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Abstract. We propose two different improvements of reduced basis (RB)
methods to enable the efficient and accurate evaluation of an output functional
based on the numerical solution of parametrized partial differential equations
with a possibly high-dimensional parameter space. The element that combines
these two techniques is that they both utilize ANOVA expansions to achieve
the improvements.

The first method is a three-step RB-ANOVA-RB method, aiming at using
a combination of reduced basis methods and ANOVA expansions to effectively
compress the parameter space without impact the accuracy of the output of
interest. This is achieved by first building a low-accuracy reduced model for
the full high-dimensional parametric problem. This model is used to recover
an approximate ANOVA expansion for the output functional at marginal cost,
allowing the estimation of the sensitivity of the output functional to parameter
variation and enabling a subsequent compression of the parameter space. A new
accurate reduced model can then be constructed for the compressed parametric
problem at a substantially lower computational cost than for the full problem.

In the second approach we explore the ANOVA expansion to drive an
hp reduced basis method. This is initiated by setting up a maximum number
of reduced bases that can be afforded during the online stage. If the offline
greedy procedure for a given parameter domain converges with equal or less
than the maximum bases, the offline algorithm stops. Otherwise, an approxi-
mate ANOVA expansion is performed for the output functional. The parameter
domain is decomposed into several subdomains where the most important pa-
rameters according to the ANOVA expansion are split. The offline greedy algo-
rithms are performed in these parameter subdomains. The algorithm is applied
recursively until the offline greedy algorithms converge across all parameter
subdomains.

We demonstrate the accuracy, efficiency, and generality of these two ap-
proaches through a number of test cases.
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1 Introduction

In recent years, there have been a growing interest in the efficient and accurate so-
lution of parametrized problems often with a high-dimensional parameter spaces.
Applications can be found in areas such as optimization, design, control, uncer-
tainty quantification and so on. While there are many aspects of such problems, we
shall here focus on the development of methods of reduced complexity to rapidly
evaluate an output of interest over variations in parameter space. If the parameter
space is indeed high-dimensional it is clear that the curse of dimensionality is a
substantial challenge in such situations and ideas to increase efficiency is required.

Among several alternatives, we shall in this work focus on the reduced basis
(RB) method as an efficient method to address parametric problems in many-
query and real-time scenarios, see e.g. [14,15,12,13]. However, the ideas presented
here may well apply to other situations and techniques also.

We use µ = (µ(1), · · · , µ(p)) to denote a parameter vector in some parameter
domain D ⊂ R

p, where µ(i) is the (i)-th component of the parameter vector µ.
The fundamental problem is the following: Let X be a suited functional space. For
any parameter vector µ ∈ D ⊂ R

p, we wish to evaluate an output functional of
interests

s(µ) = ℓ(u(µ);µ), (1.1)

where u(µ) ∈ X is the solution of

a(u(µ), v;µ) = f(v;µ), ∀v ∈ X (1.2)

for some parameter dependent bilinear and linear forms a and f .
In [9], we propose an efficient greedy algorithm to reduce the overall cost of

the construction of the RB for the many parameter without impacting the overall
accuracy of the model. However, when the number of parameters p is large, many
basis elements are typically required to fully resolve the problem, making the
overall computational cost, both online and offline, significant or perhaps even
prohibitive.

In this paper, we consider two different improvements of reduced basis (RB)
methods to enable the efficient and accurate evaluation of an output functional
based on the numerical solution of parametrized partial differential equations with
a possibly high-dimensional parameter space. The element that combines these two
techniques is that they both utilize ANOVA expansions to achieve the improve-
ments.

For the first approach, we observe that for many complex applications one of-
ten finds that only a small number of parameters are important for evaluation of
the output functional while the remaining parameters only have limited impact
on the output of interests. We shall explore the ability of the ANOVA expansion
to systematically determine the relative importance of parameters by evaluating
the sensitivity of an output of interest on each parameter. The value of this is
discussed in [6], where a two step method is developed for ordinary differential
equations with many parameters. First, the ANOVA expansion is computed based
on coarse approximation of the full parameter problem and the parameter space
is subsequently compressed through the sensitivity analysis, allowing for the de-
velopment of a model based only on the important parameters without impacting
the predictive accuracy of the model.
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Seeking to follow a similar approach, we need evaluate the output functional
on many quadrature points to compute the integrals in the ANOVA expansions
over the parameter space. Traditionally, this is done by using standard discretiza-
tion methods (for example finite element methods) to solve the problem over a
large sample in parameter space. Thus, it quickly becomes costly to compute
the ANOVA expansion. To overcome this bottleneck, we propose in this paper a
new three step method, an RB-ANOVA-RB method. First, we build a relatively
inaccurate RB model for the full parameter problem, thus introducing a cheap
input-to-output evaluation. Based on this RB model, we can now compute an
ANOVA expansion of the output of interest at little cost. This expansion may not
be particularly accurate, but the accuracy suffices to analyze the sensitivity of all
parameters and enables us to retain the important parameters, and freeze those
of less relative importance. For the reduced parameter problem, we then build a
new reduced model at limited cost and both the offline and the online costs of the
new reduced RB model will be cheaper.

The second approach is an hp reduced basis method. The goal in this approach
is to have a decomposition of the original parameter domain, such that only a
fixed number of reduced bases are needed in each domain to achieve the prescribed
tolerance. Thus, the online cost of evaluation of a functional is under control, even
for large parameter domains.

There are several hp types of methods available. The algorithm proposed in
[2] first does an ”h” decomposition of the parameter domain into subdomains,
and then reduced bases are build on those subdomains. The shortcoming of the
method is that since the ”h” and ”p” steps are separate and performed only once,
there are cases where some subdomains are not small enough and many reduced
bases are still needed, or subdomains may be too small, requiring that only a small
number of basis elements are needed. Both cases are clearly sub-optimal. Another
hp approached is introduced for empirical interpolation methods, see [4,3] . The
idea is that if the method does not converges in N bases, the parameter domain is
decomposed into 2p subdomains, and a new basis is build in these 2p subdomains.
The algorithm is performed recursively. The good property of the algorithm is that
at termination, each subdomain will need less than N bases. The shortcoming of
the algorithm is that when p is relatively large, 2p will be a large number and
hence computationally expensive while including many unnecessary cases.

Like the hp algorithm for the empirical interpolation method [4,3] , our hp

reduced basis method first defines a maximum number of reduced bases that is
affordable during the online stage. If the offline greedy procedure for a given pa-
rameter domain converges with equal or less than the maximum bases, the offline
algorithm terminates. Otherwise, rather than decomposing the domain into 2p sub-
domains, we only decompose the parameter domain into 2K subdomains, where
K ≤ p is a small number such that 2K subdomains are not too large. An approxi-
mate ANOVA expansion is developed for the output functional to determine the K

most important parameter directions. The parameter domain is decomposed into
several subdomains where the most important K parameter directions are split.
The offline greedy algorithms are performed in those parameter subdomains and
the algorithm is implemented recursively until the offline greedy algorithm con-
verges in all parameter subdomains . In our new hp approach, the computational
cost of the online step is manageable compared to the hp algorithm developed in
[2].
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The rest of paper is organized as follows. In Section 2, we offer a brief introduc-
tion to reduced basis methods and Section 3 introduces the ANOVA expansions
and recalls the Smolyak sparse grid quadrature, required to evaluate the numeri-
cal integrals in the ANOVA expansions. In Section 4, the three step RB-ANOVA-
RB method is introduced and in Section 5 we presents numerical experiments to
demonstrate the efficiency and robustness of this approach. The ANOVA-based hp

reduced method is introduced in Section 6 with numerical experiments presented
in Section 7. Some concluding remarks are offered in Section 8.

2 Reduced basis methods

Let us first give a brief introduction to the reduced basis method to offer context
for the subsequent discussion. For simplicity, we only discuss RBM for affine elliptic
PDEs here; for non-affine and other types of PDEs, see e.g. [13] and [14].

Assume that the parameter dependent problem (1.2) satisfies an affine assump-
tion, i.e.,

a(u, v;µ) =
PQa

i=1 Θa
i (µ)ai(u, v), f(v;µ) =

PQf

i=1 Θ
f
i (µ)fi(v),

and ℓ(v;µ) =
PQℓ

i=1 Θℓ
i (µ)ℓi(v),

(2.3)

where Θa
i , Θ

f
i , and Θℓ

i are µ-dependent functions, and ai, fi, ℓi are µ-independent
forms.

Let Xfe be a finite element discretization subspace of X. For a fixed parameter
µ ∈ D, let ufe(µ) ∈ Xfe be the numerical solution of the following Galerkin
problem,

a(ufe(µ), v;µ) = f(v;µ), ∀v ∈ X
fe

, (2.4)

and let sfe(µ) = ℓ(ufe(µ);µ) be the corresponding output of interest.
The approximation problem (2.4) is assumed to be well-posed such that the

inf-sup stability is satisfied for µ-dependent positive constant βfe(µ):

β
fe(µ) = inf

u∈Xfe
sup

v∈Xfe

a(u, v;µ)

‖u‖Xfe‖v‖Xfe

, (2.5)

where ‖ · ‖Xfe is the norm associated with the space Xfe, respectively.
For a collection of N parameters SN = {µ1, · · · , µN} in the parameter domain

D ⊂ R
p, let WN = {ufe(µ1), · · · , ufe(µN )}, where ufe(µi) is the numerical solution

of problem (2.4) for the parameter values µi, for 1 ≤ i ≤ N . Define the reduced
basis space as Xrb

N = span{WN}. The reduced basis approximation is then defined
as: For a µ ∈ D, find urb

N (µ) ∈ Xrb
N such that

a(urb
N (µ), v;µ) = f(v;µ), ∀v ∈ X

rb
N , (2.6)

with the corresponding value of the output functional

s
rb
N (µ) = ℓ(urb

N (µ);µ). (2.7)

Due to the affine assumption (2.3), an efficient offline-online strategy is immedi-
ately possible. For an RB space Xrb

N with N bases we precompute the matrices
and vectors related to forms ai, fi, and ℓi, for i = 1, · · · , N during the offline step.
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During the online step, the matrices and vectors in the RB formulation (2.6) are
constructed, and the resulting small RB problem is solved to evaluate the output
functional (2.7). The amount of work of the online step is independent of the de-
grees of freedom of Xfe, and depends only on the size of the reduced basis N and
Qa, Qf , Qℓ. The operation count for an online evaluation of the output functional
is

O(QaN
2) + O(N3) + O(QfN) + O(QℓN). (2.8)

Thus, the RBM provides a path towards a cheap evaluation of the output func-
tional s(µ) for an input µ with the accuracy determined by the quality of the
reduced basis.

To build the parameter set SN , the corresponding basis set WN and the reduced
basis space Xrb

N , a greedy algorithm is used with the greedy approach based on an a
posteriori error estimator. Let us define the error function e(µ) = urb

N (µ)−ufe(µ) ∈
Xfe as the difference between the reduced basis (RB) solution urb

N (µ) and the finite
element solution ufe(µ). The residual r(v;µ) ∈ (Xfe)′ is defined as

r(v;µ) := f(v;µ) − a(urb
N , v;µ), ∀v ∈ X

fe
, (2.9)

and its norm as

‖r(·;µ)‖(Xfe)′ := sup
v∈Xfe

r(v;µ)

‖v‖Xfe

. (2.10)

We then define the estimator for the output as

η(µ, WN ) :=
‖r(·;µ)‖2

(Xfe)′

βfe(µ)
. (2.11)

Other types of error estimators can also be used, see e.g., [15]. A similar offline-
online procedure can be employed for the computation of the error estimator.

For a train set Ξtrain ⊂ D, consisting of a fine discretization of D of finite
cardinality, let us suppose we already have SN and the corresponding WN and
Xrb

N . We choose

µ
N+1 := argmax

µ∈Ξtrain
η(µ;WN ), (2.12)

to be the next sample point and let SN+1 := SN ∪ {µN+1}. This allows building
the corresponding spaces WN+1 and Xrb

N+1. This procedure is repeated until N is
large enough that maxµ∈Ξtrain

η(µ;WN ) is less than a prescribed tolerance. For
problems with high dimensional parameter spaces, one can consider the newly
developed Adaptively Enriching Greedy Algorithm (AEGA) [9] which adaptively
removes and enriches samples in the train set to control the computational cost
at each searching step (2.12).

The AEGA addresses the problem of the richness of the train set for the prob-
lems with high dimensional parameter spaces, ensuring that finding each new
reduced basis is under control even as the number of parameter is very large.
However, for a problem with many parameters, one usually finds that many bases
are required to ensure that the estimated error is less than a small tolerance.
Furthermore, for non-affine problems, Qa, Qf , and Qℓ may be sizable, directly
impacting the online cost of the evaluation of the output of interest.
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3 The ANOVA expansion

In this section, we outline the Lebeque ANOVA expansion, and sparse Smolyak
quadratures used for the computation of the ANOVA expansion. The presentation
here generally follows [6,5].

Without loss of generality, we assume the parametric domain to be D = [0, 1]p,
and the output of interests s(µ) ∈ L2(D). Let P = {1, · · · , p} and let t ⊂ P be
any subset of the coordinate indices and t be its cardinality. The |t|-vector that
contains the components of the vector µ ∈ [0, 1]|t| indexed by t is denoted by µt.
Let A|t| denote the |t|-dimensional unit hypercube which is the projection of the
p-dimensional unit hypercube Ap onto the hypercube indexed by t. Then s(µ) can
be expressed exactly as an ANOVA expansion as [18]:

s(µ) = s0 +
X

t⊂P

st(µt), (3.13)

where the term st(µt) is defined recursively by

st(µt) =

Z

Ap−|t|
s(µ)dµP\t −

X

w⊂t

uw(µw) − s0, (3.14)

with

s0 =

Z

Ap

s(µ)dµ and

Z

A0

s(µ)dµ
0 = s(µ). (3.15)

Let the variances Vt(s) and the total variance V (s) be

Vt(s) =

Z

Ap

(st(µt))
2
dµ and V (s) =

X

|t|>0

Vt(s) =

Z

Ap

(s(µ))2dµ − s
2
0. (3.16)

The value Vt(s) can be viewed as a direct measure of the variability of s restricted
to a given set t. We then define the sensitivity measure

S(t) =
Vt

V
, (3.17)

where Vt and V are defined in (3.16).

Since we only need a rough sense of the sensitivity, we can measure the sensi-
tivity only by its first level of expansion. Let

slin(µ) = s0 +
p

X

i=1

si(µi), (3.18)

with si(µi) defined in (3.14). We then define Vi(s) as in (3.16): Define

Vcoarse =
p

X

i=1

Vi and Scoarse(i) =
Vi

Vcoarse
, ∀1 ≤ i ≤ p. (3.19)

Then Scoarse is a very coarse estimation of the sensitivity of the parameters.
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3.1 Sparse Smolyak grids quadrature

To effectively compute the high-dimensional integrals (3.14) and (3.15) we utilize
sparse grid methods based on the Smolyak construction [16]. This allows for the
construction of sparse multivariate quadrature formulas based on sparse tensor
products of one dimensional quadrature formulas.

Consider the numerical integration of a function s(µ) over a p-dimensional unit
hypercube Ap = [0, 1]p.

I[s] :=

Z

Ap

s(µ)dµ. (3.20)

A one-dimensional quadrature formula for a univariate function s is chosen as

Q
1
l s =

n1

l
X

i=1

ωis(µ
1
i ), (3.21)

Define
∆

1
i s = (Q1

i − Q
1
i−1)s for i ∈ N+,

with Q1
0s = 0. The Smolyak algorithm for the p-dimensional quadrature formula

is given by

Q
p
l
s =

X

|k|1≤l+p−1

“

∆
1
k1

⊗ · · · ⊗ ∆
1
kp

”

s for l ∈ N and k = (k1, · · · , kp) ∈ N
p
.

(3.22)
An alternative formula to (3.22) is

Q
p
l
s =

X

1≤|k|≤l+p−1

(−1)l+p−|k|1−1

„

p − 1
|k|1 − l

«

“

Q
1
k1

⊗ · · · ⊗ Q
1
kp

”

s. (3.23)

If the one-dimensional quadrature nodes are nested, the sparse quadrature formu-
las inherit this property, yielding reduced computational cost. We use the Smolyak
construction based on the Gauss-Patterson rule which is indeed nested. As ad-
dressed recently by [7,11], this is the most efficient approach.

Remark 31 Other numerical quadrature for (3.14) and (3.15) can also be used, such

as Sobol’ approach [17], Stroud formula [19], or other sparse grid based quadratures [7].

4 The three-step RB-ANOVA-RB Method

Let us now combine the different elements discussed so far and introduce the
three-step RB-ANOVA-RB method to enable the efficient and accurate evaluation
of the output functional (1.1) for (1.2) in the case of a high-dimensional function,
enabled by a parametric compression through the ANOVA expansion.

In the first stage of this, we build a reduced model with a high tolerance in the
greedy approach for the full parametric problem. This yields a cheap but not very
accurate approach for evaluating the output functional s(µ) for any intput µ ∈ D.

In the second stage, we shall use the ANOVA expansion of the output functional
to identify important parameters through the sensitivity analysis. To motivate
this, let µ∗ = (µ1, · · · , µp) be a parameter vector in Ap with some parameters µi,
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i ∈ Q ⊂ {1, · · · , p} frozen. Let srb(µ∗) be a numerical approximation of s with a
partially fixed parameter µ∗. A simple triangle inequality shows that

|s(µ) − s
rb(µ∗)| ≤ |s(µ) − s(µ∗)| + |s(µ∗) − s

rb(µ∗)|. (4.24)

If we can guarantee the first term of the righthand side of this inequality to under
control, we only need to approximate the reduced parameter problem.

The goal of the second stage of the RB-ANOVA-RB algorithm is to identify
these (few) important parameters, and freeze the parameters of less importance.
For this we apply the approximate ANOVA expansion based on sparse grid quadra-
ture of the coarse reduced model computed during the first stage of the approach.

With the second step, we now have a rough estimate of the first term on the
righthand side of (4.24). The last stage is to build a new and accurate reduced
model for the reduced parameterized model.

As mentioned, there are several advantages associated with the reduced model
over the smaller parameter space. First, since a smaller number of parameters
makes the behavior of the solutions of the problem simpler, we generally need less
basis elements to reduce the error to below a certain tolerance. Secondly, a smaller
number of parameters makes the affine decomposition (see (2.3)) of a, f , and s

shorter, thus reducing both the offline and the online computational costs. This
is especially true for the non-affine problems, where the numbers Qa, Qf , and Qℓ

often are large if there is a large number of parameters.

5 Numerical Experiments for RB-ANOVA-RB method

In the following we demonstrate the application of the RB-ANOVA-RB approach
for two different problem types.

Thermal block problem

In the first experiment, we consider a thermal block problem [12], [15]. Let Ω =
(0, 1)2, and assume it is decomposed into 16 subdomains: Rk = ( i−1

4 , i
4 )×( j−1

4 , j
4 ),

for i = 1, 2, 3, 4, j = 1, 2, 3, 4, and k = 4(i − 1) + j. The problem is

8

>

>

<

>

>

:

−∇ · (α∇u) = 0 in Ω,

u = 0 on Γtop = {x ∈ (0, 1), y = 1},
α∇u · n = 0 on Γside = {x = 0 and x = 1, y ∈ (0, 1)},
α∇u · n = 1 on Γbase = {x ∈ (0, 1), y = 0},

(5.25)

where the diffusion constant α is assumed to be

α =



αk = 1002µk−1, x ∈ Rk, k = 1, 5, 9, 13,

αk = 1.12µk−1, x ∈ Rk, k = 2, 3, 4, 6, 7, 8, 10, 11, 12, 14, 15, 16.

where µ = (µ1, µ2, · · · , µ16) ∈ [0, 1]16. Define H1
D = {v ∈ H1 : v|Γtop

= 0}. The goal
is to evaluate the output functional

s(µ) =

Z

Γbase

u(µ)ds, (5.26)
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where the function u(µ) ∈ H1
D(Ω) is the solution of a variational problem for the

given µ ∈ D,
a(u, v;µ) = f(v) ∀v ∈ H

1
D(Ω). (5.27)

Here, the bilinear and linear forms are

a(u, v;µ) =
16

X

k=1

αk

Z

Rk

∇u · ∇vdx and f(v) =

Z

Γbase

ds. (5.28)

Let T be a uniform mesh on Ω with 80’401 of nodes (degrees of freedom), and
P1(K) be the space of linear polynomials on an element K ∈ T . Define our finite
element approximation space

X
fe = {v ∈ X : v|K ∈ P1(K), ∀K ∈ T }.

For a given µ, the finite element problem seeks ufe(µ) ∈ Xfe, such that

a(ufe(µ), v;µ) = f(v) v ∈ X
fe

. (5.29)

We use the following functional based relative error estimator,

η(µ;WN ) =
‖r(·;µ)‖2

X′

βh(µ)
, (5.30)

with the ‖v‖X =
q

R

Ω
|∇v|2dx, then βh(µ) = mink αk.

As the first stage of the RB-ANOVA-RB, a reduced basis algorithm is com-
puted for the full 16-parameter problem with the adaptively enriching greedy
algorithm [9] with the size of the train set to be 200, the tolerance to be 1 and
a 20.000-point safety check. We find that only 33 basis elements are needed to
reduced the error to less than 1.

We continue and compute the AVOVA expansion based on sparse Smolyak grid
quadratures as described in Section 3.1. The one-dimensional quadrature formula
is based on a 63 point Gauss-Patterson rule in [0, 1]. An ANOVA expansion shows
that D = 3.81, and St ≈ 0.99, with t = {1, 5, 9, 13}. Thus, µ1, µ5, µ9, and µ13 are
the 4 most important parameters and their variation reflects 99% of the variation in
the output of interest. Based on the setup of the problem, this is entirely expected.

For the third stage of the RB-ANOVA-RB algorithm, the reduced problem
only has 4 parameters with

a(u, v;µ) =
X

k∈{1,5,9,13}

αk

Z

Rk

uvds + arest(u, v), (5.31)

where

arest(u, v) =
X

k∈{2,3,4,6,7,8,11,12,14,15,16}

αk(µ∗
i )

Z

Rk

∇u∇vdx.

We build reduced bases for this 4-parameter problem with different tolerance.
To measure the error, we generate 100 random parametric vectors in the full 16-
parameter space. Output functionals for these 100 vectors are computed by finite
elements, denoted by s̄

fe
i , i = 1, · · · , 100. For different tolerances, the reduced

model are generated, and the output functionals are computed for these 100 vectors
by the reduced form (5.39), denoted by s̄rb. i = 1, · · · , 100.
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Let us denote the relative error

e
rel
i =

|s̄fe
i − s̄rb

i |

|s̄fe
i |

, i = 1, . . . , 100.

We shall compute the relative error in two norms.

emax = max
i∈{1,··· ,100}

e
rel
i and eave =

P100
i=1 erel

i

100
. (5.32)

The comparison of different tolerances are presented in Table 1. It is clear from
this that after having a sufficiently well resolved reduced model, the first term
in the righthand side of (4.24) is dominant. We need only around 20 elements to
reduce the relative error below 4%, and the affine length of a is only 5.

In practice, since it is relatively cheap to acquire a smaller tolerance for the
reduced parameter problem, we can over-compute a little to ensure the quality of
the reduced bases.

Table 1 Results of RB for the thermal block problem with different tolerances

tol Number of RB emax eave

100 16 5.091 × 10−2 7.732 × 10−3

10 21 3.912 × 10−2 7.177 × 10−3

1 24 3.900 × 10−2 7.192 × 10−3

10−1 30 3.893 × 10−2 7.190 × 10−3

10−2 32 3.892 × 10−2 7.190 × 10−3

Acoustic horn problem

As a second example, consider an acoustic horn problem with 8 parameters [20].

R

Fig. 1 The domain of the horn problem.
Fig. 2 The finite element mesh T of the horn
problem.
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2a 2b

l

c

Fig. 3 Geometry description of the domain.
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Fig. 4 Boundaries of the domain.

The acoustic field is described by time-harmonic Helmholtz equation

8

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

:

∆u + 4u = 0 in Ω,

(2i +
1

25
)u +

∂u

∂n
= 0 on Γout,

2iu +
∂u

∂n
= 4i on Γin,

iµju +
∂u

∂n
= 0 on Γj , j = 1, · · · , 8,

∂u

∂n
= 0 on other boundaries.

(5.33)

with parameters µ = (µ1, µ2, · · · , µ8) ∈ [0, 1]8. The geometry of the problem is
depicted in Figure 1 with terminology identified in Figures 3 and 4. We set R =
12.5, a = 0.5, b = 3, c = 0.1, d = 5, and l = 5.

The variational formulation of the problem is to find u ∈ H1(Ω) such that

a(u, v;µ) = 4i

Z

Γin

vds, ∀v ∈ H
1(Ω). (5.34)

The affine representation of a(u, v;µ) is

a(u, v;µ) =
8

X

i=1

µiai(u, v) + a9(u, v). (5.35)

where

ai(u, v) =

Z

Γi

uvds, for i = 1, · · · , 8, (5.36)

and

a9(u, v) = (∇u,∇v)Ω − 4(u, v)Ω + (2i +
1

25
)(u, v)Γout

+ 2i(u, v)Γin
. (5.37)

We choose the output of interest as

s(µ) = ℓ(u) = real(

Z

Γin

uds). (5.38)
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Let the finite element space be Xfe = {v ∈ H ‘(Ω) : v|K ∈ P1(K), ∀K ∈ T }.
The mesh T is illustrated in Figure 2 with the degrees of freedom of the finite
element grid being 14.438. Let rN be the vector representation of the residual
f(v) − a(urb

N , v;µ), ∀v ∈ Xfe. We use a simple residual error estimator in the
reduced basis, i.e.,

ηN = ‖rN‖ℓ2

with ‖ · ‖ℓ2 be the standard Euclidean ℓ2 norm.
A reduced model is computed for the full 8-parameter problem with the adap-

tively enriching greedy algorithm [9] using the size of the train set to be 500, the
tolerance to be 0.001 and a 5.000-point safety check. The analysis finds that only
31 reduced basis elements are required.

This is utilized to compute an AVOVA expansion based on sparse Smolyak grid
quadratures as described in Section 3.1. The one-dimensional quadrature formula
is based on a 63-point Gauss-Patterson in [0, 1]. The ANOVA expansion shows
that S3 = 0.4321, S5 = 0.4314, and S35 = 0.1256, and D = 3.08 × 10−4. Thus
S3 +S5 +S35 = 0.9891. The numbers are clearly not very accurate, since in theory,
S3 should equal S5 due to symmetry. However, this illustrates that the µ3 and µ5

are the most important parameters.
Finally, we perform the third step of the RB-ANOVA-RB algorithm. The new

problem now has only two parameters with

a(u, v;µ) = µ3

Z

Γ3

uvds + µ5

Z

Γ5

uvds + arest(u, v), (5.39)

where
arest(u, v) =

X

i∈{1,2,4,,6,7,8}

µ
∗
i ai(u, v) + a9(u, v)

with ai defined in (5.36) and (5.37).
We build a reduced model for the 2-parameter problem with different tolerance.

To quantify the error, we generate 100 random parameter vectors in the full 8-
parameter space. Output functionals for these 100 vectors are computed by finite
elements, denoted by s̄

fe
i , i = 1, · · · , 100. For different tolerances, reduced bases

are generated, and the output functionals are computed for these 100 vectors by
the reduced form (5.39), denoted by s̄rb. i = 1, · · · , 100. The error emax and eave

are defined same as those in (5.32).
The comparison for different tolerances are presented in Table 2. It is clear

from the table that with a sufficiently rich reduced model, the first term in the
righthand side of (4.24) is dominant. We need only around 10 basis elements to
reduce the relative error to near 1%, and the affine length of a is only 3.

Table 2 Results of reduced model for the horn problem with different tolerances

tol Number of RB emax eave

10−2 6 1.172 × 10−2 2.404 × 10−3

10−3 11 1.214 × 10−2 1.516 × 10−3

10−4 15 1.1213 × 10−2 1.516 × 10−3

10−5 17 1.1213 × 10−2 1.516 × 10−3
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6 ANOVA-based hp reduced basis method

In this section, we will introduce the ANOVA-based hp reduced basis method. The
algorithm is a recessive algorithm like that for the empirical interpolation method
[3]. Unlike the method in [3] in which each parameter domain is decomposed into
2p subdomains, we use a coarse version of the ANOVA sensitivity analysis to pick
only K (≪ p - a relatively small number) important parameters and decompose
the parameter domain into only 2K subdomains.

In the following, we introduce some notations and describe the recursive offline
procedure to do parameter domain decomposition (h-part) and build the reduced
bases locally in those subdomains with less than a prescribed basis size (p-part).
Then in the second part, we described the modules of the offline procedure in
detail. Finally an online procedure is described to perform efficient evaluation of
the solution and the functional of interest.

6.1 Offline Procedure

Suppose D is a closed n-tube domain in R
p. The number Nmax is the maximum

size of the reduced bases allowed in each domain, i.e., this controls cost. The
prescribed tolerance is denoted by tol. SN,D = {µ1, · · · , µN} is a collection of N

different parameter vectors in D. The space Xrb
N,D is a reduced basis space with

N bases on SN,D, that is, Xrb
N,D = span{ufe(µ1), · · · , ufe(µN )}, where ufe(µi) is

the finite element solution corresponding to the parameter vector µi. Let closed
n-tubes Di, i = 1, · · · , T be subsets of D. We define a domain decomposition
(partition) of D as

T (D) = {Di : D = ∪T
i=1Di with interior(Di) ∩ interior(Dj) = ∅, if i 6= j}.

(6.40)
The collection of selected RB parameter vectors on a domain decomposition T (D)
containing T subdomains of the parametric domain D is then defined as

S(T (D)) = {SNi,Di
, i = 1, · · · , T, with Ni ≤ Nmax}.

The corresponding collection of RB spaces on a domain decomposition T (D) con-
taining T subdomains of the parametric domain D is defined as

X
rb(T (D)) = {Xrb

Ni,Di
, i = 1, · · · , T, with Ni ≤ Nmax}.

The triplet (T (D), S(T (D)), Xrb(T (D)) will be the output of the recursive function
AhpRB , i.e., the main function of the algorithm of an ”ANOVA-Based hp Reduced
Basis Method”. The pseudo-code is given in Algorithm 1. We give a brief descrip-
tion here, detailed modules/functions of the algorithm will be presented in the
subsequent subsection.

Given a parameter domain D, a prescribed tolerance tol, a number Nmax to
restrict the maximum size of reduced bases, an initial parameter set SN0,D and

the corresponding RB space Xrb
N0,D. When N0 = 0, both S0,D and Xrb

0,D are empty
sets. We perform the Adaptively Enriching Greedy Algorithm (AEGA ) to generate
the reduced basis. If the algorithm converges, i.e., the error estimators over a large
set of ”safety check” points are less then tol, with less than or equal to Nmax basis
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element, then we already have a good RB space with a limited number of bases. If
AEGAdoes not converge with Nmax bases, we need to split the parameter domain D

into smaller subdomains. To achieve this, we first use an ANOVA expansion of a func-
tional output s to determine the relative importance of the different components
of the p-vector µ = (µ(1), · · · , µ(p)). Some µ(i)s are more important, or in other
words, leads to larger variations in the output. These components µ(i) will be split.
We MARK the components of the p-vector with either Maximum or Bulk marking
strategies, and make sure to only mark K components with K ≤ Kmax ≤ p. We
then REFINE the parameter domain. The important K parameter components are
split with the gravity center point being the pivotal point, and we get 2K subdo-

mains Dk
2K

k=1. The SN,D are distributed into these subdomains to have an SNk,Dk

for each subdomain Dk, and form corresponding Xrb
Nk,Dk

. With SNk,Dk
and Xrb

Nk,Dk

as initial parameter selections and RB spaces, a new procedure AhpRB is performed
for each subdomain Dk, k = 1, · · · , 2K to generate T (Dk), S(T (Dk)), Xrb(T (Dk).
We COMBINE these sets into T (D), S(T (D)), Xrb(T (D). Now, for each subdomain of
D, we have an RB space with less than or equal to Nmax bases.

1: function (T (D), S(T (D)), Xrb(T (D)) = AhpRB (SN0,D, Xrb
N0,D, D, Nmax, tol, s)

2: (Xrb
N,D, SN,D, conv) = AEGA (SN0,D, Xrb

N0,D, D, Nmax, tol);

3: if conv then

4: T (D) = {D}, S(T (D)) = {SN,D}, Xrb(T (D)) = {Xrb
N,D};

5: else

6: sens = ANOVA (s, D) ;
7: (sensd, K) = MARK (sens);

8: ({Dk}
2K

k=1}, {SNk,Dk
}2K

k=1, {Xrb
Nk,Dk

}2K

k=1) = REFINE (D, SN,D, Xrb
N,D, sensd, K);

9: for k = 1 to 2K do

10: (T (Dk), S(T (Dk)), Y rb(T (Dk))) = AhpRB (Xrb
Nk,Dk

, Xrb
Nk,Dk

, Dk, Nmax, tol, s);

11: end for

12: (T (D), S(T (D)), Xrb(T (D)) =

COMBINE ({T (Dk)}2K

k=1, {S(T (Dk))}2K

k=1, {Xrb(T (Dk))}2K

k=1);
13: end if

Algorithm 1: Recursive definition of the main function AhpRB (ANOVA-hp-
Reduced Basis)

6.2 Modules of ANOVA-based hp Reduced Basis Method

Module AEGA . The main idea of the AEGA is introduced in [9]. Some modifications
are made here, but the general procedure is similar to that in [9].

To describe the procedure, we define some global constants. Let M be the
size of train set, Nsc be the number of the points used to check the quality of a
reduced basis space. The number Csa is the constant of the saturation assumption
and we can choose Csa = 1 since we always perform a ”safety check”. If we start
from N0 = 0, that is, there is no inheritance from the old domain and reduced
basis space, a randomly picked parameter vector will be used in the initialization
of SN,D and Xrb

N,D. Otherwise, we inherit SN,D from the the bigger parameter
domain and its corresponding XN,D. A standard Adaptively Enriching Greedy
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Algorithm is performed to add new parameter vectors and build the reduced basis.
If the algorithm converges, i.e., for Nsc randomly generated parameter vectors, the
error estimators is less than tol with less than or equal to Nmax reduced bases,
we set conv = true, otherwise we set conv = false. The algorithm is presented in
Algorithm 2.

1: function(Xrb
N,D, SN,D, conv) = AEGA (SN0,D, Xrb

N0,D, D, Nmax, tol)

2: Generate an initial train set Ξtrain with M parameter samples;
3: if N0 is 0 then

4: N = 1, choose an initial parameter value µ
1 ∈ Ξtrain and set SN,D = {µ1} and

Xrb
N,D = span{ufe(µ1)};

5: else

6: N = N0, SN,D = SN0,D, Xrb
N,D = Xrb

N0,D

7: end if

8: Use Adaptive Enriching Greedy Algorithm idea to select new parameter vectors to be
added into SN,D and new bases to be added to Xrb

N,D.

9: if convergence with N ≤ Nmax bases then

10: Set conv = true, and let SN,D and Xrb
N,D be the resultant selection of parameter

vectors and reduced basis space, respectively.
11: else

12: Set conv = false, SN,D = SNmax,D, and Xrb
N,D = Xrb

Nmax,D;

13: end if

Algorithm 2: An Adaptively Enriching Greedy Algorithm

Module ANOVA . Unlike the three-step RB-ANOVA-RB algorithm, where the ANOVA
expansion is used to determine which parameters can be frozen, in the hp reduced
basis algorithm, the ANOVA expansion is used to determine which parameter do-
main needs to be split, i.e., those parameters with large variances. The requirement
of the accuracy of the ANOVA expansion and sensitivity is very low and we can
use the coarse ANOVA sensitivity defined in (3.19).

Remark 1 The functional of interest s and the error estimator should be a pair.
That is, the error estimator should be the error estimator based on the functional.
If a standard norm based error estimator is used, we should use the norm of the
solution as a functional.

The algorithm is presented in Algorithm 3.

1: function sens = ANOVA (s, D)

2: s is the functional of interest.
3: Map the parameter domain D to Ap;
4: Compute the sensitivity using formula defined in (3.19), let sens(i) = Scoarse(i).

Algorithm 3: function ANOVA

Module MARK . We describe a MARK function here. As in adaptive finite element
methods, we have two strategies to mark the parameters, maximum marking and
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Dörfler’s bulk marking strategies, see [1]. First, let Kmax ≤ p be the maximum
number of parameter components to be split. Note, if we split a parameter com-
ponent in domain [a, b] into two subdomains, K parameter components will lead
to 2K subdomains in the p-dimensional domain. So we have to keep the number
Kmax reasonable small. The algorithm is presented in Algorithm 4, where two
strategies are implemented.

1: function (sensd, K) = MARK (sens)

2: Sort sens in descending order, such that sensd = {sens(i1), , · · · , sens(ip)}, with
sens(i1) ≥ sens(i2) ≥ · · · ≥ sens(ip)

3: K = 0, 0 < θ < 1
4: if Maximum Marking Strategy then

5: while (K < Kmax) and (sensd(K) > θ sensd(1)) do

6: K = K + 1
7: end while

8: else if Bulk Marking Strategy then

9: SumSens = 0
10: while (K < Kmax) and (SumSens < θ) do

11: K = K + 1
12: SumSens = SumSens + sens(iK)

13: end while

14: end if

Algorithm 4: function MARK based on Maximum/Bulk Marking Strategy

Module REFINE . We then describe the REFINEprocedure. For a parametric subdo-
main D = [a(1), b(1)] × · · · × [a(P ), b(P )], and a vector m with values 0 and 1. We
will split those parameters with value 1. The algorithm is an adaptation of the
gravity center splitting scheme described in [3]. We define an operation op(k, j) as

op(k, j) =



≤ if bin(k − 1)j = 0
≥ if bin(k − 1)j = 1

(6.41)

where bin(k) is the binary representation of k as a vector in {0, 1}K . A slight
difference from the definition in [3] is the use ≥ instead of > since we assume each
subdomain is a closed p-tube.

The domain D is split into 2K distinct subdomains Dk, 1 ≤ k ≤ 2K , with some
integer 1 ≤ K ≤ P . The subdomain Dk may be written in a tensor-product form
Dk = [ak

(1), b
k
(1)] × · · · × [ak

(p), b
k
(p)],

We define the gravity center point of the point cloud S = {µi, i = 1, · · · , Nmax}

by

g =
1

Nmax

Nmax
X

i=1

µi. (6.42)

The k’th subdomain Dk is defined by

Dk = {µ ∈ D : µ(ij)op(k, j)g(ij), 1 ≤ j ≤ K} (6.43)

where i1, · · · , ip are the indices such that sens(i1) ≥ sens(i2) ≥ · · · sens(ip). Notice
that in reduced basis methods, the basis elements are often needed to be orthog-
onalized. When we distribute the bases into subdomains, we should distribute
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1: function

({Dk}
2K

k=1}, {SNk,Dk
}2K

k=1, {Xrb
Nk,Dk

}2K

k=1) = REFINE (D, SN,D, Xrb
N,D, sensd, K)

2: Compute GC point g of SN,D based on eq. (6.42)

3: Generate Dk, k = 1, · · · , 2K from D based on (6.43)
4: for k = 1 to 2K do

5: Let SNk,Dk
= SN,D ∩ Dk.

6: Get Xrb
Nk,Dk

from SNk,Dk
.

7: end for

Algorithm 5: function REFINE

the original pre-orthogonalized solutions. Then, in each new subdomain, these so-
lutions need to be orthogonalized. Another way to do it is that no bases from
previous level will be distributed. This way is simpler to implement, but comes at
additional cost.

Module COMBINE . The COMBINE function first combines the decompositions {T (Di)}
2K

i=1

into a decomposition of D, T (D). Since all these subdomains are disjoint, the com-
bination is straightforward.

Remark 2 Notice that all these subdomains generated by the recursive algorithm
form a tree [10]. T (D) is then the collection of all leaf (terminal) nodes of the tree
with D as the root.

We should also keep a tree structure of the domains. This will be used in the
online step to find the subdomain.

6.3 Online algorithm of the ANOVA-based hp reduced basis methods

The online procedure is relatively simple. For a given new parameter vector µnew,
we first find the subdomain Di ∈ T (D) of µnew. Since we keep the tree struc-
ture of subdomains, the cost is relatively low, although it depends on the number
of parameter components p and the depth of the destiny node. After finding the
subdomain to which the new parameter vector belongs, we have its correspond-
ing reduced bases, and can compute the reduced basis solution and functional of
interest with controlled computational cost.

7 Numerical Experiments for ANOVA-based hp Method

Since it very hard to illustrate the domain decomposition in high-dimensional
space, we first consider the thermal block equation (5.25) with two parameters
to demonstrate the algorithm. Let R1 = (0, 0.5)2, R2 = (0.5, 1)2, and R3 =
(1, 1)2\R1 ∪ R2. The diffusion constant α is assumed to be

α =



αk = 102µi−1, x ∈ Rk, k = 1, 2,

αk = 1, x ∈ Rk, k = 3.

The tolerance is set to be 10−5 and Nmax is set to be 7. We set Kmax = 1, implying
that only one component is split. During the final stage, subdomain D10 needs 6
bases to converge, and all others need 7 bases.
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Fig. 5 Tree structure of the subdomains
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Fig. 8 Third level of domain decomposition.

We then we consider the thermal block equation (5.25) with 15 parameters.
The domain [0, 1]2 is decomposed into 16 subdomains: Rk = ( i−1

4 , i
4 ) × ( j−1

4 , j
4 ),

for i = 1, 2, 3, 4, j = 1, 2, 3, 4, and k = 4(i − 1) + j.The diffusion constant α is
assumed to be

α =



αk = 52µi−1, x ∈ Rk, k = 1, · · · , 15
αk = 1, x ∈ Rk, k = 16.

The tolerance is set to be 0.1 and Nmax is set to be 35. We set Kmax = 2 and 3,
and use maximum marking strategy with θ = 0.5. The safety check step contains
10′000 points. For Kmax = 1, 29 subdomains are generated with the deepest level
is 5. For Kmax = 2, 58 subdomains are generated with the deepest level is 4. For
Kmax = 3, 85 subdomains are generated with the deepest level is 3. It’s obvious
that when Kmax = 1, the fewest number of subdomains are generated, but the
level of domain decomposition is also the deepest. In general, Kmax = 1 or 2 is
suggested to balance the computational cost. Kmax ≥ 4 is not recommended, at
least not for this problem.
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8 Concluding Remarks

In this paper, two new ANOVA-accelerated reduced basis methods are proposed
to increase the efficiency for high-dimensional parametric partial differential equa-
tions.

Ahree step Reduced Basis-ANOVA-Reduced Basis method is proposed and
validated for high-dimensional parametric partial differential equations. It provides
an efficient and accurate way to reduce the parametric complexity and enable the
rapid and accurate evaluation of the output of interests for a high-dimensional
problem.

Extensions to the primal-dual approach of the reduced basis method is straight-
forward, and the primal-dual approach is very natural if the righthand side f and
the output functional s depend on parameters explicitly. Extensions to non-affine
problems is likewise straightforward, and the RB-ANOVA-RB algorithm is likely
to result in additional savings in this case, in particular for the online phase.

If the ANOVA expansion of an output functional is the sole interest, the first
two steps of the method are likely the most efficient way to get the ANOVA
expansion to evaluate parametric sensitivity.

The ANOVA-based hp method enables us to construct a domain decomposi-
tion of the parameter domain such that in each subdomain, a fixed number of
basis elements are needed. This method can be applied extended to the empirical
interpolation method without any difficulties, hence allowing us to treat non-affine
problems [8] at a fixed computational cost. Thus, combined with the adaptively
enriching greedy algorithm developed for the empirical interpolation and reduced
basis methods in [9], for the successive constraint method in [21], we now have a
framework that allows for the use of reduced basis methods for problems with a
high-dimensional parameter space.
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