On the Use of Asymptotics
in Nonlinear Boundary Value Problems (*).

E. N. DANCER (Armidale, Australia)

Summary. ~ We consider the solvability of some nonlinear boundary value problems for dif-
ferential equations where the nonlinearity is bounded. This involves the study of the asymp-
totic behaviowr of certain multivalued functionals.

In this paper, we show how the study of the asymptotic behaviour of certain
integrals when a parameter is large can be used to obtain results on the solvability
of some nonlinear boundary value problems of the form

Lu = g(u)—f.

Here L is a linear differential operator, g: B —> R is continuous and either g(y) — 0
a8 |y| = oo or g(y) = asiny. Our results considerably improve work of a number
of authors e.g. Fucix [14], HEuss [17], DAXCER [8] and many others. A more com-
plete bibliography ean be found in [14]. We do not aim to obtain the best possible
results but merely consider some simple special cases which illustrate our techniques.
However, we do mention a number of ways in which our results generalize. Indeed,
our methods often becomes difficult to apply at the higher eigenvalues of a self-
adjoint elliptic operator. (The difficulty is in doing the asymptotics.) The results
here are probably the most important of the results announced in [5]. We apologize
for the delay in writing them up. This was caused by the author’s interest being
diverted to other mathematical topics. A good deal of interest has been expressed
in the results. For example, they are mentioned in [13]). Our results solve or pai-
tially solve some of the problems in {13}, [14] and [15].

In § 1, we prove some technical abstraet results and, in § 2, we consider the case
where g(y) —0 as |[y| — co. Finally, in § 3, we consider the case where g(y) = asiny.

We assume a basic knowledge of the standard results on the solvability of ordinary
and elliptic partial differential equations in Sobolev spaces and the standard embed-
ding theorems. They can be found in [14].

(*) Entrata in Redazione il 24 ottobre 1981,
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1. — Abstract results.

Assume that # and X are Banach spaces, that L: F — X is Fredholm of index
zero but not invertible and that H: E — X is completely continuous such that
lu|-t|H(u)],— 0 a8 |u] —oco. Here | || and | ||, denote the norms on E and X
regpectively. Choose continuous linear projections @ and P on E and X respectively
such that R(P) = R(L) and R(I —¢@) == N(L). Here N(L) and R(L) denote the
kernel and range of L respectively. It is easy to see that L is invertible when con-
sidered as a map between the Banach spaces R(Q) and R{P). Let K denote its
inverse. (Thus K maps R(P) onto E(Q).) Now the equation

(1) Lz = H(x)
is equivalent to the pair of equations

(2) v = KPH(u -+ v)
(3) (I—-P)H(u +v)=0,

where © = % - v with 4 e N(L) and v € R(Q)). Note that, by our assumptions, the
map % + v — KPH(u + v) is completely continuous and that equation (2) involves
only the component PH(») of H(x). Let D = {u +-ve E: u + v is a solution of )}
If N(L) is one-dimensional, we write elements of E as «h -+ v where » spans N(L)
and v e R(Q). Suppose Ic E* such that (I —Q)x = l(x)h and I(h) = 1.

PRrOPOSITION. — If N(L) is one-dimensional, there is a closed connected subsei T
of D such that I{(T) = (— oo, o).

PROOF. — We merely sketch the proof since it is a standard application of known
techniques (cp. RABINOWITZ [20], TURNER [23] or DANCER [9]).

StEP 1. — For each n> 0 there is a connected subset T, of {w e D: [Ix)|<n} such
that (T ) = [—n,n]. To see this, define 4: R(Q) ® R — R(Q) by A(v, z) = KPH(oh -+ v).
By our assumptions, 4 is completely continuous and |v|-*A(v, ) —> 0 as [v
uniformly for « €[~ n,n]. Choose K > 0 such that [A(v, )| <}|v] if o] >K and
o« € [—mn, n]. Thus, by using the homotopy (v,?) — v — tA(v, x) We see that deg (I —
— A(,a),B,) =1 for each a€[—mn,n]. Here B, is the ball of radius K in R(Q)
and deg denotes the Leray-Schauder degree. The existence of T, now follows from
RABINOWITZ [22, Lemma A5].

| = o0

StEP 2. — Complelion of the proof. Since the closure of a connected set is con-
nected, we may assume that 7, is closed. By the argument in Step 1, [o| <K if
ah +ve D and awe[—mn,n]. Thus, since 4 is completely continuous, {xe D: [I(z |<n}
is compact. Hence we can compactify O and obtain a compact metric space D by
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adding two points « oo» and «-— ooy corresponding to o = co and o= — oo respeec-
tively. (A similar argument appears in § 3 of[9].) Let 7 = lim sup 7', in the
sense of WHYBURN [26, p. T]. (Here we are working in the metric space D.) By [26,
Theorem 9.1], 7' is connected and compact. (Since T, contains points with I(z) =
-n, it follows that +coclim inf 7,:) Hence, by a wellknown result (cp. ALEXAN-
der [1, Proposition 5], or WARD [25]), there is a component T of 7\ {+oco} such
that oo are in 7. Now T can be thought of as a subset of D. With this identifica-
tion, it is easy to see that T has the required properties. This completes the proof.

It is often convenient to write elements of T' as ah + w(a) where w(x) € E(Q).
Note that, in general, w(x) is multi-valued. Since T is connected, its image {I(H(xh +
w(x)): ah + w(er) € T} is a connected subset of R. Thus, we see that, if there
exist oy, oy € B such that I(H(ah + w(%)) < 0 for every aph + w(eo) € D and I H(oy h +
w(xy)) > 0 for every wh + w(oy)e D, then there exist «, between o, and «, and
ah + w(op) € T such that I(H(oh -+ w(a,)) = 0. (Otherwise, {«h 4 w(a) € T': either
(1) wo<a <oy and H(ah + w(«)) <0, or (ii) a<«} and {ah + w(x) e T': either (i) ot <
a<a, and Y(H(ah + w(x)) > 0 or (ii) a>«} are a disconnection of 7). Thus we
see that «,k -+ wix,) is & solution of (1) for some b + w(ey) € T. Thig is the form
in which we will use the proposition.

Let us now assume that |H(u)|, <K, on E. Then, by (2), there is an M > 0
such that |w(x)| <M whenever ah + w(x) e D. Let us further assume that there
is an f in X such that H(ah + w(«x)) —f as « — co whenever ah + w(x) € D. (For
example, this holds if H(xh -+ ) —f as o« ->co uniformly for % in E such that
lu] <M.) By equation (2), it follows that w(e) > KPf in E as « —>co. Note that
the limit is singlevalued even though w(e) is multi-valued. This result will be of
considerable use in the study of the asymptotic behaviour of I(H(ah + w(x)) in § 2
and § 3. Similarly, since continuous linear mapping are weakly continuous, we see
that, if H(ah + w(ax)) —f (weakly) as o — oo, then w(a) — KPf (weakly) as a — oo.

We now comment briefly on the case where N(L) is multi-dimensional. Assume
that there is a map ¢: N(L) — RB(I — P), a bounded neighbourhood W of zero in
N(L) and a continuous map h: D x[0,1] - E(I — P) such that (i) A(, 0) = (I —
P)Hlg; (i) (1) = I — Q)lp; (iii) h(u + w(u),s) 0 if 0<s<1, if ue oW and
it w + w(u)e D and (iv) deg (t, W) 5= 0. (Here, as before, w(u) is the multi-valued
map such that D = {u -+ w(u): we N(L)}.) Then (1) has solution. This is proved
by showing that the map (u,v) — (Z(I — P)H(u + v), v— KPH(u -+ v)) has degree
+ deg (¢, W) on W x B, where B is a ball of large radius in R(Q) and Z is a linear
isomorphism of R(I — P) and N(L). Of course, in applications, W is usually someth-
ing like a large ball. For example, it is easy to see that the above assumptions are
satisfled when there is a scalar product (,)> on X such that (g(u + w(u)),
Zuy >0 (< 0) if we oW. In addition, one can establish the existence of more than
one solution if there exist W, and ¢, (¢ = 1, 2) as above such that W,c W, and deg (¢,
W,) # deg (t,, W,). In practice, this result on the existence of more than one solu-
tion are much harder to apply than the corresponding results in the one-dimensional
case (especially if N(L) iz even-dimensional).
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2. — The case of vanishing at infinity.

Let L denote the linear operator — (d/dt)(py’) + qy on L0, z], where the domain
of L is {ue W20, x}: %(0) = u(w) = 0}. We assume that p and ¢ are smooth on
[0,7]. (This is a much stronger condition than we really need.) It is well known
and easy to prove that L is Fredholm of index zero. Moreover, if he N (L)N{0},
[h(s)] -~ [&'(s)] > 0 on [0,7]. We wish to study the solvability of

(4) Lo = g(u)—f,

where ¢g: R — R is continuous, g(y) — 0 as |y| —oo and fe LY[0,7]. We assume
these conditions throughout the section wunless explicit mention is made fo the contrary.
Let R = {fe L'[0,n]: (4) has a solution}. If N(L)= {0}, it is well known that

= L0, 7]. Thus we consider the case where N(L)=={0}. Since N(L) is one
dimensional, we can choose an h which spans N(L). It is convenient to choose

such that A'(0) > 0 and fhﬁ ds = 1. Note that L'[0,x] = R(L)® span {h}.
0

We first consider the case where h(s)> 0 on [0,n]. (In other words, zero is the
smallest eigenvalue of Lu — Au.) Since the natural embedding of W=[0,x] into
([0, =] is compact, it is easy to see that the basie assumptions of § 1 hold (where
E = D(L) with the usual W21[0, z] norm, X Ll[O 7] and H(u) = g(u)—f). We

take ! to be the linear functional defined by l(x f x(s)h(s) ds. Since ¢ is bounded

on R, there is an M > 0 such that |H(u)|, <M on E where H | denotes the usual L*
norm. Asin §1, it follows that, if ah + w(«) is a solution of (2), then w(«) is bounded
in W210,7]. Hence w(x) is bounded in C[0,n]. Thus lah(s) + w(x)(s)| is large if
|| is large except near the ends of the interval. Since lg9(y)| <K on E and g(y) -0
as |y| — oo, it follows by a simple estimation that g(oh + w(x)) — 0 in L0, 7] as
lae| — o0,

As in § 1, it follows that w(e) — 8f, in W20, z] a8 o — oo, Where Sf, is the
solution in R(Q) of Lu = —f, (with (I —P)x =Uz)h, @ = Plg, and fo = Pf).
Note that w(«) really depends upon f, rather than f. (Equation (2) can be written
as v = K(P(g(och - ) — fo).) The above argument is still valid with minor modifica-
tions even if A has zeros in (0, m).

7

We now want to estimate F(«) zfg(och + w(a))h ds. Note that F(x) may be
0

multi-valued, that F(x) depends on f, and that f,+the R if and only if ¢ is in
the range of F' (since (3) can be written as I(f) = Yg(oh + w(«)). Thus, we expect
F(«) to be the critical term for studying solvability. Fix f,e R(L). We assume

that yg(y) >0 for y large and that Z(x fg y)y dy > 0 for all @ large. The last con-
dition certainly holds if f g(y)y dy dlverges Choose K > 0 such that Z(Kh'(0)) > 0,
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Z(— KW (m)) > 0 and yg(y)>0 for y>inf {K, Kh'(0), — KI'(7x)}. Since the natural
embedding of W21[0, #] into C[0, ] i3 continuous, w(«) are uniformly bounded in
00, z]. Since w(a)(0) = w(o)(w) = 0, H'(0) > 0, K'(x) < 0 and h(s)> 0 on (0, ), it
follows easily that there exist K,>K and 7> 0 such that ah(s) + w(e)(s)>K if
ah +w(e)e D, if ax>7 and if ¢ K, <s<n—a1K,. Hence

g(oah(s) + w(o)(s))h(s)>0 if a>7 and «'K <s<m—alK;.

Thus we will prove that «2F(x) > 0 (and hence F(x)> 0) for « large positive if

we show that
foi~1Ky

arFy(a) = |o2g{ah + w(e))h ds
0
and

wtFy(a) :jazg(ah + w(a)) b ds

7~ |a|"1K,

are both pogitive for large positive o. (When we say that F(a) > 0 we mean that
every element of the compact set F(«) is strictly positive.)
- Now

Iy
22 Fi(a) :fg(och(ioc{—lu) =+ w(oz)({o:i“lu))|oc{h(]oc[—1u) du
b

where s = ja|%. Since w(x) is bounded in 00, =] and w(x)(0) = 0, we easily see that
ah(lo|u) + wle)(le| u) — B'(0)u

as « —oo. Thus, by the deminated convergence theorem

Ky
22 Fy(or) —>Jg(h'(0)u)h’(0)u du = (W(0))-2Z(K,1'(0))

0

as o« — co. By our assumptions, Z(K,4'(0)) > Z(Khr'(0)) > 0. Thus o>Fy(x) > 0 for
large positive. (Note that the multivaluedness of w(x) does not affect our arguments.
Our use of the dominated convergence theorem shows that, if ok -+ fa)e D (i.e.

(o) € w(ax)), then
e

fg(:xh L Ha))hdt>0  for a>a

0

where «, is independent of the choice of ¥(«).) We can estimate «2Fy(«) by using
the change of variable % = |a|[(w —) and then using a similar argument. Thus,
we eventually find that there is an «,> 0 such that «*F(«) > 0 (and thus F(x) > 0)
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for a>ay. Similarly, if there is a K > 0 such that yg(y)>0 for y<— K and
6
f g(y)y dy > 0, we find that F(«) < 0 for « large negative. We can now easily prove
K

our first main result.

THROREM 1. — Assume that h(s)> 0 on (0,7), that yg(y)=>0 for ly| large, that
) 0
f gy dy > 0 and that f g(y)y dy > 0 (where the integrals may diverge to -+ oo). For
1} — o
each foe R(L), there is an &> 0 such that f, +the R if [t|<e.

Proor. — Note that f, + the R if and only if ¢ is in the range of the multi-valued
map ¥. We proved above that there exist ;> 0 and o, << 0 such that F(ey)> 0
and F(e,) < 0. Let T be the connected set of Proposition 1. As in § 1, T)=
{l(g(u)): we T} is an interval. Since there exist u,,u,€T such that l(u,) =
and 1(u;) = ¢, it follows that T, contains positive and negative elements. Thus T
contains a neighbourhood of zero and the result follows.

We now consider the case where the signs of the integrals in Theorem 1 are reversed.

o 0
(Thus f g(y)y dy < 0 and f g(y)y dy <0, where it is assumed that the integrals con-
0 ©0 —
verge.) We say that g is regulor if there exists d: B — E such that d(y) —0 as
ly| —> oo, d(y) sgny is decreasing for [y| large, g(y)[<[d(y)| for [y]large and fd(y)y dy

converges. Note that this slightly generalizes the definition of regular in [5]. We
define F, and F, as before except that the ranges of integration are from 0 to {m and
1n to m respectively. By our assumptions and earlier arguments, we easily see that
there exist 4, B, ¢ > 0 such that As<h(s)<Bs and jw(x)(s)|<Cs on [0, n]. (Re-
member that w(e:) is bounded in (Y0, x] uniformly in « and w(x)(0) = 0.) 'Thus

(5) (ed — C)s <ath(s) + wa)(s)<(xB + C)s

on [0, 3x] if @>0. As before, by using the substitution |«|s = u, we find that

o) o0

in
o2 Fy() =Jjg(rxh([oc‘[‘1u) + w(o) (Joe| 20} ) o [h(|ot| 2 u0) due :Jf(a)(u) du ,

0

<

where r(c)(u) = g(och(]oc[*lu) + aw(@)(|oe]w)) | B o[ ) if w <} ]| and is zero other-
wise. As before, we easily see that r{x)(w) —>g(R'(0)u)h'(0)u as « — oo for each
fixed #>0. It is easy to see that there is a K;> 0 such that |r(a)(u)|<K; for u>0
and o> 0. Moreover, by (3) and the assumption that g is regular,

r(ee)(w)] < d((A — o~ C)u) Bu < Bd((4 — Du)u
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if u is large and «>C. (Remember that d(u) is decreasing in w if u is large.) Since

f d(u)u du exists, we can apply the dominated convergence theorem, and deduce
0

that
02 Fy(a) —»J-g(h’(O)u)h’(O)u du = (h’(@))—lfg(w)v do < 0
0 0

as « —oco. (Remember that fg(y)y dy < 0 and '(0) > 0.) Since we can obtain a
0
similar result for F,(«) and since F(x)= F(«) + F,(x), it follows that F(x) < 0

o
for large positive «. Similarly, since f glu)u du << 0, F(z) > 0 for o large negative.

By the same argument as in the proof of Theorem 1, the theorem below follows.

THEOREM 2. — Assume that h(s) > 0 on (0,7), that g is regular, that [g(y)y dy < 0
[ ]
and that fg(y)y dy < 0. Then, for each foec R(L), there is an ¢> 0 such that f, +the R
if Jt|<e.

Note that, in Theorem 2, ¢ may change sign at points where |y| is arbitrarily
large. The assumptions on the signs of the integrals could be replaced by the single

oo (1]
condition [g(y)y dy[g(y)y dy > 0.
G — o

We now wish to consider the case where h has zeros in (0,7). Assume that
t:€(0,7), h(t;) =0 and y g(y)>0 for |y| large. Thus A'(t;) = 0. Suppose fye R(L).
Let

fi+[o| 1K
Fia)= [ glab + wie)hds,

ti— || K
where K is large. If we use the change of variable = x(s —¢,;), we find that

K
@ Fo) = f g(ah(t, + otu) + w(a)(t; + a=tu))ah(t; - o~1u) du

-K

for > 0. Now w(x) - Sf, uniformly on [0,7] as « —>oo and w«h(t; + atu) —
— h'{t;)» a8 a — co. Thus

K KB ()]
a2 Fifo) — f g (1) w + Shlt)) W (t)w du = |/ (2;)]-* f (v -+ Sf(t))v dv.
—r

—K|h'(t:))

Since w(x) is uniformly bounded in ([0, z], since k'(t;) 7 0 when h(f;) = 0, and
since yg(y)>0 for |y| large, we easily see that the integrand in the expression for
F(a) is non-negative except within «~1X, of one of the zeros of %, where K, is a

12 -~ Annali di Matematica
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large constant. Hence, we see that, if K is large, then

En'(0) KW ()
©) @I@> @) [ go)vs + @) [ go)va
0 0 . Elp' ()]
+ 3w | o+ s vae

—E[h'(t:)]

if o> a(K), where £, <<%,...<t, are the zeros of h in (0,x). (The contributions
at 0 and sz are calculated by similar arguments to those in the proof of Theorem 1.)
Let us consider two cases.

©o

Case (i). - [g( Yy dy diverges (necessarily to -+ co). It follows that, for any v e R,
f gy -+ v)y dy diverges to - oo. (Otherw1se, f g(y)(y — v) dy would converge Since
g(y)y is dominated by 2g(y)(y — v) for |y| large, it would follow that f g9(y)y dy con-
verges). It follows easily that the right hand side of (6) tends to co as K — oo.
(Note that, if h'(w) < 0, the second term is |A'(% |_1fg y)y dy.) It follows from (6)

—K[h ()]
that «2F(«)> 0 (and hence F(x) > 0) for « large positive.

Case (ii). — fg(y)y ay converges. A simple comparison shows that fg(y + )y dy =

f g(y)(y — v) dy converges and that fg ) dy converges. Moreover, fg(y + o)y dy =

—

fg(y)y dy——vfg(y) dy. Thus, as K — oo, the right hand side of (6) tends to

=]

Z,(f,) = (h’(O))—lfg(y) ydy - fg(y) yd@/é [/ (t) |
0 — 00 00 200
~ [oa 3 suawar + (e fowvay),
—o0 0

where z = sgnh'(w). Thus, if Z (f,) > 0, the right hand side of (6) is positive for
large K and hence F(x)>> 0 for « large positive.
By similar arguments, we find that F(«) <0 for « large negative if either

fg(y)y dy diverges or if fg(y)y dy converges and Z_(f,) > 0, where

0

Z_(fo) = (h’(O))“fg(y) ydy + fg(y) ydy ; | ()

—c0 oo 200

- f ) dy 3 S1lt) I (1) — () f )y dy .
% 0
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Let us mow consider the regular case. We choose s; such that 0 < s, <, ... <, <
8p<7. We estimate o®F,(«) where

St+1 (83— )

o2 B (o) = oc2fg(ozh + w(o)) b ds =Jg(och(t,- + ota) + w(o)(f; + otue) yah(t; + o tu) du .

8; x(8;—11)

Sinee w(x) is bounded in ({0, =],
Jw(ec) (1) — wie)(t; + o tu)| <Ko tu .

Moreover w(x)(t;) — Sfo{t;) a8 &« —co. Thus, by using the dominated convergence
theorem in essentially the same way as in the proof of Theorem 2, we find that

Fa *fg Ju + St ) t)u du = [b'(¢ {—lfgf‘/‘f‘sfo )yd?

Since, we could estimate the other termms similarly, we eventually find «?F(a) —
Z (f,) as o —oco. Similarly, «®F(a) —— Z_(f,) as « —>—co. As in the proofs of
Theorems 1 and 2, estimates on the sign of F(«) for |«| large yield theorems on the
solvability of (4). In this way, we obtain the following theorem.

THEOREM 3. — Suppose that foe B(L) and h has a zero in (0,7). Assume thai
(@) yg(y) =0 for ly| large and fg(y)y dy diverges or (b) yg(y)=>0 for |y| large, fg Vy dy

converges, Z,(fo)> 0 and Z_(fo))> 0 or (¢) g is regular and Z (f))% f0)>0 Then
there is an ¢> 0 such that f, -+ the R if |t|<e.

Note that Z,(f,) and Z_(f,) are independent of f, precisely when f gly) dy = 0.

If this integral is non-zero (and J yg(y) dy converges), there must be an fye B(L)
such that Z.(fo) Z_(f,) = 0. oo

In some cases, we can use the variational structure of our equation to obtain
additional results. Note that some related weaker results appear in [10]. We say
that Assumption U holds if ¢ is continuous differentiable on R and if u < ¢'(y) <v
on E, where u = sup o(L) N (— oo, 0) and v = inf o(L) N (0, c0). Here ¢(L) denotes
the spectrum of L. (In fact, our main results below would still hold if this assump-
tion were replaced by appropriate Lipschitz conditions on g.) We now suppose that
Assumption U holds. In this case, it is easy to prove that w(x) is single-valued and

the map « —w(x) is continuously differentiable. Assume in addition that f g(y) dy

ewists. Now it is well-known (ep. RaBINOWITZ [21] or DANCER [6] for similar ar-
guments) that, in this case, F(x) is the gradient of F(a) = } (Lw(a),w(x)> +
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f G(oh + w(x)) dt, where G(y f g(t) dt and {, ) is the usual scalar product on
0
L0, n]. Now it is easy to see that

F(a) — F(co) = L <L 8foy 8foy + G(00) 4, + G(—o0)(m— 4;) a8 « ~>oc0,
where A, is the measure of {z &[0, x]: k() > 0}. Similarly,

F(a) — F(— oo) = 4 (L S8fo, Sfoy 4 G(—00) 4; + G(co)(m— 4;) a8 & —>—co.

Now F(oo) = F(— oc0) if A;= %z or if G(oo) = G(— co) (that is, Tg(y) dy = 0). Since a

function on R with equal limits at +oco has a critical point, it follows that, it F(oo) =
F(— co), then F(x) has a zero, that is foe R. If F(co) = F(—oco) and F is non-
constant on R, a simple perturbation argument shows that f, - the R for [¢] small
(Note that fo -+ the R if and only if F(a) — Lto® has a critical point.) Since F(e)
is the gradient of F(«), our earlier estimates can be used to show that F is non-
constant on R. For ewample, if ¢ is regular and either Z,(f,) 5= 0 or Z_(f,) # 0, then
F(«) is non-constant on R. In addition, if F(co)> F(— oco) and F(x) < 0 for «
large negative, then one easily sees that f, + the R for all small {£. Once again,
our earlier estimates could be used to verify the condition on F. Obviously, one
could state a number of variants of this last result. It would be of interest to prove
the results on R in this paragraph without requiring Assumption U. Note that Assump-
tion U is in a sense best possible because, if g is continuously differentiable and if
R(g') ¢ [p,+], then there is an foe R(L) and an a € B such that w(e,)is multi-valued.
This is a special case of a much more general abstract result which will appear
elsewhere.

Note that, even when variational methods apply, our methods give more infor-
mation. For example, if Z, does not vanish identically but Z, has a zero, then
there exist {u,}:, in W20, ] such that (i) |[u,]s, —co a8 n — oo, (ii) Lu,— g(u.) €
R(Ly for all » a.nd Lu,— g{u,) converges in L0, x=].

REMARKS ON THEOREMS 1 TO 3

1) In all the above theorems, a simple examination of the proofs shows that,
given f,e R(L), there exist a,,e,d >0 such that |F(a)|>6 if |a| = o, if fe R(L)
and if |f — fo|i<e. (Under the assumptions of Theorem 3 (b) or (¢), we must assume
that Z,(fo) Z_(fo) # 0.) Since R(L)C R, it follows easily as in[8, § 4] that R is
closed. (Under the assumptions of Theorem 3 (b) or (¢), we must assume that

fg(y) dy = 0 and Z.(0)Z_(0) > 0.) In Theorems 1 and 2, one can use the argument
in § 4 of [7], to show that there exist functions ry, r.: R(L) — (0, oo} such that

= {oh + t: — ry(t) <a<ry(t), t € R(L)} .
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Moreover, if g is continuously differentiable, r, and r, are continuous and (4) has
at least 2 solutions for f =ah + ¢ if a0 and —r () < a < r,(t). Similar results
hold if h has zeros in (0, n) provided that Assumption U holds but it is not known if
this result holds in gemneral.

2) Our methods can be applied to a great many other problems. For example,
they could be used for other boundary conditions, for problems involving higher
order differential operators, for problems where g(y) has finite non-zero limits I*
as y — oo and R(g) ¢ [I~, I™] and for non-self-adjoint problems. (Note that some
results for this last case were announced at the end of § 1 in [5]. The results an-
nounced there could be improved by replacing the condition on ¢’ by the correspond-
ing assumption on g. In this case, we no longer know that v(«) is single valued (w(o)
in the notation here) for |x| large and we estimate F(x) instead of its derivative.)
Our methods of estimation could be combined with the ideas at the end of § 1 to
handle a number of problems where N(L) is multi-dimensional. For example, if

Ly = —y" + 4n?y, our methods apply if (i) yg{y)>0 for [y] large and fg Yy dy
diverges or (ii) yg(y)>0 for |y| large, fg )y dy > 0 and fg )dy =0 or (111) g is
regular, f g(y)y dy = 0 and fg )dy = 0. The conclusion is that fo+heRif he N(L)
and |h|, is small. If f gy ydy converges and f g(y) dy = 0, one obtains a similar

result if Z(foo) = 0 for all 6 in [0,7]. Here Z is an affine functional similar to Z,
and f, is the translate of f,. The idea in the proof of all the above results is to use

our earlier techniques to estimate f g{ah + w(x))h ds as « — co uniformly in & for &

in {ze N(L): |z],=1}. With rathel more care, the last result could be improved
by also estlmatmg

T n

f g + w(a)) B ds = — o1 J ok + w(e))wle)’ ds

0 0

if g i regular. If Property U holds, some of the above results could be improved
by combining variational methods with our estimates. Finally, the above techniques
can be used to solve the open problem on p. 335 of [13]. (The conclusion is the same
for 1 <l<Co0l)

3) If g(y) is eventually decreasing and f g(y)y dy diverges, our methods can

-— 00

be used to estimate the growth of F(«) as |«| — co. (Under reasonable hypotheses,
~f g(u)u du.) This idea is useful in fourth order problems where there may

be zeros of different orders. Another useful way to do estimates is to split the
(o) tig—pls)

integral from [0, 7] into integrals such as and |, where the {, are the zeros of %
ti—p(e) (o)
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tipr— o)
and u(e«) tends to zero rather slowly. It can be shown that integrals such as | are

ti+ pu(a)
of smaller order by estimating the integrand. This idea is also useful in the 1paljrtia1

differential case below.

We now want to discuss in a little more detail the corresponding problem where L
is a second order elliptic self-adjoint partial differential operator with smooth coef-
ficients on a smooth bounded domain £ in R,

For simplicity, we only consider Dirichlet boundary conditions. We first consider
the case where h{z) > 0 in £. Theorems 1 and 2 readily generalize to this case if
we assume that f,e L?(Q2) with p > k and require that y?g(y) -0 as |y| >o0 in
Theorem 2. Let us explain this rather briefly. Now points of £ near 9£2 can be
uniquely expressed in the form #z - sn(z) where z € 042, n(z) is the inward unit nor-
mal to 8Q at #z and s is small. To prove the analogue Theorem 1, we let @ = {we 2:
2 =2-sn),zc 0, 0<s<o 'K} and F («) :fg(och - w(x))k dz. We use the co-

ordinates 2z and % = as to show that 2
£ (o
oh
(7) 2 Fy(20) %J. fg (51 @) u) g—n () wduds .
2 0

(Note that ah(z -+ atun(z)) — (0h/0n)(z)u as « —oco and that w(«) is bounded in
cyQ).) It fg(u)u du > 0, one easily sees that (7) is positive for K large. (Re-

0 oo
member that (0h/on)(z) > 0 on 92.) For example, if f g(u)u du converges, then the
right hand side of (7) approaches 0

fg(u)uduf (%% (z))_1 dz as K —o0.

0 on

Tt follows easily as before that F(«) is positive for large positive «. The rest of the
proof of Theorem 1 is as before. Theorem 2 is proved similarly. (The extra assump-
tion that y%g(y) — 0 as |y| — oo is used to ensure that the contribution from the
part of 2 not near 002 is o(«?). This condition can be removed for some simple
domains, for example, balls.) If N(L) is one dimensional and if V(2) %= 0 whenever
ze 0 and h(z) = 0, an analogue of Theorem 3 can be easily proved by using the
ideas above. The only differences are that we must assume that y*g(y) —0 as
ly| — oo in Theorem 3 (¢) and that Z_(f,) and Z_( fo) now involve integrals over nodal
manifolds. The general case is much more complicated. For the moment, we always
assume that N(L) is one-dimensional. Under weak assumptions, the dominating term
of F(a) comes from near the zero set of s, Let us first assume that v € 82, Vh(v) = 0
and that the Hessian matrix D2h(v) of h at v does not vanish. Then it is well
known and easy to prove that there exist new coordinates near v such that 0L is
given locally by #,=0 and h(z) = »,2, near v. (Note that, since h satisfies an
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elliptic equation, it can not happen that (0°h/0x)(v) is the only non-zero second
derivative.) If one uses these coordinates, it can be shown that the contribution

to F(x) near v is ~o21n |oc|fg(u)u du as o —oo. (If yg(y)>0 for ly| large but g

is not regular, we have > rather than ~.) Now we can use our earlier methods to
estimate the contribution to F(«) near a non-critical zero of #. Thus we can obtain a
formula for the asymptotic behaviour of F(«) (and further existenee theorems) if
we assume that the only points in 2 where |h(z)|* + [Vh(z)* vanishes are in 00
and are of the above type. (To prove an analogue of Theorem 3 (¢), we need to
assume that (In [y])-'y2g(y) — 0 as |y| - oco.) Note that the contribution at these
irregular points dominates the contribution near the more regular points and that,
generically, the above bad case is the only one to occur. (This follows from the
results of UHLENBECK [24].) A similar estimate holds for ¥ = 2 near a zero v of %
in £2 where Vi(v) = 0 and the Hessian matrix is non-singular. (The only difference

is that we must replace fg(u)u du by fg(u + Sfo(v)) du.) The idea of the proof

is to use the Morse lemma (cp. [18]) to change coordinates such that h(z) = z,2,
near v. (If k> 2, one can use the Morse lemma to show that the contribution to
F(a) near such a zero is o(x~?), that is, dominated by the contribution near the
regular points.) We now restrict ourselves to the case k = 2. For simplicilty, we
take L to be — A. If 2, is a critical zero of 7, it is easy to see (and well-known) that
there is an integer n>2 such that h(x) = r" cos (n8 + @) + o(r*) near z,. (Here
we have chosen axes such that 2,= 0.) By a theorem of KUTIPER [18], there is'a (!
change of coordinates such that A(xz) = r" cos nf near z,— 0. We now assume that
n > 2 since we have already covered the case where n = 2. By using similar ideas
to earlier and by using polar coordinates, we find that the contribution to Fi«)
near 0 is

(=] 2n

~ (2%)*105—1‘2’f1fg(u + 8f(0))|u|> sgn u duflcos nf~" A0
0

— 0

if g is eventually decreasing and f g(u)[u[*" sgn u du converges. (Without the de-

creasing condition, we can prove a result with ~ replaced by > provided that
¥9(y)>0 for |y| large.) Once again, one can easily obtain existence results. It is
likely that the coarea formula (cp. FEDERER [12, Theorem 3.2.12] can also be used
to obtain estimates for F(«x). As in Remark 2, our methods can sometimes be used
to obtain results in some cases where N(L) is multi-dimensional. However, one
extra difficulty often occurs which we have not overcome. It may happen that
there ig bifurcation in the nodal set of % as » moves on the unit sphere in N(Z). This
causes difficulties in obtaining estimates which are uniformly valid on the sphere
in N(L). For example, a degenerate zero may bifurcate into several less degenerate
zeros. Finally, if Asfumption U holds, our estimates- can sometimes be combined
with variational methods to obtain additional results.
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3. — The ease g(y) = a siny.

We consider the same equation as in § 2 except that we now assume that g(y) =
asiny. As in § 2, we can obtain results on the solvability tof (4) by studying the

agymptotic behaviour of F(x) =fa sin (ah + w(e)) b ds, where w(x) is defined in § 1.
0

As in § 2, w(x) is multi-valued. We retain the notation at the beginning of § 2.
Now

8) F(o) = o Im [exp (iah + ()b ds = a Tm j exp (ioh)2(x) ds ,
0 0

where z(x)(s) = h(s) exp tw(x)(8). We need the following lemma which is & variant
of known results.

LeMma 1. — Assume that y(x) € W20, 7] for each « and [y(e)|s, <K for all «,
where || [y, denotes the usual norm on W21[0,x]. Suppose that e L'[0,nx]. Then

(i) fexp (Gech)y(e) e ds —0 as:oc —o0 if b’ has a finite number of zeros in [0, 7].
J ,

b
(i) If [a,b]C[0, 2] and R'(s)#0 on [a,b], then | fexp (ioch)y(er) ds| < |a[ "1 Ky,
where K, depends only on K, h,a and b.

(iii) Suppose thai t;€ (0, 7), B'(¢;) = 0, B'({;) ¢ 0 and ¢ > 0 such that h'(s)#0
for |s—t;|<e and s%t;. Then

t1+e v
fexp (Gach)y(e) ds

ti—&

= (/o (1)) y(2) (t;) exp (6h(t;) + Fovisgnb'(t)) + o D(a),

where D(e) — 0 as o ~> oo.

ProoF. ~ (i) By our assumption, there is a K,> 0 such that |y(x)(?)| <K, on
[0, 7] for all «. Thus |exp (ich(t))y(x)(t)| <K, on [0,n] for all . Hence, since we
can approximate ¢ in the L' norm by smooth functions, it suffices to prove (i) when ¢
is 0°. Secondly, since our integrand is uniformly bounded (by K, sup {|e(s)|:se
[0, ®]}), its integral over small intervals is small. Thus it suffices to prove the cor-
responding result for the integral over a closed interval T where h'(s) 0. (We
simply choose a finite number of small intervals covering the finite number of zeros
of ' and note that the remainder of [0, 7] is a finite union of intervals where A’ does
not vanish.) Thus (i) will follow from (ii) if we replace y(«) by y(a)e.
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(ii) Tt we use the change of variable u = h(s), then the integral becomes

o)
fexp (iau)y(a)(h"l(“))(h'(h_l(u)))_l du .
n{a)

(Note that & is monotonic on [a, b].) The result now follows by integration by parts.
The uniformity of the error estimate follows by examining the argument in CoP-
SON [4, p. 30].

(iii) This is by the standard stationary phase argument. The only difference
is that y(x) depends on x. The easiest way to see the error estimate is to follow the
argument on pp. 54-55 of ERDELYI [11] with I =2, ¢ =1, N=1and A=pu = 1.
The key point in estimating the error term (as obtained in [11]) is to note that y(«)
and y(«)’ are bounded on [0, #] uniformly in c.

REMARK. — In generalizations (for example to partial differential equations),
it is useful to note that the error estimate in part (iii) is valid if y(«) is bounded
in Wt1[0, ] uniformly in e« and {y(«)(!): « € R} are equi-integrable on [0, #]. More-
over, if these hold uniformly for a set of y’s, then the corresponding D(«x) tend to
zero uniformly.

We now use this lemma to estimate the right hand side of (8). We assume that
W'(s) = 0 whenever h'(s) = 0. (Thus ' has only a finite number of zeros on [0, =].)
Since |asin y|<a on R, it follows easily that the w(«x) are bounded in W?21[0, z]
uniformly in «. Sinee the natural embedding of W20, »] into C*[0, ] is continuous,
it is easy to show that expiw(x) are uniformly bounded in W20, s]. Hence, by
part (i) of the lemma,

f exp (iah) exp (imw(x)) ¢ ds — 0

(]

as o — oo for each ¢ € L” [0, ]. (Set y(x) = exp iw(«).) Thus, by taking the imagi-
nary part, sin (ah -+ w(«)) — 0 weakly in L0, 7] as « —> co. Hence sin (ah -+ w(x)) —
— fo— — o weakly in L0, n] as « — oo (where, as in § 2, f,= Pf). It follows as
at the end of § 1 that w(a) —— Kf, = Sf, weakly in W=1[0, x] a8 « — co. Since the
natural embedding of W20, =] into C[0, =] is compact, it follows that w(x) — Sf,
strongly in C[0,z]. Now parts (ii) and (iii) of the lemma (\vith y(a) = 2(a) =
exp (iw(oc))h) imply that

kA

(9 fa expinhz{a)ds = a % m|ah! (t;) [~ 2(0) () X exp (Goch + Favi sgn B'(1,)) -+ o(a?)
i=1

0

as « —> oo, where t;<1,... <1, are the zeros of A’ in (0,x). This is simply proved
by splitting the interval [0, z] into intervals I where either A'(s)=<0on I or I con-
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tains a single point where A’ is zero. Note that, as in § 2, A'(0) == 0 and »/(xw) == 0.
Since w(x) — 8f, in C[0, #] as « — oo, 2(e) — exp (i8f,)h a8 o« — co. By using this
and equations (8) and (9), we eventually find

Fla) = m—%’n?ﬁﬁ B (8,) ¥ h(t,) sin (ah(t;) + v sgnli(4) + Sfo(ts)) + o(a™?)

i=1

a8 o — co. Hence

o~

(10) EF(a)m o= T(x) + o(1),

I

a8 « — oo, where T(x) = > (s €08 ath(t;) + v; sin ah(t;)).

i=1

Here v, -+ iu; = [W'(£;)| 7Y h(t;) exp i(} sgn W' (1)) + Sfo(t))).

Note that the multivaluedness of w(x) does not affeet the above arguments as
one can readily see by examining the proofs. (The key point is that we do not need
any regularity assumptions on the map « —w(x).) Since h'(s) = 0 when h(s) =0
(by the uniqueness theorem for ordinary differential equations), A(f;) % 0 for 1 <j<n.
Thus p; and ¥; cannot both vanish. We now discuss the behaviour of T(a) as a fune-
tion of «. We assume a knowledge of basic properties of almost periodic funections
as in BoHR [2]. Note that T'(x) is almost periodic. Assume that there is o k with
1<k<n such that |h(t;)] == |h(t,)| ¢f j# k. Then no other terms in the expression
for T(zx) can cancel the terms with j = k. Hence T(«) does not vanish identically.
Sinee h(t;) # 0 for 1<j<n, the integral of T is also almost periodic. (Remember
that the sum is finite.) Thus the integral of T is bounded on R. Tt follows that 7'
must change sign. Remember that T is uniformly continuous and cannot have a
limit as & — co (since it is almost periodic). Since an almost periodic function has
arbitrarily large translation numbers, it follows that there exist é > 0 and f,, 7,
for every positive integer s such that f, —oco and y,—oco as s — oo, T(ﬂs)>6 and
T(y,)<— 0. By choosing subsequences, we can ensure that f§,< y,<f,,, for every
positive integer s. By (10), it follows that F(f,) > 0 and F(y,) <0 if s is large. It
follows as in the proof of Theorem 1 that there exists an & > 0 such that f, +-the R
if |t|<e. Moreover, by the remarks after the proof of Proposition 1, there exist o
in (8, y.) and ®(«) € w(x) such that L{ah + B(x)) = a sin (ah + ¥(a)) — f, for every
large s. Thus (4) has an infinite number of solutions. We have proved the following
result.

THEOREM 4. — Assume that foe R(L), that B'(t;) %0 for 1<j<n where {1},
are the zeros of b’ in (0,m). In addition, assume that there is a k such that 1<k<n
and |W(t,)| == |Mtp)| if j~ k. Then there is an &> 0 such that f, - the R if |t]<e.

Moreover, (4) has an infinite number of solutions for f = f,.

REMARKS. — 1) Our methods are still valid if g(y) = @ sin (y + ¢) where ¢ 5 0.
The assumption that there is a k such that |h(t;)] 5= [h(t,)] for j = & is only used to
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ensure that T'(x) does not vanish identically. It is not difficult to show that ¥ =
{foe R(L): T'(«) vanishes identically} is a closed nowhere dense subset of R(L)
which is non-empty in many cases. Note that the coneclusion of Theorem 4 holds
for foe R(L)\Y even if the condition on [k(?)| fails. It can also be shown that ¥
is empty if there exist 1<k << 1<n, such that |[h(?;)| % |h(t:)] if 54k, 1 and |B"(t,)| 5~
|'(t,)]. On the other hand, if Ly = — y" + 4y, then Y is non-empty but does
not intersect {foe R(L): sup |8f,| < Lin}. If Assumption U of § 2 holds, then one can
obtain other results by variational methods. In particular, if %’ has only a finite
number of zeros in (0, ), then it is easy to use Lemma 1 (i) to prove that F(a) —
L <L8fy, fo> as |a| —>oco (where, as in § 2, F is the gradient of #). By a similar
argument to the one there, it follows that E(L)C R. Note that the methods used
to prove Theorem 4 are also valid for non-self adjoint equations, for some other
boundary conditions and for ordinary differential operators of higher order. Our
methods can be. combined with Erdelyi’s techniques fo cover cases where A’ has
degenerate zeros. The degenerate zeros dominate in the study of the asymptotic
behaviour of F(x). If Property U holds, our estimates could be combined with varia-
tional methods to obtain some results in the cases where N(L) is multidimensional.

2) Onece again, it is not difficult to show that R is closed under the assumption
of Theorem 4. (It is necessary to check that @) > 0 as o — o0 locally uni-
formly in f,:) One can prove further results on the structure of R if either h(¢) > 0
on (0,7) or if Assumption U holds. In particular, similar results to the ones in
Remark 1 of § 2 hold though a little more ecare is needed in the proofs. In addi-
tion, by a slightly more careful argument, one can prove the following under the
assumptions of Theorem 4. For each f, € R(L) there is an &,> 0 such that (4) has
at least n (but finitely many) solutions for f = f, + th if 0 < [t|<e,. There iy one
problem that behaves rather differently. Consider Ly = — y” with periodic (or
Neumann) boundary conditions. In this case, % is constant. It is not difficult to
use the method of sub- and super-solutions (as in[7]) to deduce that there exist
continuous funetions e, «y: B(L) — R such that

R = {dh + fo: fo€ R(L), “1(fo)<“<“2(fo)} .

Moreover, B(L) C R and thus «,(f) <0<«,(f,). To see that E(L)C R, one minimizes

f[fv’(tﬁ + @ cos o(t) — fo(t)2()] dt
over ’

{w & W0, 2 0(0) = a(a), 0< Jatt dt<2n}

(where f,e R(L) = {xeLl[O, 7]: fw(t) dt = 0}. The periodicity of cos then ensures
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the minimum is also the minimum on {xe W20, x]: ®(0) = #(w)}. We do not
know of an example where oy(f,)oa(fe) = 0. It can be shown that oy(f,)a(f,) < 0 if
sup Sf,— inf 8f, < 2x. CasTRO [3] independently obtained similar results to the ones
of this paragraph under a vestriction on 4.

3) The methods of § 2 and § 3 can be combined to consider cases where
g(y) = ¢:(y) -+ asin (y 4+ ¢), with ¢,(y) — 0 as |y} —oco. Under natural hypotheses,
one can show that this problem behaves like the one in § 2 if |y[*g.(y) sgny — oo
as |y| - co while it behaves like the one in § 3 if |y|f¢,(y) — 0 as y —oco. (This
occurs because the magnitude of g,(y) determines which term dominates in the
agymptoties. )

4) Our methods can be generalized to apply to simple eigenvalues of a smooth
elliptic operator on a smooth bounded domain £ in R* if k = 2 or 3 and f,e L?(Q)
where p > k. We indicate this briefly. The non-degeneracy assumption becomes
that the hessian matrix D*h(») is invertible whenever Vh(z) =0 and xe . To
obtain the estimates in this case, we choose an open cover {4}, of 2 such that,
in suitable coordinates k|, is a linear function or is quadratic with no linear term.
(That this can be done follows from the Morse lemma and the implieit function
theorem.) We then choose a partition of unity subordinate to the A, and estimate
F(e) by writing it as a sum of integrals over the A, and where the integrand is zero
near o4;: When k|, is linear (for some coordinates), it is easy to use two integra-
tions by parts to show that the corresponding contribution to F(x) is 0(«~2). Near a
critical point, one can use Erdelyi’s ideas and those in Masvov [19, pp. 238-239]
to obtain a similar estimate to earlier for the contribution to F(«x). (If & = 2 or 3,
the contribution near a critical point #; is ~ Ko ¥ sin {ah(z;) + tmw + Sfole,)),
where w is the signature of the symmetric matrix D?h(z;) and K > 0.) If k>4, the
problem seems to behave a little differently. For example, if g(y) = —cosy =
sin (y 4 %), integration near ¢ gives a contribution ~ Ko, (On the other
hand, if Property U holds, variational methods can be used to show that R(L)C R
for all & provided that {x € 2: Vh(x) = 0} is finite.) With a little care, our results
can be generalized to the generic case (in the sense of UHLENBECK [24]) by allowing
slightly more general singularities on 242 (as at the end of § 2). Finally, by using a
theorem of GroMoLL and MEYER [16] to obtain a local eanonical form for h, we
can generalize our methods to cover all reasonable cases where the Hessian matrix
D2h(,) has rank at least k— 1 at every critical point #; in £ (and % = 2 or 3).
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