
Swarm Intell (2013) 7:201–228

DOI 10.1007/s11721-013-0079-6

On the use of Bio-PEPA for modelling and analysing

collective behaviours in swarm robotics

Mieke Massink · Manuele Brambilla · Diego Latella ·

Marco Dorigo · Mauro Birattari

Received: 31 October 2012 / Accepted: 1 March 2013 / Published online: 11 April 2013

© Springer Science+Business Media New York 2013

Abstract In this paper we analyse a swarm robotics system using Bio-PEPA. Bio-PEPA is

a process algebra language originally developed to analyse biochemical systems. A swarm

robotics system can be analysed at two levels: the macroscopic level, to study the collective

behaviour of the system, and the microscopic level, to study the robot-to-robot and robot-to-

environment interactions. In general, multiple models are necessary to analyse a system at

different levels. However, developing multiple models increases the effort needed to analyse

a system and raises issues about the consistency of the results. Bio-PEPA, instead, allows the

researcher to perform stochastic simulation, fluid flow (ODE) analysis and statistical model

checking using a single description, reducing the effort necessary to perform the analysis

and ensuring consistency between the results. Bio-PEPA is well suited for swarm robotics

systems: by using Bio-PEPA it is possible to model distributed systems and their space-

time characteristics in a natural way. We validate our approach by modelling a collective

decision-making behaviour.

Keywords Swarm robotics · Modelling · Bio-PEPA · Fluid flow analysis · Statistical

model checking

M. Massink (�) · D. Latella

Istituto di Scienza e Tecnologie dell’Informazione ‘A. Faedo’ (ISTI), CNR, Pisa, Italy

e-mail: massink@isti.cnr.it

D. Latella

e-mail: latella@isti.cnr.it

M. Brambilla · M. Dorigo · M. Birattari

IRIDIA, CoDE, Université Libre de Bruxelles, Brussels, Belgium

M. Brambilla

e-mail: mbrambil@ulb.ac.be

M. Dorigo

e-mail: mdorigo@ulb.ac.be

M. Birattari

e-mail: mbiro@ulb.ac.be

mailto:massink@isti.cnr.it
mailto:latella@isti.cnr.it
mailto:mbrambil@ulb.ac.be
mailto:mdorigo@ulb.ac.be
mailto:mbiro@ulb.ac.be

202 Swarm Intell (2013) 7:201–228

1 Introduction

The analysis of large and complex swarm robotics systems (Sahin 2005; Brambilla et al.

2013) directly with robots is costly and time consuming. For this reason, one of the most

common ways to analyse a swarm robotics system is through physics-based simulations.

Using physics-based simulations, it is possible to realise a very detailed representation of

the system to analyse. However, such a detailed representation could encumber the analysis

process. In fact, through simulation it is difficult to abstract from the details of a system in

order to identify its key components and parameters. Moreover, physics-based simulations

are not well suited for the formal verification of properties.

To overcome these limitations, other approaches are usually employed (Brambilla et al.

2013). Fluid flow analysis (Lerman et al. 2005), based on macroscopic models and ordinary

differential equations (ODEs) is commonly used for describing the collective behaviour of

a system. Stochastic simulations (Dixon et al. 2011), based on microscopic models, focus

instead on the behaviour of individual robots. Finally, model checking (Konur et al. 2012),

based on Markov chains and mathematical logic, can be used to verify formal properties of

a swarm robotics system.

These approaches allow a developer to obtain different “views” of the system behaviour.

However, for each of these views, a different model is necessary: macroscopic models, mi-

croscopic models and Markov chains are just three examples of possible models. Producing

such models greatly increases the effort necessary for the analysis process. Moreover, when

dealing with different models, the issue of mutual consistency must be addressed.

In this paper, we present a novel approach to model swarm robotics systems based on

Bio-PEPA (Ciocchetta and Hillston 2009), which allows one to obtain different consistent

views of a system from the same formal specification.

Bio-PEPA is a process algebra language originally developed for modelling biochemical

systems. Bio-PEPA has been adopted to analyse a number of biological systems (Ciocchetta

and Hillston 2012) and disease spread (Benkirane et al. 2012), but it has also been used

to analyse emergency egress (Massink et al. 2012c) and crowd dynamics (Massink et al.

2011b) which are systems characterised by a high number of individuals and lack of a cen-

tralised controller, aspects common also to swarm robotics systems. Bio-PEPA is well suited

to analyse and develop swarm robotics systems; with Bio-PEPA it is possible to develop a

specification at the microscopic level while providing also primitives for spatial description

(e.g. locations) and for composition of individual robot behaviour specifications (e.g. co-

operation operator). Moreover, Bio-PEPA allows one to easily define species, which can

be used to characterise groups of robots with specific attributes and actions; for instance,

species can be used to differentiate between groups of robots performing different tasks at

the same location.

Other techniques developed for biochemical systems have been used in a number of pa-

pers (Napp et al. 2011; Mather and Hsieh 2012; Evans et al. 2010) to model swarm robotics

systems due to the similarities between these two kinds of system. Examples of such sim-

ilarities are: a large number of equal entities, lack of centralised control, group formations,

different behaviours for different entities. Differently from other biochemical modelling ap-

proaches, Bio-PEPA allows one to perform different kinds of analysis using a single de-

scription of a system. As said, this aspect is also crucial for swarm robotics, where different

analyses usually require different descriptions of the same system.

In this paper, we use Bio-PEPA to develop a formal specification and to analyse a col-

lective decision-making behaviour which has been extensively studied in several papers

(Montes de Oca et al. 2011; Scheidler 2011; Valentini et al. 2013). The case study con-

sists of a swarm of robots that have to collectively identify the shortest path between two

Swarm Intell (2013) 7:201–228 203

possible choices. We validate our results against those presented in Montes de Oca et al.

(2011).

This paper builds on the preliminary results of Massink et al. (2012b). Compared to

our previous work, in this paper we present in more detail Bio-PEPA and its application to

the analysis of swarm robotics systems. To further validate our approach, we extended the

analysis of the case study, producing numerous new results. In particular, we extended the

statistical model checking analysis (Sect. 5.2) and the fluid flow analysis (Sect. 5.3).

The outline of the paper is as follows. In Sect. 2, we present related work. In Sect. 3,

we give a brief presentation of Bio-PEPA. In Sect. 4, we present the case study and its Bio-

PEPA specification. In Sect. 5, we present and validate our results. Some conclusions are

drawn in Sect. 6.

2 Related work

Swarm robotics systems can be observed at two different levels: the microscopic level and

the macroscopic level. At the microscopic level we observe the individual robots and their

interactions. At the macroscopic level we observe the swarm as a whole, that is, what results

from the interactions of the individual robots. This duality is reflected also in how swarm

robotics systems are modelled: models of swarm robotics systems can be developed both us-

ing a microscopic approach and a macroscopic approach. These different approaches result

in different ways to analyse a swarm robotics system.

In this section, we present work on microscopic modelling, macroscopic modelling and

model checking.

Microscopic modelling Microscopic models allow a researcher to study a swarm robotics

system observing in detail the robot-to-robot and robot-to-environment interactions. Such

interactions are the fundamental components of any swarm robotics system. The macro-

scopic behaviour of a swarm is in fact the result of these interactions.

Microscopic models give us a very detailed view of a system. However, this high level of

detail is also the cause of the main limit of microscopic models: limited scalability. In order

to describe the behaviour of a swarm it is necessary to replicate the description of the single

individual for the number of individuals in the swarm. This results in models with a large

number of components, which are computationally heavy to treat. Microscopic models are

usually analysed via stochastic simulation (Brambilla et al. 2013; Lerman et al. 2005).

Macroscopic modelling Macroscopic models, instead, consider the time evolution of the

swarm as a whole, ignoring the details of the individual robots composing it. Using macro-

scopic models it is possible, for example, to observe how the swarm evolves and reaches a

common decision, but not the details of the contribution of each robot to such a decision.

The most common way to create a macroscopic model for a swarm robotics systems is by

specifying a number of ordinary differential equations (ODEs) which model the distribution

over time of the components of the system. ODEs are often called rate equations in swarm

robotics. The analysis performed with ODEs is sometimes called fluid flow analysis, as the

changes in the distribution of the robots can be modelled as changes in the distribution of

liquids flowing from one location to another (Zarzhitsky et al. 2005).

This high level view allows one to analyse swarm robotics systems composed of thou-

sands of robots in a computationally feasible way, making macroscopic models the most

common modelling approach in swarm robotics (Brambilla et al. 2013). The price to pay for

204 Swarm Intell (2013) 7:201–228

this scalability is that it becomes difficult to analyse in detail the interactions of the robots. In

general, macroscopic models focus on the average behaviour of the system, abstracting from

local stochastic fluctuations. A review of macroscopic modelling in swarm robotics can be

found in Lerman et al. (2005). A comparison between the microscopic and the macroscopic

models of a swarm robotics system is presented in Martinoli et al. (2004).

Model checking Another way for specifying and analysing properties of interest of a

swarm robotics system is through mathematical logic and model checking—see, for ex-

ample, Baier et al. (1999). This approach has been applied with success to several different

fields (Burch et al. 1990; Havelund et al. 2001) but it has not been explored extensively in

swarm robotics. Some examples of model checking in swarm robotics can be found in the

works by Konur et al. (2012) and Brambilla et al. (2012).

Model checking allows the user to automatically verify whether a given property is sat-

isfied by a given model. The model, which is usually expressed through a Markov chain,

can be either microscopic or macroscopic. The property is expressed using a mathematical

logic.

Discussion In general, to perform different analyses of the same system, such as stochas-

tic simulation, fluid flow (ODE) approximation and model checking, different models are

necessary. Microscopic models are best suited for stochastic simulations; ODE macroscopic

models are best suited for fluid flow approximation; Markov chain models may be used for

stochastic model checking. The proliferation of different formalisms necessary to perform

different analyses increases the effort necessary to study a system and may create problems

of consistency between different models and related analysis results.

A way to overcome this problem is to use a high level meta-modelling language. In this

paper, we use Bio-PEPA. Bio-PEPA allows us to perform different kinds of system analysis

starting from a single specification.

3 Bio-PEPA

Bio-PEPA is a language that was originally developed by Ciocchetta and Hillston (2009)

for the stochastic modelling and analysis of biochemical systems. Bio-PEPA is based on the

Performance Evaluation Process Algebra (PEPA) (Hillston 1996).

For the purposes of the present paper, process algebras are formal specification languages

for modelling concurrent/distributed systems behaviour (Bergstra et al. 2001). They are

characterised by a formal definition of their syntax, which defines precisely the format of

the terms of their language, that is, the specifications, and a formal definition of their oper-

ational semantics, which assign meaning to such specifications, associating them to mathe-

matical objects. Furthermore, process algebras are equipped with mathematical theories for

reasoning about system behaviour, as, for example, behaviour equivalences, which precisely

characterise when two or more different specifications actually specify “the same” (strictly

speaking, we should say “equivalent”) behaviour.1 The availability of support theories based

1Often, such equivalences are congruences, which is a crucial feature for compositional modelling. Intu-

itively, one would like to build specifications of large systems in a modular way, by composing specifications

of sub-systems in order to get those of larger systems. If the specification of one such sub-system, say S1,

is proved to be congruent to another specification, say S2 , then we are allowed to replace S1 with S2 in any

specification S which has S1 as sub-component, with the guarantee that the overall behaviour of S will not

be affected. Note that this is not guaranteed if one uses equivalences which are not congruences.

Swarm Intell (2013) 7:201–228 205

upon solid mathematical foundations, together with analysis techniques based on such the-

ories and often supported by efficient software tools, makes process algebras particularly

useful for the specification and analysis of behavioural aspects of concurrent/distributed

systems.

Stochastic variants of process algebras, of which Bio-PEPA is an instance, have shown to

be particularly suitable to model also performance aspects of systems (see, e.g. Hermanns

et al. 2002; Aldini et al. 2010). Process algebras thus provide a formal and unambiguous

framework for modelling and reasoning about system behaviour in a compositional way.

In Bio-PEPA, processes represent groups of similar entities. The interactions between

groups of entities affect their population sizes. In the context of swarm robotics we will use

this abstraction of “processes as groups of entities” to model groups of robots performing

different behaviours. We will use the concept of interaction to model, for example, the move-

ment of robots between different locations and for the formation of teams. The idea is that

movement of robots between locations can be modelled as a simultaneous decrease of the

size of a population situated in the location that is left and increase of the size of a population

in the location of arrival. Regarding team formation, another feature, specific of Bio-PEPA,

is particularly useful: the possibility to express the multiplicity of entities involved in single

interactions, known as “stoichiometry” in the context of biochemistry. With this feature one

can specify, for example, that three single robots can form a single team that subsequently

is treated as a single entity in a new kind of “species”.

Interactions have durations which are modelled as continuous random variables with

negative exponential distributions. The use of negative exponential distributions is justi-

fied by the fact that Bio-PEPA semantics is based on Continuous Time Markov Chains

(CTMCs) and fluid flow approximations thereof, characterised by systems of ordinary dif-

ferential equations (ODEs). CTMCs are among the most successful frameworks in the field

of quantitative system modelling and analysis, such as, for example, performance or de-

pendability analysis. They are based on exponential distributions, which have useful and

interesting mathematical properties. In practice, restriction to exponential distributions does

not represent a real limitation since it has been shown that any random distribution can be

approximated by suitable combinations of negative exponential ones, of course at the cost of

larger models, which can be ameliorated by suitable exploitation of process algebra equiv-

alences (Tschaikowski and Tribastone 2012). Finally, fluid limits and semantics are the key

for actual scalability. Roughly speaking, for a CTMC modelling the behaviour of a popula-

tion of agents, one can “scale it up” by means of making the population size increase. Under

certain (scaling) conditions, the (limit) behaviour for an infinite population can be obtained

via the solution of a suitable set of ODEs. Furthermore, good approximations of such “fluid”

limit can be obtained for large, but finite, population sizes. In the case of Bio-PEPA, such

a set of ODEs can be automatically generated for any Bio-PEPA system specification and

constitutes what is usually called the ODE or “fluid flow” semantics of the language.

A further feature of Bio-PEPA is that the rates at which interactions occur can be defined

as general functions of the population sizes of the groups involved in the interaction. This

provides great flexibility in the definition of such rates.2

2This flexibility comes at a cost. Not all analysis methods, such as Gillespie’s stochastic simulation algo-

rithms, can yet deal with the full generality of rate functions or with interactions that depend on more than

two species as input to the interaction. Similar caution is needed with the interpretation of numerical solutions

of the sets of ordinary differential equations derived from a Bio-PEPA specification. We will address these

issues in more detail in the analysis of the robot swarm decision-making strategy in Sect. 5.

206 Swarm Intell (2013) 7:201–228

We now briefly recall the aspects of the Bio-PEPA language that are directly relevant for

the swarm robotics study that will be presented in the next section. The interested reader can

find further details of Bio-PEPA in Ciocchetta and Hillston (2009).

Bio-PEPA specifications consist of two main kinds of component. The first kind is called

the “species” component. Each species defines the behaviour of all the individuals belong-

ing to it. Species components are composed together in order to build a model using the

parallel composition operator with synchronisation on shared actions. The name “species”

derives from the biochemical origins of Bio-PEPA; in the context of swarm robotics, the

name “population” is usually preferred; in the following, we will consider “species” and

“population” as synonyms.

The second kind of component is called model component. Model components define

how species components are composed together in order to build a model using the parallel

composition operator with synchronisation on shared actions.

The syntax of Bio-PEPA components is thus defined as follows, where S stands for a

species component and P for a model component:

S ::= (α, κ) op S | S + S | C with op= ↓ | ↑ | ⊕ | ⊖ | ⊙ and P ::= P ⊲⊳
L

P | S(x)

The prefix combinator “op” in the prefix term (α, κ) op S represents the impact that ac-

tion α has on species S. Specifically, ↓ indicates that the number of entities of species S

decreases when α occurs, and ↑ indicates that this number increases. The amount of the

change is defined by the (stoichiometry) coefficient κ . This coefficient captures the multi-

ples of an entity involved in an interaction. The default value of κ is 1, in which case we

might simply write α instead of (α, κ). Action durations are assumed to be random variables

with negative exponential distributions, characterised by their rates. The rate of action α is

defined by a so called functional rate or kinetic rate. Action rates are defined in the context

section of a Bio-PEPA specification.

The symbol ⊕ denotes an activator, ⊖ an inhibitor and ⊙ a generic modifier, all of which

play a role in an action without being produced or consumed and have a defined meaning in

the biochemical context. We will not use these operators in the present paper. The operator

“+” expresses the choice between possible actions, and the constant C is defined by the

equation C
def
= S. The process P ⊲⊳

L
Q denotes cooperation between components P and

Q, the set L determines those actions on which the components P and Q are forced to

synchronise. The shorthand P ⊲⊳
∗

Q denotes cooperation on all actions that P and Q have

in common. In S(x), the parameter x ∈ R represents the initial amount of the species.

As a simple example, consider two groups of robots, R and B , identified by their respec-

tive colour, red and blue. Assume that we want to model the formation of a group T of teams

each composed of two red robots and a blue one. Assume furthermore that the rate at which

team formation occurs is regulated by a rate function that is proportional to the population

size of red and blue robots. In Bio-PEPA this behaviour can be modelled as follows. The

effect of the formation of a team, represented by action mk_team, on the three “species” can

be defined as:

R
def
= (mk_team,2)↓R B

def
= (mk_team,1)↓B T

def
= (mk_team,1)↑T

The system can then be described by the following model component:
(

R(r0) ⊲⊳
{mk_team}

B(b0)
)

⊲⊳
{mk_team}

T (0)

where r0 and b0 denote the initial population sizes of the groups of red and blue robots,

respectively, and 0 denotes that initially T is empty. What remains to define is the rate at

Swarm Intell (2013) 7:201–228 207

which the teams are formed, that is, the rate of action mk_team. This rate could be defined

as the rate function: fmk_team = r × R × B .

So, operationally, what happens is that every time a mk_team action occurs, the three

species that share this action are synchronised and two red robots and one blue are taken

away from the species R and B , respectively, while at the same time one new team is gener-

ated and added to the species T increasing its population size by 1. How often the mk_team

action occurs is given by its rate function, which in turn depends on the actual population

sizes of the species R and B and a constant rate parameter r . Note also that, whenever one

of these population sizes becomes zero, the rate function goes to zero too and the interaction

can no longer take place.

In Bio-PEPA specifications, one can also use locations, which are meant to be a symbolic

representation of physical space. Locations are specified by extending prefix terms with the

notation @location. So, for instance, in order to specify that an action, say α, has an effect

on population S that is located in location l, and in particular involves κ individuals of S,

we write (α, κ) op S@l. Additionally, locations are used in model components in order to

specify the initial size of the various populations in each location. Of course, each location

used in a Bio-PEPA specification must be declared; thus, a Bio-PEPA system specification

with locations consists of a set of species components, a model component, and a context

containing definitions of locations, functional/kinetic rates, parameters, and so on.

Bio-PEPA is given a formal operational semantics based on Continuous Time Markov

Chains (CTMCs) and on Ordinary Differential Equations (ODE) (Ciocchetta and Hillston

2008, 2009).

Bio-PEPA is supported by a suite of software tools which automatically process Bio-

PEPA models and generate internal representations suitable for different types of analysis

as described in detail in Ciocchetta and Hillston (2009) and Ciocchetta et al. (2009). These

tools include mappings from Bio-PEPA to differential equations (ODE) supporting a fluid

flow approximation (Hillston 2005), stochastic simulation models (Gillespie 1977), CTMCs

with levels (Ciocchetta and Hillston 2008) and PRISM models (Kwiatkowska et al. 2011)

amenable to statistical model checking. Consistency of the analyses is supported by a rich

theory including process algebra, and the relationships between CTMCs and ODE.

4 Collective decision-making: a Bio-PEPA specification

To demonstrate the characteristics of Bio-PEPA, in this section we analyse a collective robot

swarm decision-making system presented originally by Montes de Oca et al. (2011).3 The

goal of the swarm of robots is to perform foraging: the robots carry objects from a start area

to a goal area. Unlike many foraging scenarios (Brambilla et al. 2013), the objects to be

carried are too heavy for a single robot, thus cooperation is necessary: the robots form teams

of three to be able to carry an object.

The start and the goal areas are connected by two paths: a short path and a long path.

This scenario is thus very similar to the ants double bridge experiment (Goss et al. 1989).

Similar to what ants do in the double bridge experiments, the robots have to collectively

identify and choose the shortest path. Differently from what ants do, the robots do not use

pheromones but a voting process based on the majority rule.

Each robot has a preferred path. When a group is formed in the start area (Fig. 1(a)),

a vote takes place and the group chooses the path that is preferred by the majority of the

3Since an implementation of this system using real robots is not available, the physics-based simulation will

be considered our ground truth, that is, not another analysis phase, but the subject of our analysis effort.

208 Swarm Intell (2013) 7:201–228

Fig. 1 The foraging scenario analysed in this paper. The robots start in the start area. Groups are formed

and the path is chosen using the majority rule. In this figure two examples of the voting process are shown:

(a) a group is formed; (b) the group has chosen the short path; (c) while the first group is active, another

group is formed; (d) the second group has chosen the long path, at the same time the first group is coming

back; (e) the first group is back in the start area and is disbanded

robots composing it (Fig. 1(b)). The chosen path also becomes the new preferred path for all

the robots composing the group (Fig. 1(e)). For example, if two robots prefer the short path

and one robot prefers the long path, the short path is chosen for the next run and the robot

that preferred the long path changes its preference to the short path. Note that the voting

process takes place only in the start area and no other event can change the preference of the

robots. This means that robots come back to the start area following the same path taken for

the outgoing trip. Figure 1 shows a schema of the scenario.

Since the robots taking the short path spend less time out of the start area than the robots

taking the long path, their participation in the vote is, on average, more frequent. This results

in the formation of more groups preferring the short path. If, initially, half of the robots have

a preference for the short path and half for the long path, over time, all robots will converge

on preferring the short path. More details are given in the work by Montes de Oca et al.

(2011) and in Sect. 4.1.

We chose this collective decision-making behaviour as a case-study for Bio-PEPA since

it displays several interesting characteristics common to many swarm robotics systems:

– Simplicity: the collective behaviour is simple enough that it is possible to analyse it with-

out being hampered by the implementation details.

– Direct cooperation: the robots must form groups of three to carry the objects.

– Indirect cooperation: the vote process creates an opinion dynamics that lets the robots

collectively choose the shortest path.

– Space and time aspects: space and time play an important role and must be carefully

modelled. In particular, the voting process is spatially located in the start area and only

the robot in the start area at a given moment can take part in it. Additionally, the time

Swarm Intell (2013) 7:201–228 209

Fig. 2 Locations and transitions

of robots in the Bio-PEPA

specification

necessary for the robots to carry an object, which depends on the length of the chosen

path, affects the opinion dynamics.

This system has been analysed in several other works: Montes de Oca et al. (2011) pre-

sented a simple fluid flow analysis and a Monte Carlo simulation, Scheidler (2011) presented

a more complex fluid flow analysis, Valentini et al. (2013) presented an analysis based on

absorbing Markov chains. In these works, each analysis was based on a different model. In

our paper, we use a single Bio-PEPA description to perform three different kinds of analysis.

4.1 The Bio-PEPA specification

In the remaining part of this section we present the Bio-PEPA specification of the system.

The full specification can be found in the supplementary material (Massink et al. 2012a).

As shown in Fig. 2, the system is described by eight Bio-PEPA locations: two boundary

locations, start and goal; a location A where robot teams select the short or long path

to goal according to the decision taken when leaving start and, similarly, location B ,

where robot teams select the short or long path back to start, again according to the

previously taken decision. We have then two locations for each path, L1 and L2 for the long

path and S1 and S2 for the short one. We also define a set of Bio-PEPA species to specify

the behaviour of the robots. For example in start we distinguish two species of robots:

those that the last time returned via the short path, denoted as Robo_start_ fromS, and those

that returned via the long path, denoted as Robo_start_ fromL. In the sequel we will refer to

these two groups also as the S-population and the L-population, respectively. Similarly, other

locations contain populations of teams of robots that move in the direction from the start area

to the goal area and those that move in the opposite direction. For example, in location S1

we can have Teams_S1_StoG and Teams_S1_GtoS, where StoG denotes the direction from

the start area to the goal area and GtoS the opposite direction.

The Bio-PEPA fragment below specifies the behaviour of a robot. Robots leave the start

area in groups of three. Each group is randomly composed by either three robots from the

210 Swarm Intell (2013) 7:201–228

Fig. 3 Two components

synchronised on action S2L1
Robo_start_ fromS = (allS,3)↓Robo_start_ fromS@start+

(S2L1,2)↓Robo_start_ fromS@start+

(S1L2,1)↓Robo_start_ fromS@start+

(go_S1_start,3)↑Robo_start_ fromS@start;

Teams_A_S = (allS,1)↑Teams_A_S@A+

(S2L1,1)↑Teams_A_S@A+

go_A_S1↓Teams_A_S@A;

S-population, three from the L-population or two from S and one from L or two from L and

one from S. These combinations are modelled as four different actions: allS, allL, S2L1

and S1L2. In Bio-PEPA the formation of teams of robots is modelled by the coefficient

that indicates how many entities are involved in an action. For example, upon action allS

three robots of the S-population leave start (indicated by (allS,3)↓), to form an addi-

tional team of robots in choice point A (indicated by (allS,1)↑ in Teams_A_S) which is

ready to take the short path when the team continues its journey towards the goal area

(population Teams_A_S@A). Since action allS is shared between the species components

Robo_start_ fromS and Teams_A_S this movement occurs simultaneously with the rate of

action allS that will be defined later on.

In a similar way, upon action S2L1, which is present in three components (Robo_start_

fromS, Teams_A_S and Robo_start_ fromL, of which the first two are shown in Fig. 3), all

three components synchronise, resulting in two robots from the S-population and one from

the L-population leaving the start area and forming at the same time 1 new team in choice

point A in the population Teams_A_S, that is, those teams in choice point A that decided to

take the short path. The synchronisation pattern of the components is given by the model

component shown later on. The excerpt above only shows the behaviour of teams voting for

the short path. The behaviour of those voting for the long path is similar and omitted for

reasons of space. For the same reason also the behaviour of teams moving between different

locations is not shown.

The actions denoting teams of robots leaving the start area need to occur with appropriate

rates. For example, a group of three robots that are all from the S-population has a probability

to occur equal to

pSSS =
(RSS)

(RSS) + (RSL)
·

(RSS − 1)

(RSS − 1) + (RSL)
·

(RSS − 2)

(RSS − 2) + (RSL)

where, for the sake of readability, Robo_start_ fromL@start is abbreviated by RSL and RSS

abbreviates Robo_start_ fromS@start. The rate with which the action occurs is the product

of the probability of the action to occur and the rate of leaving the start area. A similar

probability pLLL and rate can be defined for a group of three robots from the L-population.

The probability to extract two robots from the S-population and one from the L-

population is:

pSSL =
(RSS)

(RSS) + (RSL)
·

(RSS − 1)

(RSS − 1) + (RSL)
·

(RSL)

(RSS − 2) + (RSL)

Similarly, probabilities for pSLS, pLSS, pLLS, pLSL and pSLL can be defined. Therefore,

the total probability that two, out of the three members of a team, vote for the short path

is pSSL + pSLS + pLSS, while for the long path it is pSLL + pLSL + pLLS. Consequently,

the rates of actions S2L1 and S1L2 can now be defined as (pSSL + pSLS + pLSS) · move

and (pSLL + pLSL + pLLS) · move, respectively. Note that the sum of these six probabili-

ties and pSSS and pLLL amounts to 1. So the total rate at which teams of robots leave the

Swarm Intell (2013) 7:201–228 211

start area is constant and given by the parameter ‘move’. The rate at which teams move

from A to S1 and to L1 is also dependent on the number of teams present in A and are

walk_normal · Teams_A_S@A and walk_normal · Teams_A_L@A, respectively. The rate pa-

rameter walk_normal specifies the time it takes a robot team to move from choice-point A

to the first section of a path.

The overall system definition shows the initial size of robot populations in each location.

The overall robot behaviour is defined using cooperation on shared actions (see Sect. 3 for

a definition and example):

Robo_start_ fromS@start(SS) ⊲⊳
∗

Robo_start_ fromL@start(SL) ⊲⊳
∗

Teams_A_S@A(0) ⊲⊳
∗

Teams_A_L@A(0) ⊲⊳
∗

Teams_S1_StoG@S1(0) ⊲⊳
∗

Teams_S1_GtoS@S1(0) ⊲⊳
∗

Teams_S2_StoG@S2(0) ⊲⊳
∗

Teams_S2_GtoS@S2(0) ⊲⊳
∗

Teams_L1_StoG@L1(0) ⊲⊳
∗

Teams_L1_GtoS@L1(0) ⊲⊳
∗

Teams_L2_StoG@L2(0) ⊲⊳
∗

Teams_L2_GtoS@L2(0) ⊲⊳
∗

Teams_goal_ fromS@goal(0) ⊲⊳
∗

Teams_goal_ fromL@goal(0) ⊲⊳
∗

Teams_B_ fromS@B(0) ⊲⊳
∗

Teams_B_ fromL@B(0)

where the number SS in Robo_start_ fromS@start(SS) (resp. SL) is the initial size of the

robot S-population (resp. L-population) present in the start area (@start).

There is a further issue to consider which is the way to model the length of the paths. This

can be done in two ways. The first is to model each path by two sections, as illustrated above,

and vary the time it takes teams to traverse these sections by choosing a different rate for the

movement between sections on the short and the long path, respectively. However, as also

discussed in Montes de Oca et al. (2011), this model has the disadvantage that the duration

of path traversal is essentially modelled by a short series of exponential distributions which

in general approximates the average duration well, but not the variability. It therefore does

not reflect very well real robot behaviour. An alternative is to choose the same rate for each

section and to vary the number of sections on each path to model their difference in length.

This way the traversal time of a path is modelled by a sequence of say m exponentially

distributed random variables with rate λ, also known as an Erlang distribution, using the

well-known method of stages (see Kleinrock 1975, p. 119).4

We model the two paths of the environment with eight sections for the short path and 15

sections for the long path. Each section takes, on average, ten time units to traverse by a robot

team. This is modelled in the system by defining the rate walk_normal = 0.1. Considering

also the movements from the choice points to the path and those from the path to the start

area and the goal area, the short path takes on average 100 time units to traverse, and the

long one 170. This is comparable to the latency periods used in Montes de Oca et al. (2011)

and provides a good approximation of the actual variability observed in robot movement.

Other free variables of the model not provided in Montes de Oca et al. (2011) have been

selected by us.

The analysis presented in Montes de Oca et al. (2011), that we will use to compare our

results with in the next section, is based on the assumption that there is a constant number

of teams, say k, active (that is, not present in the start area) at any time. The number k

is a parameter of the model. In the Bio-PEPA model we use parameter min_start which

4The mean (variance, resp.) of an Erlang distribution with m phases of rate λ is m/λ (m/λ2 resp.). Thus an

appropriate choice of m and λ can guarantee the required values for the mean and variance, approximating a

normal distribution.

212 Swarm Intell (2013) 7:201–228

Fig. 4 Graphical representation

of the full Bio-PEPA swarm

decision-making model

specifies the minimum number of robots in the start area at any time. As we will see in the

next section, after a short initial transitory period, the following holds in the model with a

good approximation: k = (32 − min_start)/3.5

A more detailed graphical representation of the complete Bio-PEPA specification is pre-

sented in Fig. 4. It presents the various locations, with eight locations on the short path (S1

through S8) and 15 on the long path (L1 through L15). In each location there are two pop-

ulations. Their names have been abbreviated for reasons of presentation. Names starting by

R indicate populations of robots, names starting by T refer to populations of teams. Names

ending in S refer to populations of elements that are in favour of the short path, those ending

in L refer to elements in favour of the long path. The arrows after the names of the pop-

ulations in the locations on the paths indicate the direction of movement of the elements

of the population, so those moving from the start area to the goal area are indicated by an

arrow pointing downwards, whereas those moving from the goal to the start are indicated

by an arrow pointing upwards. Also the actions that label the transitions between locations

correspond to those in the Bio-PEPA specification; however, for reasons of readability, only

one action is shown (allS) of all those between the start area and choice point A.

5In Bio-PEPA, one can make use of a predefined function H which takes a number as an argument. If this

number is zero, H returns zero, otherwise it returns 1. To guarantee a minimum number min_start of robots

in the start area, the rate of action S2L1 can then be defined as: S2L1 = (pSSL + pSLS + pLSS) ∗ move ∗

H((RSS + RSL) − min_start); the same must be done for the other related rates.

Swarm Intell (2013) 7:201–228 213

5 Analysis

For the analysis, in this section we consider a Bio-PEPA swarm decision-making specifi-

cation with a population of 32 robots, unless stated otherwise. We furthermore consider

the following parameters for the specification: initially SS = 16 and SL = 16, move = 0.28,

walk_normal = 0.1.

In the following, we illustrate three different forms of analysis of the same Bio-PEPA

specification and compare their results with those validated in the literature (Montes de Oca

et al. 2011). Good correspondence of the results would mean that Bio-PEPA is a viable for-

mal language to model this kind of swarm robotics system but with the additional advantage

that a single specification can be used for multiple kinds of analysis. This also means that,

due to the precise and unambiguous mathematical semantics of the language, the results of

the different analyses are formally related and coherent since they are systematically derived

from the same specification.

In the following sections, the directly relevant aspects of each kind of analysis are re-

called, in particular for what concerns its connection to Bio-PEPA. We omitted such a

description for stochastic simulation because we assume readers to be familiar with this

well-known and widely applied method in the context of swarm robotics. Following each

description, the application of the method is illustrated on the Bio-PEPA swarm robotics

model and results are discussed and compared with those in the literature.

5.1 Stochastic simulation

The first kind of analysis uses stochastic simulation to check the average number of active

teams in the system over time for different assumptions on the minimal number of robots that

are present in the start area. The Bio-PEPA tool suite relies on an implementation of Gille-

spie’s stochastic simulation algorithm (Gillespie 1977). The original algorithm assumed that

only interactions with at most two species were used in the model and that the rates were

simple products of a constant and a population size. In the Bio-PEPA model this is indeed

the case with the exception of the rate functions involved in the team formations, which are

slightly more general, but which do not cause any problem.

Figure 5 presents two stochastic simulation results (average over 10 simulation runs) for

min_start = 5 (Fig. 5, left) and min_start = 2 (Fig. 5, right), showing the number of robots

on both paths and in the start area and also the number of teams on each path. The figure

also shows that the number of active teams on the paths quickly increases to 9 (resp. 10)

and then stabilises at that level. This means that the rate at which robots leave the start area,

Fig. 5 Number of active teams for min_start = 5 (left) and min_start = 2 for move = 0.28 (right)

214 Swarm Intell (2013) 7:201–228

i.e., move = 0.28, is sufficiently high to quickly reach a situation that presents the desired

number of active teams. This makes it possible to compare the results of this analysis with

the results obtained with the physics-based simulation and Monte Carlo simulation reported

in Montes de Oca et al. (2011), which will be discussed in Sect. 5.2.3.

5.2 Statistical model checking

Model checking has first been developed in a non-quantitative setting. Pioneers of this tech-

nique, starting their developments in the early 1980s, are, among others, Clarke et al. (2009)

and Holzmann (1991). This verification technology provides algorithmic means to deter-

mine whether an abstract model of, for example, a hardware or software component, satis-

fies a formal property expressed as a temporal logic formula. Moreover, when the formula is

found not to be satisfied, it can provide automatically a counterexample that illustrates the

potential source of the problem.

At the heart of model checking algorithms are efficient and flexible search procedures

used to verify behavioural properties on the finite, but potentially huge, state space, typi-

cally represented as a graph, of (a model of) a real-world system. Concurrent systems often

produce huge state spaces which is due to the largely asynchronous composition of a con-

siderable number of processes.

More recently, model checking techniques have been extended to deal with quantitative

performance aspects of concurrent systems and related probabilistic versions of the tempo-

ral logics for the specification of quantitative properties have been formulated, such as the

Continuous Stochastic Logic (Aziz et al. 2000; Baier et al. 1999). Efficient model checking

methods for these stochastic variants are based on well-known numerical algorithms for the

calculation of standard measures of continuous/discrete time Markov chains, like transient

or steady state probabilities.

Although stochastic model checking, as this probabilistic variant is called, may gener-

ate very accurate answers, it relies on building the state space of the complete underlying

Markov chain of the abstract system model, which (currently) restricts its realistic applica-

bility to system models with a number of states in the order of 107.

A recently proposed related way to analyse large concurrent systems is via statistical

model checking. In its most general form, statistical model checking is an analysis method

in which a logic formula, formalising a probabilistic property of interest, is automatically

checked against a set of randomly generated simulation runs of a high-level model of the

system. The probability that the formula holds for the model is then estimated via statistical

analysis rather than numerical analysis. This has various consequences. On the one hand,

statistical model checking can deal with system models that have very large state spaces

because only a set of paths need to be generated instead of the whole state space. On the

other hand, in cases in which high accuracy is required the set of paths that need to be

generated may be huge as well. So, in case of very large systems and when high accuracy is

not the main issue, statistical model checking may be the right option.

Various statistical techniques have been implemented and added to existing stochastic

model checkers such as PRISM (Kwiatkowska et al. 2011). Among these are techniques to

approximate the probability with which a formula holds and techniques to establish whether

such a probability is above or below a certain given bound. The former is based on various

confidence interval methods, whereas the latter is based on hypothesis testing, in particular

Wald’s sequential probability ratio test (Younes et al. 2006).

For the analysis of properties of the Bio-PEPA model we will make use of two of the

above techniques, in particular confidence interval methods to estimate probability and re-

wards. Before we present these two techniques in more detail, we first give an overview of

Swarm Intell (2013) 7:201–228 215

the type of properties of interest for the case study. Since we only deal with CTMCs, we

will only review a relevant selection of Continuous Stochastic Logic properties. For a more

complete overview and further details we refer the interested reader to Nimal (2010).

5.2.1 Performance properties

In the following we will encounter two types of performance property: (bounded) until for-

mulae and reward formulae. The first type is given by the following grammar:

property ::= P=?[proposition U≤t proposition]

| P=?[proposition U proposition]

| P�b[proposition U≤t proposition]

where φ1U
≤tφ2 holds on a path σ of the model if φ2 is true for a state on the path reached

within time t and that until then φ1 is true. More formally, for σ a path of the model,

σ |
 φ1U
≤tφ2 ≡ ∃t1 ≤ t.σ (t1) |
 φ2 ∧ ∀t0 < t1.σ (t0) |
 φ1

were σ(t) is the state in σ occupied at time t and σ |
 φ means that path σ satisfies for-

mula φ. In the variant without time bound t it is required that eventually a state is reached

in σ in which φ2 holds, and that all preceding states satisfy φ1. Again, more formally:

σ |
 φ1Uφ2 ≡ ∃t1.σ (t1) |
 φ2 ∧ ∀t0 < t1.σ (t0) |
 φ1

Note that in statistical model checking only paths of a maximum length, say ℓ, are consid-

ered: ℓ is one of the parameters of the model checking algorithm. This parameter should be

sufficiently large for unbounded until formulae to make sense and needs to be considered

carefully on a case by case basis. An alternative is to consider only bounded until formulae.

P=?[φ] denotes the probability measure of the set of paths of the model that satisfy φ.

P�b[φ] is the property stating that the probability measure of the set of paths satisfying φ is

bounded by b, where b is a probability value and � ∈ {<,≤,>,≥}.

Propositions are given by the following grammar, where ∧ denotes conjunction, | dis-

junction and ! negation and the label needs to be defined separately:

proposition ::= label

| proposition ∧ label

| ! proposition

| proposition | label

The second type of formulae that we will consider are reward formulae. Reward formulae

make use of reward structures that are added to the abstract system model. Reward structures

can be used, for example, to count the number of times that certain actions occur, such as

the formation of a team. This is captured by a reward structure that accumulates the number

of occurrences of the event of interest. They can also be used to record the amount of time

that passes until a certain event occurs, for example the time until the first team reaches the

goal area. This is captured by a reward structure that accumulates time with rate 1 in every

state of the system. The accumulation of time stops as soon as the specified event occurs.

An example of a reward structure to accumulate time is shown in Fig. 6.

216 Swarm Intell (2013) 7:201–228

Fig. 6 Reward structure to

accumulate time

reward “total_time”

true : 1;

endreward

We will consider the following types of reward formula:

expectation ::= R{rwlabel}=?[F proposition]

| R{rwlabel}�r [F proposition]

| R{rwlabel}=?[C
≤t]

| R{rwlabel}�r [C
≤t]

where rwlabel is the name of the reward structure in the model which the formula refers to.

R{“id”}=?[F φ] returns the expected reward, using reward structure “id”, based on the set

of randomly generated paths σ , where for each σ the reward is accumulated until a state of

σ is reached in which proposition φ holds. R{“foo”}�r [F φ] compares the expected reward

with bound r . It is also possible to obtain the expected cumulative reward up to a certain

point in time t , this is expressed by the formula R{“id”}=?[C
≤t]. To compare the expected

reward with a given bound r the formula R{“id”}�r [C
≤t] is used.

5.2.2 Confidence interval methods

An overview of the statistical model checking approach is given in Fig. 7. Confidence in-

terval methods in statistical model checking seek to provide an estimate of the probability

that a given property holds for the paths of an abstract system model with a certain level

of reliability. A confidence interval is an estimated interval of a certain width 2w such that,

if the estimation is repeated a number of times, then the real probability lays within this

interval 100 × (1 − α) % of the times. The reliability parameter α is the level of confidence.

Assume, for all i ∈ {1, . . . ,N}, that {Yi}i is a set of realisations of the Bernoulli random

variables Xi , where Xi is 1 if property φ on a randomly generated path σ of length k holds,

and 0 otherwise. It is assumed that all Yi are independent and identically distributed (i.i.d.)

and normally distributed. Using the Central-limit theorem it is possible to derive a lower

bound on the required number of paths N that need to be generated in order to provide an

estimate of the probability with the required accuracy w and level of confidence α. It is also

possible, given α and a desired number of paths N , to calculate the accuracy w. The latter is

the approach we will follow in this paper in order to obtain results that can be compared with

Fig. 7 Overview of the statistical model checking approach

Swarm Intell (2013) 7:201–228 217

those available in the literature that refer to a given number of sample paths. Several other

methods are available as well, such as the asymptotic confidence interval method (ACI) and

the approximate model checking technique (AMC) that use different bounds for the mini-

mal sample size N . The latter also uses different notions of accuracy and confidence. For a

detailed comparison of these methods we refer to Nimal (2010).

The confidence interval method has also been adapted to estimate the expected value of

rewards, that is, for reward formulae of type R=?[φ]. Let Σ be a reward structure and φ a

property over paths σ . The random variable Xφ,Σ (σ) can now be defined to produce a reward

value, that is, it is of type Xφ,Σ (σ) ∈ Ω → R
+. It is assumed that the random variables are

i.i.d. and normally distributed. For the rest the method is similar to the confidence interval

method described above.

5.2.3 Results

The statistical model checking approaches described above are provided by various model

checkers among which the model-checker PRISM described in Kwiatkowska et al. (2011).

The Bio-PEPA specification developed in Sect. 4 can be translated automatically into a

model expressed in the PRISM input language by the Bio-PEPA tool suite described in Cioc-

chetta et al. (2009). The translation approach itself is described in Ciocchetta and Hillston

(2009). The resulting PRISM specification can be found in the supplementary material pro-

vided by Massink et al. (2012a). The PRISM model is a stochastic model having a CTMC

as underlying mathematical structure.

One of the principal properties of interest for robot swarm decision making concerns the

convergence aspects of the decision strategy. The first concern is whether convergence on

one of the paths occurs at all. In principle, mixed decision situations could occur in which

the swarm does not converge entirely on a single path. We will show that such a situation

occurs with zero probability. A second concern is whether convergence on a single path

always occurs eventually, that is, the system does not enter in some form of oscillating

behaviour that prevents convergence. Convergence on the short path (Convergence_on_S)

can be defined as the situation in which each of the 32 robots is either in a team on the short

path, or in the S-population in the choice points, the start area or the goal area. In terms of the

population sizes in the various locations, convergence on the short path can be formalised

as the following proposition:

3 ∗ (Teams_S1_StoG@S1 + · · · + Teams_S8_StoG@S8)+

3 ∗ (Teams_S1_GtoS@S1 + · · · + Teams_S8_GtoS@S8)+

3 ∗ Teams_goal_ fromS@goal + Robo_start_ fromS@start+

3 ∗ (Teams_A_S@A + Teams_B_ fromS@B) = 32

“Convergence_on_L” can be defined similarly, but requiring that the above sum is equal to

0 instead of 32.

The formula to obtain an estimate of the probability that the system eventually converges

either on the long or on the short path can now be expressed in terms of the formulae that

were introduced before:

P =?
[

true U (“Convergence_on_L” | “Convergence_on_S”)
]

(1)

Recall that P =? is used to compute a probability, and U reads as “until”.

For 100 sample paths, a confidence level α = 0.01 and a maximum sample path length

of 20,000 we obtain the result that for each k ranging from 1 to 10 the system converges to

the short or the long path with probability 1. In fact, convergence takes place in each of the

sample paths, so mixed decision situations do not occur.

218 Swarm Intell (2013) 7:201–228

Fig. 8 Probability of

convergence on the short path

(100 samples). k is the number of

active teams in the system

Fig. 9 Reward structure to count

team formations

reward “teams”

[go_A_S1] true : 1;

[go_A_L1] true : 1;

endreward

The next question of interest is then what is the probability that the system converges on

the short path. More precisely, this question should be formulated as “what is the probability

that the system did not converge on the long path until it converges on the short path”. The

latter can be expressed as:

P =? [!“Convergence_on_L” U “Convergence_on_S”] (2)

where that ! stands for negation.

The analyses of Eq. (2) for a number of teams k ranging from 1 to 10 is shown in Fig. 8

as a solid line. The analyses have been based on 100 random sample paths, a confidence

level α = 0.01 and a maximal sample path length of 20,000. In the figure the widths of the

confidence interval are shown as vertical bars. The results are compared to those obtained

via physics-based simulation and Monte Carlo simulation of the same case-study reported

in Montes de Oca et al. (2011) and shown as dotted and dashed lines, respectively. The

latter are close to the results obtained with the Bio-PEPA specification and well within the

error-margins.

The expected number of teams formed until convergence has taken place on the short

or the long path can then be analysed by statistical model checking using the logic reward

formula:6

R{“teams”} =?
[

F (“_Convergence_on_S”|“_Convergence_on_L”)
]

(3)

The formula refers to a reward structure “teams” that counts the number of teams that were

formed. In terms of the Bio-PEPA model, the formation of teams is directly related to the

occurrence of the actions ‘go_A_S1’ and ‘go_A_L1’, that is, when teams move from choice

point A to one of the paths. The specific reward structure required is shown in Fig. 9.

Essentially this represents the fact that every time action ‘go_A_S1’ or ‘go_A_L1’ occurs,

the total number of teams formed so far is incremented by 1.

6See Sect. 5.2.1.

Swarm Intell (2013) 7:201–228 219

Fig. 10 Expected number of

team formations until

convergence (1,000 samples). k

is the number of active teams in

the system

Fig. 11 Expected number of

team formations until

convergence for different rates at

which teams leave the start area

in the Bio-PEPA model. k is the

number of active teams in the

system

Figure 10 shows results on the expected number of team formations until convergence

on the short or long path (Eq. (3)) using 1000 samples, α = 0.01 and maximal path length

of 20,000. The width of the confidence intervals are shown as error-bars.

The results obtained by stochastic model checking, physics-based simulation and Monte

Carlo simulation are consistent for values of k up to 7. They diverge for higher values of k.

The divergence can be explained by the differences in the underlying models that are used.

The Monte Carlo simulations are obtained from an ODE model in which it is assumed that,

at any point in time, a constant fixed fraction of the total population is in the start area.

Such a fixed fraction can only be maintained if, upon arrival of a team in the start area, a

new team forms and leaves the start area immediately. In the Bio-PEPA model this can be

approximated by choosing a high rate for the parameter ‘move’. In fact, as can be observed

in Fig. 11, for move = 30 the results of the Bio-PEPA model follow a similar tendency as

the results for the Monte Carlo simulation. An explanation for this tendency is that, for high

values of k, the system needs more team formations to converge. This is due to the fact that

when k is high, a robot team returning to the start area can influence the opinion only of the

few robots that are in the start area: five robots for k = 9 and only two for k = 10.

For k = 9 there is a further divergence between the results obtained by Monte Carlo

simulation and stochastic model checking. This can most likely be explained by the fact

that Monte Carlo simulations start from an initial state in which a large fixed fraction of

the population is already out of the start area and distributed over the paths in a particular

220 Swarm Intell (2013) 7:201–228

Fig. 12 Number of active teams

for min_start = 5 (k = 9) and

min_start = 2 (k = 10) for

move = 0.025 (average over 10

independent simulation runs)

proportion. The number of team formations needed to reach such a state is not considered in

the Monte Carlo simulation. On the other hand, in the Bio-PEPA model (and in the physics-

based model) all robots are initially in the start area and subsequently distribute over the

two paths. This results in many different intermediate distributions over the paths, which

are likely to have an effect on the average number of team formations needed to reach

convergence. Furthermore, for k = 10 (and k = 9 to a somewhat lesser extent) border effects

might arise: the system is stretched to an extreme situation in which, at any time, only two

robots remain in the start area. This small number is a source of strong stochastic fluctuations

that might cause ‘accidental’ convergence earlier than what one could expect given the size

of the population.

The physics-based simulation is based on the assumption that the teams leave the start

area on average every 40 seconds, until a number of k teams are active. In the Bio-PEPA

specification, this can be modelled by letting move = 0.025. The formation of teams is sus-

pended whenever there are k teams active and is resumed when teams return to the start area.

For this value of move, statistical model checking produces results that are comparable with

those produced by the physics-based simulation (as shown in Fig. 11). This can be explained

by observing that in the model used for the physics-based simulation when k is high, the av-

erage number of active teams is actually substantially lower than the nominal value k. This

can also be made visible using simulation of the Bio-PEPA specification as shown in Fig. 12

for an average of the number of active teams over 10 simulation runs for k = 9 and k = 10

and move = 0.025. As a consequence, the number of robots in the start area is larger than

the nominal N − 3k, which in turn means that there are more robots that provide implicitly

feedback on which of the two paths is the shortest. This explains why the expected number

of teams formed until convergence obtained with statistical model checking does not differ

much from those obtained with physics-based simulation (for move = 0.025).

The difference between physics-based simulation and statistical model checking for

higher values of the parameter move can be explained by looking at the early phases of

the experimental runs. In the early phases there are more robots in the start area and they

leave that area relatively quickly before feedback from returning teams can be taken into ac-

count. This is possibly leading to larger stochastic fluctuations before the system converges

on one of the paths, resulting in more team formations.

A similar analysis using the same formula as used for the expected number of teams (see

Fig. 9), but substituting teams with the reward structure total_time, gives the expected time

Swarm Intell (2013) 7:201–228 221

Fig. 13 Expected convergence

time (100 samples), move = 0.28

Fig. 14 Expected S-teams and

L-teams formed until

convergence (move = 0.28)

until convergence (for move = 0.28). Figure 13 shows the expected convergence time. No

data from the literature concerning this aspect are available for comparison.

The total model-checking time to produce the data in Fig. 8 was ca. 10 minutes, those in

Fig. 10 ca. 48 minutes and those in Fig. 13 ca. 5 minutes.7

By separating the reward structure in Fig. 9 into one for the expected number of teams

that decide to take the short path (S-teams) and one for those that decide to take the long

path (L-teams) the contribution of each kind can be made visible using a reward formula

similar to that shown in Eq. (3). The result is shown in Fig. 14. For any value of k the

number of S-teams is always higher than the number of L-teams. This can be explained by

the fact that initially the S-population and the L-population in the start area have equal size

and moreover that the probability that the system converges on the short path is more than

50 % in all cases.

5.3 Fluid flow analysis

The third kind of analysis we consider is a fluid flow approximation of the ODE underlying

the Bio-PEPA specification. Based on the Bio-PEPA syntax, the underlying ODE model

7Model-checking was performed on an iMAC with a 3.2 GHz Intel core i3 processor and 4 GB memory

running the MacOS X operating system.

222 Swarm Intell (2013) 7:201–228

can be generated automatically and in a systematic way, as shown in Hillston (2005) and

in Ciocchetta and Hillston (2009), using the Bio-PEPA tool suite presented in Ciocchetta

et al. (2009). This provides yet another view on the behavioural aspects of the system. One

can, for example, explore numerically the sensitivity of the system to initial values and

discover stationary points and other aspects related to stability analysis.

The derivation of ODEs from a Bio-PEPA specification is based on the following steps

(see Ciocchetta and Hillston 2009):

1. definition of the stoichiometry (n × m) matrix D, where n is the number of species and

m is the number of actions. The entries of the matrix D are obtained in the following

way. For each species component Ci the prefix sub-terms Cij , that is, those of the form

(αj , κij) op Si@l, are considered. Such sub-terms represent the change of the species i

as a consequence of action j . If the term contributes to an increase of the population size

of the species then the entry is +κij , if it contributes to a decrease then the entry is −κij ;

2. definition of the functional rate (m × 1) vector v̄f (t) containing the functional rate of

each action;

3. association of the variable xi(t), the expected value of the population size at time t , with

each component Ci and the definition of the (n × 1) vector x̄(t).

The ODE system is then obtained as

dx̄(t)

dt
= D × v̄f (t)

with initial population sizes xi0 , for i = 1, . . . , n.

To illustrate these steps, consider the slightly extended small toy Bio-PEPA example

introduced in Sect. 3 in which teams can also be dissolved into individual red and blue

robots as follows:

R
def
= (mk_team,2)↓R + (dis,2)↑R

B
def
= (mk_team,1)↓B + (dis,1)↑B

T
def
= (mk_team,1)↑T + (dis,1)↓T

with the following model component:
(

R(r0) ⊲⊳
{mk_team,dis}

B(b0)
)

⊲⊳
{mk_team,dis}

T (t0)

If we let the functional rates for this toy example be mk_team = 0.002 ∗ R ∗ B and dis =

0.2 ∗ T we obtain the following ODE:

dR(t)

dt
= −2.0 · r · R(t) · B(t) + 2.0 · s · T (t)

dB(t)

dt
= −1.0 · r · R(t) · B(t) + 1.0 · s · T (t)

dT (t)

dt
= +1.0 · r · R(t) · B(t) − 1.0 · s · T (t)

where r = 0.002 and s = 0.2, to be solved with respect to the initial condition r0 = 200,

b0 = 100 and t0 = 500. The numeric solution of this ODE for the above mentioned initial

values is shown in Fig. 15.

We now return to the real swarm robotics case study in Bio-PEPA, which leads to a

model composed of 54 ordinary differential equations, and discuss various aspects of the

relation between stochastic simulation and fluid approximation results. In Fig. 16 we can

Swarm Intell (2013) 7:201–228 223

Fig. 15 Expected population

sizes of R, B and T over time

(ODE) for the small toy example

Fig. 16 Fraction of the

S-population

observe the total fraction of robots in the S-population over time, that is, both those present

in the start area and those in the teams.8 Clearly, the fluid approximation for a model with

initially 32 robots in the start area, of which 16 would vote for the short path and 16 for

the long path, predicts that the system converges in 100 % of the cases to the short path

for the given initial values. Stochastic simulation over 100 independent runs (G100) shows

that such convergence happens only in 85 % of the cases, which corresponds to what we

found with statistical model checking for a comparable value of k (see Fig. 8). The differ-

ence can be explained by the larger effect of stochastic fluctuations that occur in stochastic

simulations of the system when the population is small. The probability that the system ‘ac-

cidentally’ converges on the long path is in that case relatively high. In fact, if a somewhat

larger population is considered, a good correspondence can be observed between the fluid

approximation and stochastic simulation over 1,000 independent runs (G1000), as shown in

Fig. 17 for N = 320.

For large populations the probability that the system ‘accidentally’ converges to the long

path tends to zero. In fact, single simulation trajectories tend to approximate the determinis-

tic ODE solution very well for a finite time horizon when the specification satisfies certain

8To guarantee continuity of the ODE model, the H-function has been removed and replaced by setting move =

0.03 to approximate a scenario in which k = 7.

224 Swarm Intell (2013) 7:201–228

Fig. 17 Fluid approximation

(ODE) versus the mean of 1,000

simulation trajectories (G1000),

for NS = NL = 160. Parameters

are move = 0.03 ∗ 10 and

walk_normal = 0.1

Fig. 18 Fluid approximation

(ODE) versus single simulation

trajectory (G1), for

NS = NL = 16,000. Parameters

are move = 0.03 ∗ 1,000 and

walk_normal = 0.1

scaling conditions and the population considered in the simulation is sufficiently large. An

example is shown in Fig. 18 for N = 32,000. This is a well-studied phenomenon (Kurtz

1970): it has also been applied recently in the context of stochastic process algebra (Triba-

stone et al. 2012), for an analysis of the double bridge experiment with ants in Bio-PEPA

(Massink and Latella 2012) and for the analysis of crowd dynamics (Massink et al. 2011a).

Note that for large populations the model abstracts from the increased risk of collisions

between robots on both paths, or, in other words, it is assumed that the size of the paths

is scaled in such a way that the number of collisions is proportionally the same as in the

model with 32 robots. This model can provide interesting insights in the behaviour of the

decision-making strategy as such, that is, abstracting from accidental stochastic fluctuations

that occur with small populations. An example of such analysis is given in Fig. 19 which

shows a number of ODE trajectories for different initial values of the S-population (NS)

and the L-population (NL) in the start area. The trajectories start from the points indicated

on the diagonal and end in one of the two stationary points of the system indicated by a

cross at (0, 15,710) and at (3,110, 0). Clearly, the system is bi-stable. For some initial value

combination of NS between 12,000 and 14,000 and NL between 20,000 and 22,000, such that

NS + NL = 32,000, a sudden shift takes place from trajectories converging on the long path

to trajectories converging on the short path. A further interesting observation can be made

with the help of the graph in Fig. 18. Different phases of behaviour can be distinguished.

There is a first phase in which robots leave the start area at a constant rate. This can be

Swarm Intell (2013) 7:201–228 225

Fig. 19 Phase-space diagram of

S-population versus L-population

in the start area for a population

of 32,000 robots. ODE

trajectories for different initial

values of NS and NL starting

from the diagonal line and

finishing in one of the two

stationary points indicated by a

cross at (0, 15,710) and at

(3,110, 0). Parameters are

move = 0.03 ∗ 1,000 and

walk_normal = 0.1

observed up to ca. time 200. After that, robots start to return to the start area, first from the

short path and later on from the long path, providing feedback to the population in the start

area. At about time 600 it can be observed that the feedback is starting to have effect on the

decision on which path to take, and an increasing number of teams take the short path rather

than the long path with the consequence that the S-population in the start area continues to

increase, while the L-population continues to decrease. The various phases in behaviour can

also be observed in Fig. 19 where the change due to the arrival of feedback leads to small

circle-like shapes in the curves.

Both in Figs. 18 and 19 the number of robots in the start area stabilises around 15,710

in case of convergence on the short path, and around 3,110 in case of convergence on the

long path. That means that in the former case about 50% of the total population resides in

the start area and that, on average, 5,430 teams circulate on the short path. In the latter case,

there are far fewer robots in the start area and on average 9,630 teams circulate on the long

path.

Note that Fig. 19 has been obtained via an automatic translation of the Bio-PEPA spec-

ification into SBML (Bornstein et al. 2004), which is a standard markup language widely

used in systems biology, and then via another translator9 from SBML into the Octave (Eaton

2002) or equivalently into the Matlab language (Gilat 2004). Such a tool-chain allows fur-

ther numerical exploration of the generated ODEs with powerful applied mathematics tool

suites.

6 Conclusions

In this paper, we analysed a swarm robotics system using Bio-PEPA. The behaviour analysed

is a decision-making behaviour originally presented in Montes de Oca et al. (2011). Bio-

PEPA (Ciocchetta and Hillston 2009) is a language based on the process algebra PEPA. It

was originally developed for the stochastic modelling and analysis of biochemical systems.

By using Bio-PEPA we were able to model the swarm robotics system at the microscopic

level addressing issues like direct and indirect cooperation, team formation, heterogeneous

team behaviours, voting, and certain spatial and temporal aspects.

9See http://www.ebi.ac.uk/compneur-srv/sbml/converters/SBMLtoOctave.html.

http://www.ebi.ac.uk/compneur-srv/sbml/converters/SBMLtoOctave.html

226 Swarm Intell (2013) 7:201–228

The main advantage of the use of Bio-PEPA is that it allows the researcher to perform

a variety of analyses starting from a single microscopic specification. Among the possible

analyses, we performed stochastic simulation, fluid flow (ODE) approximation and statis-

tical (stochastic) model checking. The possibility to perform different analyses from the

same specification reduces the effort necessary for the analysis process, while preserving

the mutual consistency of the results.

In the presented analysis of the collective decision-making behaviour, we show that using

Bio-PEPA we obtain results compatible with those obtained using other approaches, such as

the results presented in Montes de Oca et al. (2011) via physics-based simulation and Monte

Carlo simulation.

Our long term goal is to extend Bio-PEPA to facilitate the modelling and analysis process

of swarm robotics systems. We believe that this could promote a more widespread uptake of

modelling and analysis in swarm robotics.

Currently, Bio-PEPA provides relatively limited mechanisms to model and analyse more

sophisticated spatial and temporal concepts. In future work, we plan to address this. We

also plan to develop formal methods to further explore non-linear behavioural aspects using

numerical techniques. Of particular interest are a further integration of formal modelling and

the generation of phase diagrams and bifurcation diagrams to obtain insight in the stability

aspects of non-linear systems. Furthermore, the development of advanced model-checking

techniques for swarm robotics that exploit fluid approximation along the lines of the work

presented in Bortolussi and Hillston (2012) is of direct interest too.

Another open problem that we plan to tackle is the gap between Bio-PEPA models and

physics-based simulations. Currently, there is no direct link between a Bio-PEPA model

and a physics-based simulations of the same system, neither from model to simulation, nor

from simulation to model. This passage must be done manually relying on ingenuity and

experience. As future work, we plan to create ways to partially or completely automatise

these passages. We think that this could greatly stimulate the use of Bio-PEPA, as it would

reduce the effort necessary to model and analyse a system.

Acknowledgements The research leading to the results presented in this paper has received funding from

the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007–

2013)/ERC grant agreement no. 246939, and by the EU project ASCENS, 257414. Manuele Brambilla,

Mauro Birattari and Marco Dorigo acknowledge support from the F.R.S.-FNRS of Belgium’s Wallonia-

Brussels Federation. Diego Latella has been partially supported by Project TRACE-IT—PAR FAS 2007–

2013—Regione Toscana. The authors would like to thank Stephen Gilmore and Allan Clark (Edinburgh

University) for their help with the Bio-PEPA tool suite and templates.

References

Aldini, A., Bernardo, M., & Corradini, F. (2010). A process algebraic approach to software architecture

design. Heidelberg: Springer.

Aziz, A., Sanwal, K., Singhal, V., & Brayton, R. (2000). Model checking continuous time Markov chains.

ACM Transactions on Computational Logic, 1(1), 162–170.

Baier, C., Katoen, J.-P., & Hermanns, H. (1999). Approximate symbolic model checking of continuous-time

Markov chains. In Lecture notes in computer science: Vol. 1664. Concur ’99 (pp. 146–162). Heidelberg:

Springer.

Benkirane, S., Norman, R., Scott, E., & Shankland, C. (2012). Measles epidemics and PEPA: an exploration

of historic disease dynamics using process algebra. In D. Giannakopoulou & D. Méry (Eds.), Lecture

notes in computer science: Vol. 7436. FM 2012: formal methods (pp. 101–115). Berlin: Springer.

Bergstra, J., Ponse, A., & Smolka, S. (Eds.) (2001). Handbook of process algebra. Amsterdam: Elsevier.

Swarm Intell (2013) 7:201–228 227

Bornstein, B., Doyle, J., Finney, A., Funahashi, A., Hucka, M., Keating, S., Kovitz, H. K. B., Matthews, J.,

Shapiro, B., & Schilstra, M. (2004). Evolving a lingua franca and associated software infrastructure

for computational systems biology: the systems biology markup language (SBML) project. Systems

Biology, 1, 4153.

Bortolussi, L., & Hillston, J. (2012). Fluid model checking. In M. Koutny & I. Ulidowski (Eds.), Lecture

notes in computer science: Vol. 7454. CONCUR (pp. 333–347). Berlin: Springer.

Brambilla, M., Pinciroli, C., Birattari, M., & Dorigo, M. (2012). Property-driven design for swarm robotics.

In Proceedings of 11th international conference on autonomous agents and multiagent systems (AAMAS

2012) (pp. 139–146). IFAAMAS.

Brambilla, M., Ferrante, E., Birattari, M., & Dorigo, M. (2013). Swarm robotics: a review from the swarm

engineering perspective. Swarm Intelligence, 7(1), 1–41.

Burch, J., Clarke, E., McMillan, K., & Dill, D. (1990). Sequential circuit verification using symbolic model

checking. In Proceedings of the 27th design automation conference (pp. 46–51). Washington: IEEE

Press.

Ciocchetta, F., & Hillston, J. (2008). Bio-PEPA: an extension of the process algebra PEPA for biochemical

networks. Electronic Notes in Theoretical Computer Science, 194(3), 103–117.

Ciocchetta, F., & Hillston, J. (2009). Bio-PEPA: a framework for the modelling and analysis of biological

systems. Theoretical Computer Science, 410(33–34), 3065–3084.

Ciocchetta, F., & Hillston, J. (2012). Bio-PEPA http://www.biopepa.org. Last checked on October 2012.

Ciocchetta, F., Duguid, A., Gilmore, S., Guerriero, M. L., & Hillston, J. (2009). The Bio-PEPA tool suite.

In Proceedings of the 6th international conference on quantitative evaluation of SysTems (QEST 2009)

(pp. 309–310). Washington: IEEE Computer Society.

Clarke, E. M., Emerson, E. A., & Sifakis, J. (2009). Model checking: algorithmic verification and debugging.

Communications of the ACM, 52(11), 74–84.

Dixon, C., Winfield, A., & Fisher, M. (2011). Towards temporal verification of emergent behaviours in swarm

robotic systems. In Lecture notes in computer science: Vol. 6856. Towards autonomous robotic systems

(pp. 336–347). Heidelberg: Springer.

Eaton, J. W. (2002). GNU octave manual. London: Network Theory Ltd.

Evans, W., Mermoud, G., & Martinoli, A. (2010). Comparing and modeling distributed control strategies for

miniature self-assembling robots. In IEEE international conference on robotics and automation (ICRA)

(pp. 1438–1445).

Gilat, A. (2004). MATLAB: an introduction with applications (2nd ed.). New York: Wiley.

Gillespie, D. T. (1977). Exact stochastic simulation of coupled chemical reactions. Journal of Physical Chem-

istry, 81(25), 2340–2361.

Goss, S., Aron, S., Deneubourg, J.-L., & Pasteels, J. (1989). Self-organized shortcuts in the Argentine ant.

Naturwissenschaften, 76, 579–581.

Havelund, K., Lowry, M., & Penix, J. (2001). Formal analysis of a space-craft controller using spin. IEEE

Transactions on Software Engineering, 27(8), 749–765.

Hermanns, H., Herzog, U., & Katoen, J.-P. (2002). Process algebra for performance evaluation. Theoretical

Computer Science, 274(1–2), 43–87.

Hillston, J. (1996). Distinguished dissertation in computer science: A compositional approach to performance

modelling. Cambridge: Cambridge University Press.

Hillston, J. (2005). Fluid flow approximation of PEPA models. In Proceedings of the 2th international con-

ference on quantitative evaluation of SysTems (QEST 2005) (pp. 33–43). Washington: IEEE Computer

Society.

Holzmann, G. J. (1991). Design and validation of computer protocols. Upper Saddle River: Prentice-Hall

Kleinrock, L. (1975). Queueing systems: Vol. 1. Theory. New York: Wiley.

Konur, S., Dixon, C., & Fisher, M. (2012). Analysing robot swarm behaviour via probabilistic model check-

ing. Robotics and Autonomous Systems, 60(2), 199–213.

Kurtz, T. (1970). Solutions of ordinary differential equations as limits of pure jump Markov processes. Jour-

nal of Applied Probability, 7, 49–58.

Kwiatkowska, M., Norman, G., & Parker, D. (2011). PRISM 4.0: verification of probabilistic real-time sys-

tems. In Lecture notes in computer science: Vol. 6806. Proceedings of 23rd international conference on

computer aided verification (CAV’11) (pp. 585–591). Heidelberg: Springer.

Lerman, K., Martinoli, A., & Galstyan, A. (2005). A review of probabilistic macroscopic models for swarm

robotic systems. In Lecture notes in computer science: Vol. 3342. Swarm robotics (pp. 143–152). Hei-

delberg: Springer.

Martinoli, A., Easton, K., & Agassounon, W. (2004). Modeling swarm robotic systems: a case study in col-

laborative distributed manipulation. International Journal of Robotics Research, 23(4–5), 415–436.

Massink, M., & Latella, D. (2012). Fluid analysis of foraging ants. In M. Sirjani (Ed.), Lecture notes in

computer science: Vol. 7274. Coordination (pp. 152–165). Heidelberg: Springer.

http://www.biopepa.org

228 Swarm Intell (2013) 7:201–228

Massink, M., Latella, D., Bracciali, A., & Hillston, J. (2011a). Modelling non-linear crowd dynamics in Bio-

PEPA. In D. Giannakopoulou & F. Orejas (Eds.), Lecture notes in computer science: Vol. 6603. FASE

(pp. 96–110). Heidelberg: Springer.

Massink, M., Latella, D., Bracciali, A., & Hillston, J. (2011b). Modelling non-linear crowd dynamics in

Bio-PEPA. In Lecture notes in computer science: Vol. 6603. Fundamental approaches to software engi-

neering (pp. 96–110). Heidelberg: Springer.

Massink, M., Brambilla, M., Latella, D., Dorigo, M., & Birattari, M. (2012a). Analysing robot

swarm decision-making with Bio-PEPA: complete data. Supplementary information page at http://

iridia.ulb.ac.be/supp/IridiaSupp2012-012/.

Massink, M., Brambilla, M., Latella, D., Dorigo, M., & Birattari, M. (2012b). Analysing robot swarm

decision-making with Bio-PEPA. In Lecture notes in computer science: Vol. 7461. Swarm intelligence

(pp. 25–36). Heidelberg: Springer.

Massink, M., Latella, D., Bracciali, A., Harrison, M., & Hillston, J. (2012c). Scalable context-dependent

analysis of emergency egress models. Formal Aspects of Computing, 24(2), 267–302. doi:10.1007/

s00165-011-0188-1. Published online: 03 July 2011.

Mather, T., & Hsieh, M. (2012). Ensemble synthesis of distributed control and communication strategies. In

IEEE international conference on robotics and automation (ICRA) (pp. 4248–4253).

Montes de Oca, M. A., Ferrante, E., Scheidler, A., Pinciroli, C., Birattari, M., & Dorigo, M. (2011). Majority-

rule opinion dynamics with differential latency: a mechanism for self-organized collective decision-

making. Swarm Intelligence, 5(3–4), 305–327.

Napp, N., Burden, S., & Klavins, E. (2011). Setpoint regulation for stochastically interacting robots. Au-

tonomous Robots, 30, 57–71.

Nimal, V. (2010). Statistical approaches for probabilistic model checking. MSc mini-project dissertation,

Oxford University Computing Laboratory

Sahin, E. (2005). Swarm robotics: from sources of inspiration to domains of application. In Lecture notes in

computer science: Vol. 3342. Swarm robotics (pp. 10–20). Heidelberg: Springer.

Scheidler, A. (2011). Dynamics of majority rule with differential latencies. Physical Review E, 83, 031116.

Tribastone, M., Gilmore, S., & Hillston, J. (2012). Scalable differential analysis of process algebra models.

IEEE Transactions on Software Engineering, 38(1), 205–219.

Tschaikowski, M., & Tribastone, M. (2012). Exact fluid lumpability for Markovian process algebra. In

M. Koutny & I. Ulidowski (Eds.), Lecture notes in computer science: Vol. 7454. CONCUR 2012—

concurrency theory: 23rd international conference (pp. 380–394). Heidelberg: Springer.

Valentini, G., Birattari, M., & Dorigo, M. (2013). Majority rule with differential latency: an absorbing Markov

chain to model consensus. In European conference on complex systems (ECCS’12).

Younes, H. L. S., Kwiatkowska, M. Z., Norman, G., & Parker, D. (2006). Numerical vs. statistical probabilis-

tic model checking. International Journal on Software Tools for Technology Transfer, 8(3), 216–228.

Zarzhitsky, D., Spears, D., Thayer, D., & Spears, W. (2005). Agent-based chemical plume tracing using

fluid dynamics. In M. Hinchey, J. Rash, W. Truszkowski, & C. Rouff (Eds.), Lecture notes in computer

science: Vol. 3228. Formal approaches to agent-based systems (pp. 146–160). Heidelberg: Springer.

http://iridia.ulb.ac.be/supp/IridiaSupp2012-012/
http://iridia.ulb.ac.be/supp/IridiaSupp2012-012/
http://dx.doi.org/10.1007/s00165-011-0188-1
http://dx.doi.org/10.1007/s00165-011-0188-1

	On the use of Bio-PEPA for modelling and analysing collective behaviours in swarm robotics
	Abstract
	Introduction
	Related work
	Microscopic modelling
	Macroscopic modelling
	Model checking
	Discussion

	Bio-PEPA
	Collective decision-making: a Bio-PEPA specification
	The Bio-PEPA specification

	Analysis
	Stochastic simulation
	Statistical model checking
	Performance properties
	Confidence interval methods
	Results

	Fluid flow analysis

	Conclusions
	Acknowledgements
	References

