is present, compatibility constraints, which will be explained shortly, can bring all subspaces onto the
same level.

Figure 1 illustrates the architecture of CO and the associated hierarchic communication channels. A system optimizer
coordinates the activities of all subspace design problems, guiding the system toward optimality and consistency. The
system optimizer seeks system optimality by minimizing the system objective function fs, and requires system consistency
via auxiliary constraints (f∗ = [f∗1 , f∗2 . . . f∗N]T = 0), which require consistency among all coupling and shared variables.
The auxiliary constraints decouple the subspaces, such that communication is only required between the subspaces and
the system optimizer. This also allows parallel execution of analyses and transforms the problem structure from non-
hierarchic to hierarchic. System optimization is performed with respect to the system targets ẑ, which are the vehicle
for negotiation between subspaces. Subspace optimizer i receives the targets ẑi pertinent to subspace i, and seeks to
minimize the discrepancy between these targets and the corresponding computed quantities zi, subject to local design
constraints gi(xi) and hi(xi). The discrepancy between the system targets and their corresponding subspace quantities
is captured by the ith subspace objective function, fi. The system objective function fs(ẑ) is a scalar function of the
system targets, and is computed directly by one of the subspaces.

A target in the vector ẑi exists for every shared variable xsi used in subspace i and for every input yij and output
yji coupling variable, i.e., zi = [xT

si,y
T
ij ,y

T
ji]

T. No targets exist for local design variables xi, allowing subspaces direct
control over them and providing a degree of subspace autonomy.

The subspace objectives fi measure discrepancy between subspace targets and the corresponding responses: fi(x`i,yij)
= ‖zi − ẑi‖2

2. The local targets ẑi are fixed parameters in the subspace optimizer, which seeks to match these targets
by varying the local design variables and input coupling variables. The output coupling variables yij are computed
based on these decision variables, and are incorporated into fi. At every system level iteration, the optimal value of the
subspace objective function f∗i is passed to the system optimizer and used as a system-level auxiliary constraint. Thus,
the CO process consists of nested optimization. The original CO formulation is:

System Level Formulation

min
ẑ

fs(ẑ) (1)

subject to f∗(ẑ) = 0

Subspace Formulation

min
x`i,yij

fi(x`i,yij) = ‖zi − ẑi‖2
2 (2)

subject to gi(x`i,yij) ≤ 0

hi(x`i,yij) = 0
Some researchers have identified difficulties with the original CO formulation, particularly when gradient-based

algorithms are employed [8, 9]. At the solution, the consistency constraint gradient vanishes, Lagrange multipliers

2

approach zero, and constraint qualification is not met. A practical solution is to loosen algorithm tolerances, as was
done in the first example of this article. However, this limits numerical accuracy. Another issue is that the subspace
objective function is generally not differentiable. DeMiguel and Murray proposed a modified CO formulation (MCO)
in 2000 [9]. The compatibility constraints are relaxed and moved to the system objective as an exact penalty function,
and a smoothing algorithm is used to ameliorate other remaining difficulties.

System Optimizer

min fs
 s.t. f* = 0

SS1 Analyzer

SS1 Optimizer

min f1
 s.t. g1 < 0

 h1 = 0

. . .

SSN Analyzer

SSN Optimizer

min fN
 s.t. gN < 0

 hN = 0
— —

z1̂ f1
* zNˆ fN

*

Figure 1: Collaborative Optimization architecture

j = D j = E j = F j = G

j = Cj = B

j = A

Elements j

Le
ve

ls
i

i = 3

i = 2

i = 1

Figure 2: ATC hierarchy notation conventions

5 Review of Analytical Target Cascading

Analytical Target Cascading (ATC) is the result of efforts to formalize activities early in the product development
process. It was originally intended as a tool to cascade system-level product targets through a hierarchy of design
groups. The ATC architecture was originally based on hierarchical analysis structures with unidirectional functional
dependencies. This maps well to many design organizations and can help avoid the need to restructure communication
channels for the solution process. Recent developments allow application of ATC to more general problems that possess
feedback coupling, such as the first example problem of this article.

The ATC paradigm is based on hierarchical organizational and analysis structures, which are typically partitioned
by object. A typical ATC approach is to take a high-level system analysis and use more detailed subsystem analyses
at the lower levels. This is a different approach than CO, which focuses on discipline-based analysis integration. An
example hierarchy with standardized notation is shown in Figure 2. ATC typically involves system-integration analysis,
and so it is a natural fit to a very general class of problem structures with shared functions, i.e., problems with a hybrid
functional dependency table [7]. This also results in reduced emphasis on analysis integration. Additionally, systems
modeled under the ATC paradigm can ‘absorb’ some coupling variables into a system analysis that in an MDO approach
would be explicitly handled by the system optimizer.

The discussion here focuses on the target propagation process, the nexus of ATC. When used for product devel-
opment, ATC propagates product targets using a model-based solution process, and targets are provided to design
groups to work towards. If the design groups cannot meet the targets or if there are consistency problems, the target
propagation is revisited with new system targets and possibly more accurate analysis models.

The original ATC formulation described in [5, 10] includes inequality compatibility constraints that enforce consis-
tency within some tolerance ε. These tolerances are decision variables, and are driven to zero by placing them in the
objective function of the parent element formulation. Monotonicity analysis [11] reveals the compatibility constraints
to be always active, allowing for substitution for ε in the objective function. This penalty formulation was introduced
by Michalek and Papalambros [12, 13], reducing the dimension of the optimization problem and facilitating the use of
efficient weighting update methods [12, 14]. In addition, the penalty formulation is an intuitive basis to explain ATC.
Shared values (shared variables or coupling variables) are identified. Copies of these values are made in the appropriate
elements, and penalties are assigned in the element objective functions for inconsistencies among shared values.

The generalized penalty formulation for the optimization problem Pij associated with element j at level i is given in
Equation (3). This formulation has been extended from what was presented in [12, 13] to accommodate systems with
feedback coupling, i.e., systems with responses generated by parent element analyses that are required as inputs to the
analysis of child elements. This extends ATC’s applicability beyond product development to MDO type problems, and
is helpful for this article’s focus. The responses Ri

ij are outputs of the analysis rij of element j at level i required by
the parent element as analysis inputs. Ri

ik are also outputs of the analysis rij , but are required by child element k.
Ri−1

ij are targets set by the parent element p at level i − 1 for Ri
ij . Ri

(i−1)p are targets set by element j at level i for

Ri−1
(i−1)p, which are responses generated by the parent element p at level i− 1 that are inputs to the analysis of element

j. The linking variables yi
ij (equivalent to shared variables in MDO terminology) are the design variables required at

element j that are shared with other elements, as determined by element j at level i. The vector yi−1
ip is comprised of

linking variable targets set by the parent element p at level i−1 for child elements at level i. The binary valued selection

3

matrix Sj is multiplied by the aggregate vector yi−1
ip to choose the targets that correspond to yi

ij . Sj is also used to
form the vector of corresponding linking variable penalty weights from wy

ip. The ◦ operator denotes term by term vector
multiplication, such that each term in a weighting vector is multiplied by the term in the deviation vector with the same
index. This allows every shared value to have assigned to it a weight expressing the relative importance of consistency
for that shared value. Sp and Sk are the matrices that select what outputs of analysis rij are to be passed to the parent
element and child element k, respectively. Terms 4 and 6 of the objective enforce penalties for deviation between targets
set by element j for all elements k that belong to the set of all children Cij of element j and the corresponding responses
and linking variables determined at level i+1. Term 5 of the objective enforces consistency between targets set by child
elements and the corresponding responses from element j.

Optimization is performed with respect to all inputs to the analysis for element j (x̄ij) and the targets set for linking
variables pertaining to child elements (yi

(i+1)j). Analysis inputs include local design variables xij , linking variables yij ,

responses from below Ri
(i+1)k, and targets set for responses from above Ri

(i−1)p. Pij must also satisfy design constraints
gij and hij . The generalized formulation for problem Pij is:

min
x̄ij ,yi

(i+1)j

∥∥∥wR
ij ◦

(
Ri

ij −Ri−1
ij

)∥∥∥2

2
+

∥∥∥wR
(i−1)p ◦

(
Ri

(i−1)p −Ri−1
(i−1)p

)∥∥∥2

2
+

∥∥∥Sjw
y
ip ◦

(
Sjy

i−1
ip − yi

ij

)∥∥∥2

2
(3)

+
∑

k∈Cij

∥∥∥wR
(i+1)k ◦

(
Ri

(i+1)k −Ri+1
(i+1)k

)∥∥∥2

2
+

∑
k∈Cij

∥∥∥wR
ik ◦

(
Ri

ik −Ri+1
ik

)∥∥∥2

2

+
∑

k∈Cij

∥∥∥Skw
y
(i+1)j ◦

(
Sky

i
(i+1)j − yi+1

(i+1)k

)∥∥∥2

2

subject to gij(x̄ij) ≤ 0, hij(x̄ij) = 0

where Ri
ij = Sprij(x̄ij), Ri

ik = Skrij(x̄ij) k ∈ Cij

x̄ij =
[
xT

ij ,y
T
ij ,R

i T
(i+1)k,Ri T

(i−1)p

]T

k ∈ Cij

If an element is at the top level of a system, terms 2 and 3 of the objective do not exist, and the targets Ri−1
ij

are external, fixed targets. If an element has no child elements, terms 4–6 of the objective do not exist. To clarify
the relationship between ATC and CO terminology, shared variables (denoted by xs in CO) are equivalent to linking
variables (denoted by y in ATC), and all coupling variables are considered responses in ATC. However, responses that
correspond to external fixed targets are not coupling variables.

Parent elements coordinate interaction between child elements either explicitly through shared values, or implicitly
through integration analysis at the parent element. The ATC process is a sharp distinction from the nested optimization
of CO. In ATC, each problem Pij is executed independently, i.e., updated responses or targets from other elements are
not required during execution. Pij is solved completely while holding all input parameters fixed. An element’s input
parameters include both targets and responses sent to an element from a parent, termed upper parameters (Ri−1

ij ,

Ri−1
(i−1)p, Sjy

i−1
ip), and targets and responses sent from a child to an element, termed lower parameters (Ri+1

ik , Ri+1
(i+1)k,

yi+1
(i+1)k). An external coordinating algorithm is required to execute the ATC process, and can begin by using guesses

for input parameters to the top-level problem. This produces upper parameters for child elements below, which require
guesses for their lower parameters (assuming more than two levels exist).

One effective coordination strategy is a bi-level nested approach—solve the top level first, and then completely solve
all lower levels in a nested fashion before updating the lower parameters for the top level problem. This process is
repeated until the top level penalty terms stop changing. For example, consider a three-element, three level-system. P1A

is solved and sends upper parameters to P2B . The solution to P2B generates upper parameters used to solve P3C , which
then returns lower parameters to P2B , which is solved again. The coordination algorithm alternates between the solution
of P2B and P3C , updating upper and lower parameters, respectively, until the penalty terms in P2B stop changing. The
pertinent results from P2B are then passed to P1A as lower parameters. This is repeated until convergence of P1A. This
nested coordination process requires several executions of the top level problem, and progressively more executions of
problems lower on the hierarchy. Other potentially more efficient coordination strategies exist, but the ATC convergence
proof [15] is based on nested coordination.

If the external, fixed, top-level targets are unattainable, the penalty terms will not approach zero unless the weights
are dynamically adjusted and approach infinity [12], making it impractical to achieve a perfectly consistent system.
Weighting update methods newly applied to ATC allow the practitioner to achieve solutions with an acceptably low
level of inconsistency when targets are unattainable [12, 14].

6 Example Problem 1

This section details the anchor design problem first presented in [16]. The analysis is partitioned by physical object,
but has an MDO flavor due to feedback coupling. A baseline design solution is presented, followed by CO and ATC
formulations and solutions. This exercise provides a means to communicate the nuances of each method, and to directly
compare solution processes, terminology, and communication patterns.

4

6.1 Anchor Design Problem
Consider an anchoring system with nb cantilever beams of length L with solid circular cross sections of diameter di

interconnected with nr = nb − 1 solid cylindrical rods of diameter drj with unique length lrj , attached to the beams
with pin joints (Figure 3). A downward force F1 is applied at the pin joint of beam 1. Some anchoring systems (such
as multiple tent stakes) require several beams to distribute the load and prevent damage to the foundation.

The system is statically indeterminate because the number of unknown forces and moments exceeds the number of
equilibrium equations. Additional compatibility constraints are used to facilitate solution. It is assumed that linearity
holds, materials are homogeneous, and body forces, buckling, and stress concentrations may be neglected. The anchor
design problem is posed as a mass allocation problem, i.e., for a maximum allowed system mass mallow, find beam and rod
diameters that minimize the deflection at the point of force application, subject to bending and axial stress constraints,
and transmitted force constraints. The last set of constraints approximately ensure integrity of the foundation. Table 1
summarizes design variables and parameters.

Table 1: Anchor design problem variables and parameters

local design variables xi: di i = 1 . . . nb

shared design variables xsi: drj j = 1 . . . nr

design parameters p: L, lrj , E, ρ, σallow, mallow, F tallow j = 1 . . . nr

Ftallow is the allowable transmitted force, ρ is the material density, σallow is the allowable stress, and E is the
modulus of elasticity. The design optimization problem in negative-null form is presented in Equation (4).

beam 1

beam 2

beam 3

beam nb

.

.

.

F1

rod 1

rod 2

rod nb-1

Ø dnb

Ø d3

Ø d2

Ø d1

Ødr(nb-1)

Ø dr2

Ø dr1

L

lr1

lr2

lr(nb-1)

.

.

.

Figure 3: Schematic of the anchor design problem

min
x=[xT

`
,xT

s]T
f(x) = δ1(x) (4)

subject to g1i(x) = σbi(x)− σallow ≤ 0 i = 1 . . . nb

g2j(x) = σaj(x)− σallow ≤ 0 j = 1 . . . nr

g3(x) =

nb∑
i=1

mbi(x) +

nr∑
j=1

mrj(x)−mallow ≤ 0

g4i(x) = Fti(x)− Ftallow ≤ 0 i = 1 . . . nb

Solving the design problem requires prediction of each beam end deflection (δi), the extension of each rod (δrj), the
bending stress in each beam (σbi), the axial stress in each rod (σaj), the transmitted force at each beam (Fti), and the
beam and rod masses (mbi & mri), for given beam and rod diameters. The following relations from fundamental solid
mechanics theory were used in the development of the analysis model:

σb =
Mc

I
, I =

π

64
d4, σa =

P

Ac
, δb =

PL3

3EI
, δr =

PL

EAc

M is the bending moment in a beam at the base, I is the beam area moment of inertia, P is the applied load, and
Ac is the beam cross-sectional area. Fi is the downward force exerted at the end of beam i, and Fj is the axial load
present in rod j. The responses of interest may be generalized and grouped into the three categories introduced below.

5

Intermediate or Bottom Beam

δi =
64L3(Fi − Fi+1)

3πEd4
i

(5a)

σbi =
32L(Fi − Fi+1)

πd3
i

(5b)

mbi =
π

4
d2

i Lρ (5c)

Arbitrary Rod

δrj =
4Fj+1lrj

πEd2
rj

(6a)

σaj =
4Fj+1

πd2
rj

(6b)

mrj =
π

4
d2

rj lrjρ (6c)

Top Beam

δnb =
64L3Fnb

3πEd4
nb

(7a)

σbnb =
32LFnb

πd3
nb

(7b)

mbnb =
π

4
d2

nb
Lρ (7c)

The transmitted force Fti for each beam is Fi−Fi+1. Compatibility conditions require that the deflection of the end
of beam i is equal to the deflection of beam i+1 plus the extension of the connecting rod (j = i), i.e., δi = δi+1+δri. The
deflection of a beam is dependent upon the deflection of the surrounding beams, introducing coupling into the system.
A three-beam anchor analysis may be partitioned into three subspaces, where subspace i contains the analysis of beam
i and rod i. Figure 4 illustrates this partitioning, along with communication paths and functional relationships. The
quantity mi is the sum of all masses in subspace i. The functional relationshsips can be derived from Equations (5)–(7).
The resulting shared, local, and coupling variables are identified in Table 2. The total design vector is x = [xT

` xT
s]T,

where x` = [d1, d2, d3]
T and xs = [dr1, dr2]

T.

1(2, d1, dr1)
b1(2, d1, dr1)
a1(2, d1, dr1)

mb1(d1)
mr1(dr1)
Ft1(2, d1, dr1)

2(1, 3, d2, dr1, dr2)
b2(1, 3, d2, dr1, dr2)
a2(1, 3, d2, dr1, dr2)

mb2(d2)
mr2(dr2)
Ft2(1, 3, d2, dr1, dr2)
mt(m1, m2, m3)

3(2, d3, dr2)
b3(2, d3, dr2)

mb3(d3)
Ft3(2, d3, dr2)

SS1 (beam 1, rod 1) SS2 (beam 2, rod 2) SS3 (beam 3)

1
m1

2

2

3
m3

Figure 4: Suggested partitioning of the three-beam anchor design problem

Table 2: Anchor design problem variable designations

SS1 SS2 SS3

y21 = [δ1, m1]T y21 = [δ1, m1]T y32 = δ2
y12 = δ2 y23 = [δ3, m3]T y23 = [δ3, m3]T

x`1 = d1 y12 = δ2 x`3 = d3
xs1 = dr1 y32 = δ2 xs3 = dr2

x`2 = d2
xs2 = [dr1, dr2]T

Table 3: Design variable and parameter values for anchor problem analysis

design variable value units parameter value units
d1 0.05 meters F1 1000 Newtons
d2 0.05 meters L 1.000 meters
d3 0.05 meters lr1 1.000 meters
dr1 0.005 meters lr2 1.000 meters
dr2 0.005 meters E 70 GPa

ρ 2700 kg/meter3

Stress, mass and transmitted force limits were set to σallow = 127 MPa, mallow = 7 kg, and Ftallow = 400 N . A
baseline solution to Equation (4) was found using standard optimization, i.e., performing a complete analysis at every
optimization iteration. Using the parameter values and the starting design point from Table 3, the solution was found to
be x∗ = [d1 d2 d3 dr1 dr2]

T = [.035 .035 .029 .005 .003]T. The minimum deflection at beam 1 was δ∗1 = 27.0 millimeters.
Increasing d1 or d2 would have violated the corresponding transmitted force constraint. The mass constraint was also
active, but no stress constraints were active. If the applied force F1 was instead less than twice the transmitted force
limit, zero mass would be allocated to the third beam. Additional beams are required only if the existing beams cannot
distribute the force well enough to prevent failure of the foundation. It was observed that three local optima exist.
Which optimum is found depends on the starting point. The design point presented above corresponds to the global
optimum.

6.2 CO Implementation
This section presents the CO formulation of the anchor design problem and the corresponding results. The partitioning
scheme described in the previous section is utilized. Each subspace is given the required system targets ẑi by the system
optimizer, and returns to the system optimizer the minimum deviation from the system targets (f∗i) with respect to
local design variables and input coupling variables. Subspace 1 also returns the system objective function fs = δ1. Each
subspace is responsible to satisfy its own local bending and axial stress constraints (g1i and g2i respectively), as well as
its maximum transmitted force constraint (g4i). Subspace 2 also works to satisfy the mass constraint g3. The system
and subspace targets are defined below, followed by the CO formulation of the anchor problem.

6

ẑ = [xs1, xT
s2, xs3, y12, yT

21, yT
23, y32]

T, ẑ1 = [xs1, y12, yT
21]

T, ẑ2 = [xT
s2, y12, yT

21, yT
23 y32]

T, ẑ3 = [xs3, yT
23, y32]

T

System Optimizer

min
ẑ

fs(ẑ) (8)

subject to f∗(ẑ) = 0

Subspace 1 Optimizer

min
x`1,y1j

f1(x`1, y1j) = ||z1 − ẑ1||
2
2 (9)

subject to g11(x`1, y1j) ≤ 0

g21(x`1, y1j) ≤ 0

g41(x`1, y1j) ≤ 0

Subspace 2 Optimizer

min
x`2,y2j

f2(x`2, y2j) = ||z2 − ẑ2||
2
2 (10)

subject to g12(x`2, y2j) ≤ 0

g22(x`2, y2j) ≤ 0

g42(x`2, y2j) ≤ 0

g3(x`2, y2j) ≤ 0

Subspace 3 Optimizer

min
x`3,y3j

f3(x`3, y3j) = ||z3 − ẑ3||
2
2 (11)

subject to g13(x`3, y3j) ≤ 0

g43(x`3, y3j) ≤ 0

The same parameters and starting point were used as in the baseline solution, and all values were scaled appropriately.
The resulting solution, x∗ = [d1 d2 d3 dr1 dr2]

T = [.033 .025 .029 .007 .008]T with an objective value of δ1 = 42.0
millimeters, is relatively close to the solution, considering the expected numerical accuracy for algorithm parameters
used. Improved accuracy can be obtained by tightening convergence tolerances at the cost of increased computation
time. To overcome problems meeting KKT conditions at convergence, the SQP constraint tolerances were loosened to
10−4. The necessity of this relaxation places a limitation on the attainable accuracy using the basic CO formulation.

6.3 ATC Implementation
To effectively demonstrate distinctions between CO and ATC, we will use the exact partitioning scheme from the CO
implementation, illustrated in Figure 4. In the CO case we had one option for this partitioning—all subspaces existed
at the lower of the two levels in the architecture. ATC allows for multiple hierarchical configurations. We can choose a
three level hierarchy with either subspace 1 or 3 at the top level, or a two level hierarchy with subspace 2 chosen as the
top level, and the remaining subspaces at the lower level. We choose the latter for this implementation.

To begin creating the ATC formulation, we first identify which values are shared between the top level and the
lower level. Subspace 2 (top level, element A) shares dr1, δ1, δ2, and m1 with subspace 1 (bottom level, element B),
and shares dr2, δ2, δ3, and m3 with subspace 3 (bottom level, element C). Using ATC terminology, dr1 and dr2 are
linking variables, and the other shared values are responses. Recall that according to MDO terminology these values are
shared variables and coupling variables, respectively. We create copies of all pertinent shared values in each element,
and penalties for inconsistencies in these shared values. Each element retains local design constraints, and is optimized
with respect to local variables and any input shared values. The top level target for the system objective function δ1

in element A is set as δ∗1 , the baseline solution, ensuring target attainability. It is important to emphasize that a priori
knowledge of δ∗1 is not required for solution via ATC, but facilitates efficiency. The fully expanded ATC formulation,
without weights, is presented in Equations (12)–(14). ATC indices are enclosed in parentheses for clarity.

Problem P1A, Element A

min
x̄1A=[d2,δ1,δ3,m1,m3]T,y1

2B
=dr1,y1

2C
=dr2

(
δ
(1)
1(1A) − δ∗1

)2
+

(
d
(1)
r1(2B) − d

(2)
r1(2B)

)2
+

(
d
(1)
r2(2C) − d

(2)
r2(2C)

)2
(12)

+
(

δ
(1)
1(2B) − δ

(2)
1(2B)

)2
+

(
δ
(1)
2(1B) − δ

(2)
2(1B)

)2
+

(
δ
(1)
2(1C) − δ

(2)
2(1C)

)2

+
(

δ
(1)
3(2C) − δ

(2)
3(2C)

)2
+

(
m

(1)
1(2B) − m

(2)
1(2B)

)2
+

(
m

(1)
3(2C) − m

(2)
3(2C)

)2

subject to g12(x̄1A) ≤ 0

g22(x̄1A) ≤ 0

g42(x̄1A) ≤ 0

g3(x̄1A) ≤ 0

Problem P2B, Element B

min
x̄2B=[d1,dr1,δ2]T

(
d
(1)
r1(2B) − d

(2)
r1(2B)

)2
+

(
δ
(1)
1(2B) − δ

(2)
1(2B)

)2
(13)

+
(

δ
(1)
2(1A) − δ

(2)
2(1A)

)2
+

(
m

(1)
1(2B) − m

(2)
1(2B)

)2

subject to g11(x̄2B) ≤ 0

g21(x̄2B) ≤ 0

g41(x̄2B) ≤ 0

Problem P2C , Element C

min
x̄2C=[d3,dr2,δ2]T

(
d
(1)
r2(2C) − d

(2)
r2(2C)

)2
+

(
δ
(1)
2(1A) − δ

(2)
2(1A)

)2
(14)

+
(

δ
(1)
3(2C) − δ

(2)
3(2C)

)2
+

(
m

(1)
3(2C) − m

(2)
3(2C)

)2

subject to g13(x̄2C) ≤ 0

g43(x̄2C) ≤ 0

Again the parameters from Table 3 were used, and each scaled penalty term was given a weight of 10. Convergence
criteria required that the objective function from problem P1A (dominated by penalty terms) stopped changing within
a tolerance of 0.001. The resulting solution was x∗ = [d1 d2 d3 dr1 dr2]

T = [.040 .030 .026 .006 .003]T with an objective
value of δ1 = 25.4 millimeters, also relatively close to the baseline solution. Tighter convergence criteria would effect a
better result, at the expense of additional ATC iterations.

7

7 Example Problem 2

This section introduces an example problem that can be partitioned first by object, and then by discipline, in order to
illustrate nested ATC-MDO, a newly developed formulation, and to elucidate the unique strengths of ATC and CO. A
brief conceptual description of the design problem is provided, followed by the formulation for nesting CO within ATC.

7.1 Electric Water Pump Design Problem
Consider a sump pump used to remove water from a basement where an electric motor drives a centrifugal pump via a
v-belt. The sump pump must supply a minimum required pressure head and volumetric flow rate, while occupying no
more than a prescribed geometric space and avoiding failure of the belt. The design objective is to minimize electrical
power requirements. The system analysis may be separated into two objects—motor and pump—and the motor analysis
can be separated into two disciplines—electromechanical and thermal.

The system analysis depends on functions supplied by the motor and pump simulations, represented by surrogate
models. The motor model predicts the torque-speed curve and electrical power requirements for a given motor design.
Within the motor model the electromechanical analysis calculates the motor current I, torque τm, and electric input
power Pe at k1 distinct rotational speeds ω, given values for geometric motor design variables xm and the system tem-
perature T = [Tω1, Tω2 . . . Tωk1]

T at each rotational speed, evaluated by the thermal discipline. The thermal discipline
requires values for xm and I (the current for each rotational speed) in order to predict T. Feedback coupling exists
between these two disciplines due to the two-way communication of I and T. Intuitively, the coupling exists because
an increase in current results in higher temperatures and resistivity, which in turn impacts motor current. The coupled
analysis of these two disciplines can be performed using fixed point iteration [3]. The resulting k1 values of τm are used
to construct a linear approximation for τm(ω). The coefficients for this surrogate model (cm) are communicated to the
system analysis.

The centrifugal pump model predicts the volumetric flow rate Q, output pressure H, and the required drive torque τp

for a given pump design xm and rotational speed. These responses are evaluated at k2 distinct rotational speeds, which
are then used to create polynomial approximations of Q(ω), H(ω), and τp(ω). Again, the corresponding coefficients (cp)
are provided to the system analysis.

The v-belt couples the motor and pump, and provides a means of adjusting the available motor torque curve. Figure
5 illustrates how a belt speed ratio of 1.8 modifies a motor torque curve. The design problem requires quantification of
the maximum flow rate, which can be determined by finding the maximum speed ωmax the motor is capable of driving
the pump at, which is located where the pump torque curve and the modified motor torque curve intersect. Since the
belt integrates the system, it is natural to incorporate the belt analysis with the system analysis. The belt analysis
considers mechanical efficiency and mechanical advantage to generate a modified τm(ω) curve, and also evaluates stress
in the belt to predict failure.

In summary, motor design variables are provided to the electromechanical and thermal disciplines. Fixed point
iteration is used to evaluate the motor performance, and the coefficients representing τm(ω) are supplied to the system
analysis. The pump analysis finds the flow rate, required torque, and pressure for given values of the pump design
variables, and the corresponding polynomial coefficients are passed to the system analysis. The system analysis uses the
surrogate performance curves and the belt design variable and analysis to determine ωmax and the corresponding values
for Pe (derived from τm(ω)), H, and Q.

The electric water pump design problem is formally presented in Equation (15). The complete design vector is
x = [xT

p ,xT
m, xb]

T. The first four constraints have already been described. The last two constraints require that the wire
windings do not interfere with the motor poles and that the inner pump radius is smaller than the outer radius.

0 100 200 300 400 500 600
0

0.5

1

1.5

2

2.5

3

O
ut

pu
t T

or
qu

e
(N

−
m

)

Rotational Speed (rad/sec)

Motor Curve
Motor Curve with Belt Adjustment
Pump Curve

Figure 5: Surrogate torque curves for motor, motor with belt
adjustment, and pump

min
x

Pe (15)

subject to g1(x) = Qmin −Q ≤ 0

g2(x) = σ − σmax ≤ 0

g3(x) = Hmin −H ≤ 0

g4(x) = V − Vmax ≤ 0

g5(x) = (Do + d)−D ≤ 0

g6(x) = r1 − r2 ≤ 0

8

7.2 Nested ATC-MDO Implementation
Many design organizations and analysis structures posses a matrix structure, i.e., aligned by both discipline and object [6].
This allows for both depth of knowledge or analysis, and responsiveness to requirements based on an object perspective.
A new formulation exploits the natural strengths of ATC and CO by combining them in a nested formulation that
maps directly to a matrix organization or design problem. ATC is used to coordinate the design of the overall system,
and an MDO method (CO in this case) is used to solve any tightly coupled design problems within ATC elements. In
example problem 2, the motor subsystem is further decomposed into two disciplines. All design variables are shared
between them, resulting in a particularly simple nested ATC-CO formulation, shown in Equations (16)–(20). Problems
P1A, P2B , and P2C are coordinated and solved as usual for ATC, with the exception that for every iteration of the
P2B optimization, both SS1 and SS2 problems must be completed, supplying updated values of f∗(ẑ) and fs(ẑ) to
P2B . Surrogate models are fit in the appropriate subspaces, allowing evaluation of fs(ẑ) at the subspace level. An open
question is whether nested ATC-MDO has advantages for matrix decomposed problems over application of the extended
ATC formulation that allows for feedback coupling. Results and further investigation of nested ATC-MDO are part of
future work.

Problem P1A

min
x̄1A=[xT

b
,cT

m,cT
p]T

(
P

(1)

e(1A) − 0
)2

+
∥∥∥c(1)

m(2B) − c
(2)

m(2B)

∥∥∥2

2
+

∥∥∥c(1)

p(2B) − c
(2)

p(2B)

∥∥∥2

2
(16)

subject to gi(x̄1A) ≤ 0 i = 1 . . . 3

Problem P2B, Motor Subsystem

min
ẑ=[xT

m,IT,TT]T
fs(ẑ) =

∥∥∥c(1)

m(2B) − c
(2)

m(2B)

∥∥∥2

2
(17)

subject to f∗(ẑ) = 0

Problem P2C , Pump Subsystem

min
x̄2C=xp

∥∥∥c(1)

p(2B) − c
(2)

p(2B)

∥∥∥2

2
(18)

SS1, Electromechanical Subspace

min
xm,T

‖z− ẑ‖2
2 (19)

subject to gi(xm,T) ≤ 0 i = 4 . . . 6

where z =
[
xT

m, I(xm,T)T,TT
]T

SS2, Thermal Subspace

min
xm,I

‖z− ẑ‖2
2 (20)

subject to gi(xm, I) ≤ 0 i = 4 . . . 6

where z =
[
xT

m, IT,T(xm,T)T
]T

8 Concluding Remarks

The mathematical formulations of ATC and CO appear to be similar, particularly when considering MCO and the ATC
penalty formulation. Both use targets and penalty functions to enforce system consistency, and correlation exists between
ATC weighting update methods and the MCO smoothing algorithm. Nevertheless, four key distinctions exist: solution
process, targets and communication patterns, intended structure of corresponding design problems, and paradigm.

It was illustrated that CO and ATC utilize nested optimization and coordination solution processes, respectively. The
CO system optimizer is executed once, and performs the system coordination. Because subspace convergence is required
at every iteration, this single execution can be time consuming. ATC utilizes an external coordination algorithm, and
the top–most optimization problem is executed several times. However, each individual execution is independent of
other elements, resulting in relatively fast solution time for the top element. Another process difference is that CO relies
on the optimization algorithm to tolerate compatibility constraint violation before convergence, while ATC (whether in
its original form or penalty formulation) explicitly relaxes compatibility constraints and does not require the algorithm
to tolerate compatibility constraint violation.

Targets are set for all shared and coupling variables in each methodology, but where in the structure and when in
the process these targets are set differs. The CO system optimizer sets targets for all shared and input and output
coupling variables for each subspace, and subspaces set no targets for the system optimizer (they cannot, due to the
nested optimization process). An ATC parent element sets targets for all shared and output coupling variables for each
of its child elements, while the child elements set targets for coupling variables input to the child element from its parent
element, and for any coupling variables and responses input to the child element from below. Child elements can set
targets for parent elements because of the nested coordination process structure. Another important communication
difference concerns the values passed up to the top level. In CO the subspace optimizers return their optimal objective
function values and the system objective. In contrast, ATC child elements return only optimal decision variable values
and pertinent analysis responses.

CO is intended for integration and optimization of discipline-based analyses with a non-hierarchical structure and a
column based functional dependency table. ATC is intended for solving hierarchical target setting problems, normally

9

partitioned by object, with a hybrid functional dependency table. Either method can be manipulated to fit unintended
problem types, but the resulting formulation may exhibit undesirable traits. For example, applying CO to a problem with
system analysis requires the analysis to be brought to the subspace level, increasing the communication requirements
over an approach that retains analysis at the top level. The second example problem demonstrated how the natural
strengths of each formulation may be exploited to approach a design problem in a complementary manner.

The CO and ATC paradigms for problem solving are substantially different—practitioners take on contrasting
perspectives when formulating problems. The needs a method’s development was based upon colors its nature. CO
focuses on integrating non-hierarchical discipline-based analyses, and a user thinks in terms of IO relations between
disciplines on the same level. ATC is centered on product development problems. The practitioner considers how a
problem can be conceived as a hierarchy of object-based elements, and thinks in terms of a system analysis integrating
subsystem analyses. Each approach is naturally suited to certain classes of problems. Understanding across these
paradigms and flexibility to use each approach where most appropriate will result in more successful implementations
of system optimization methods.

9 Acknowledgements

This work was partially supported by a US NSF Graduate Research Fellowship and Grant DMI0503737, and by the
Automotive Research Center, a US Army Center of Excellence at the University of Michigan. Any opinions expressed
in this publication are only those of the authors. Special thanks are given to Brian Roth and Ilan Kroo of Stanford for
their collaborative efforts toward this work.

10 References

[1] American Institute for Aeronautics and Astronautics Inc. (AIAA). Current state of the art in multidisciplinary
design optimization. Technical report, MDO Technical Committee, January 1991.

[2] E.J. Cramer, J.E. Dennis Jr., P.D. Frank, R.M. Lewis, and G.R. Shubin. Problem formulation for multidisciplinary
optimization. SIAM Journal of Optimization, 4:754–776, 1994.

[3] J.T. Allison, M. Kokkolaras, and P.Y. Papalambros. On the impact of coupling strength on complex system
optimization for single-level formulations. In ASME Design Engineering Technical Conference DETC2005-84790,
Long Beach CA, September 24–28 2005. To appear.

[4] R.D. Braun. Collaborative Optimization: An Architecture For Large-Scale Distributed Design. PhD thesis, Stanford
University, April 1996.

[5] N. Michelena, H.M. Kim, and P.Y. Papalambros. A system partitioning and optimization approach to target
cascading. In Proceedings of the 12th International Conference on Engineering Design, Munich, Germany, 1999.

[6] R.L. Daft. Organization Theory and Design. Thomson South-Western, Ohio, eigth edition, 2004.

[7] L. Chen, Z. Ding, and S. Li. A formal two-phase method for decomposition of design problems. Journal of
Mechanical Design, 127:184–195, March 2005.

[8] N.M. Alexandrov and R.M. Lewis. Analytical and computational aspects of collaborative optimization and multi-
disciplinary design. AIAA Journal, 40(2):301–309, February 2002.

[9] A.V. DeMiguel and W. Murray. An analysis of collaborative optimization methods. In 8th
AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, Long Beach, CA, Sept.
6-8 2000.

[10] H.M. Kim. Target Cascading in Optimal System Design. PhD thesis, University of Michigan, 2001.

[11] P.Y. Papalambros and D.J. Wilde. Principles of Optimal Design: Modeling and Computation. Cambridge University
Press, New York, second edition, 2000.

[12] J.J. Michalek and P.Y. Papalambros. An efficient weighting update method to achieve acceptable consistency
deviation in analytical target cascading. Journal of Mechanical Design, 127(2):206–214, 2005.

[13] J.J. Michalek and P.Y. Papalambros. Technical brief: Weights, norms, and notation in analytical target cascading.
Journal of Mechanical Design, 127(3):499–501, 2005.

[14] S. Tosserams, L.F.P. Etman, P.Y. Papalambros, and J.E. Rooda. Augmented lagrangian relaxation for analytical
target cascading. In 6th World Congress on Structural and Multidisciplinary Optimization, May 30–June 3 2005.

[15] N.F. Michelena, H.A. Park, and P.Y. Papalambros. Convergence properties of analytical target cascading. AIAA
Journal, 41(5):897–905, 2003.

[16] J.T. Allison. Complex system optimization: A review of analytical target cascading, collaborative optimization,
and other formulations. Master’s thesis, Department of Mechanical Engineering, University of Michigan, 2004.

10

