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synchronization clock bias and sensor
location errors
Ding Wang1,2, Jiexin Yin1,2* , Xin Chen1,2, Changgui Jia1,2 and Fushan Wei3

Abstract

Time difference of arrival (TDOA) positioning is one of the widely applied techniques for locating an emitting source.

Unfortunately, synchronization clock bias and random sensor location perturbations are known to significantly degrade

the TDOA localization accuracy. This paper studies the use of a set of calibration sources, whose locations are

accurately known to an estimator, to reduce the loss in localization accuracy caused by synchronization offsets

and sensor location errors. Under the Gaussian noise assumption, we first derive the Cramér–Rao bound (CRB) for

parametric estimation with the use of calibration emitters. Some explicit CRB expressions are obtained, and the

performance improvement due to the introduction of the calibration sources is also quantified through the CRB

analysis. In order to achieve the optimum localization accuracy, we proceed to propose new localization methods

using the TDOA measurements from both target source and calibration emitters. Specifically, two dimension-reduction

Taylor-series iterative algorithms are developed, and both of them have two stages. The first stage estimates the clock

bias and refines the sensor positions by using the calibration TDOA measurements and the prior knowledge of sensor

locations. The second stage provides the estimates of source location by combining the TDOA measurements of target

signal and the estimated values in the first phase. The mean square errors (MSEs) of the proposed methods are shown

analytically to achieve the corresponding CRB by applying the first-order perturbation analysis. Simulations are used to

corroborate and support the theoretical development in this paper.

Keywords: Emitter location, Time difference of arrival (TDOA), Synchronization clock bias, Sensor location uncertainty,

Taylor-series, Cramér–Rao bound (CRB), Calibration sources

1 Introduction
Passive localization of an emitting source is a fundamental

research topic in numerous applications including signal

processing, wireless communications, wireless sensor net-

works, sonar, surveillance, navigation, passive radar, and

vehicular technique. Most localization systems require

two estimation steps. In the first step, some intermediate

parameters that are embedded in the received signals are

extracted at several stations or different time slots through

signal processing techniques. Intermediate parameters can

be characterized by the emitter location and are usually

angle of arrival (AOA) [1–3], time difference of arrival

(TDOA) [4–16], time of arrival (TOA) [17–22], frequency

difference of arrival (FDOA) [23–32], frequency of arrival

(FOA) [33], received signal strength (RSS) [34–38], gain

ratios of arrival (GROA) [38–41], etc. In the second step,

the transmitter’s position is determined by finding the co-

ordinate that best fits the lines of position (LOP) associ-

ated with the parameters obtained in the first step. The

two-step procedure can be classified as decentralized pro-

cessing approach [42]. It is worth pointing out that source

localization can be achieved not only by using a single sig-

nal parameter but also by combining multiple signal pa-

rameters. In [43–47], some localization approaches that
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use TOA/TDOA are proposed. In [48–50], the

localization problems that combine range or range differ-

ence with signal strength are studied. In addition, some

more general methods for localization in mobile contexts

based on moving sensors are developed in [51–54].

Perhaps the most common technique for locating a sta-

tionary emitter is to measure the TDOAs of radiated sig-

nal to a number of spatially separated sensors. Each

TDOA defines a hyperbola in which the emitter must lie.

The intersection of the hyperbolae gives the source loca-

tion estimate. As mentioned in [11, 55], TOA and TDOA

measurements generally yield more accurate position esti-

mates compared to the other intermediate parameters.

Moreover, it should be highlighted that TOA localization

approach requires knowledge of the transmit time of the

received signal from the transmitter, but TDOA position-

ing technique does not rely on this parameter. Hence, the

latter is more suitable for passive location. In this paper,

we focus on TDOA-based location scheme.

In the TDOA localization problem, finding the solution

of the hyperbolic location equations is generally not a triv-

ial task due to its non-linear and non-convex nature.

Moreover, the non-linear hyperbolic equations become in-

consistent as the TDOA measurements are corrupted by

noises, and the hyperbolae no longer intersect at a single

point. During the past few decades, a number of methods

for TDOA positioning become available in the literature.

These approaches can be divided into two categories. The

methods in the first class require iteration to obtain an ac-

curate location estimate. The most important iterative

methods include Taylor-series iterative algorithm [8], con-

strained total least squares (CTLS) algorithm [11, 28],

quadratic constraint least squares (QCLS) algorithm [6,

14, 27, 31, 38], and interior-point algorithm [9, 16, 29].

The second category can provide explicit solutions to the

target position, and typical closed-form approaches in-

clude spherical-interpolation (SI) algorithm [4], two-step

weighted least squares (TWLS) algorithm [5, 10, 15, 23,

24, 26, 30, 32, 39, 40], and multidimensional scaling

(MDS) algorithm [25]. Both the two classes of methods

are able to attain the Cramér–Rao bound (CRB) accuracy

when the noise condition is favorable. Generally, the

closed-form methods are computationally attractive and

do not have local minima and divergence problems as

compared to the iterative techniques. However, the itera-

tive approaches generally tolerate higher noise level as

compared to the closed-form solutions if they converge to

the global optimal solution with the help of a good initial

guess. A possible reason for this is that the closed-form al-

gorithms may generate complex values when finding the

square root [12]. Although there is no rigorous proof, the

experimental results in [11, 27, 28, 31] can be used to sup-

port this conclusion. Indeed, the two kinds of methods

can be combined to enhance the reliability of the

produced position estimates. For example, we can take the

closed-form solution as the initial guess of the iterative

method, to avoid local convergence and to achieve a

higher level of noise tolerance before the thresholding ef-

fect takes place.

In addition to the TDOA measurement errors,

synchronization offsets and sensor position uncertainties

can also degrade the localization accuracy considerably,

regardless of the algorithm used for source localization.

In recent years, much attention has been paid to the

emitter location problem in the presence of sensor loca-

tion errors and/or synchronization clock bias. In [24,

56], the mean square error (MSE) of source position es-

timate is derived when an optimum estimator assumes

the sensor positions are exact but, in fact, they have er-

rors. In [57], the effects of synchronization errors on

TDOA localization accuracy are analyzed in terms of es-

timation bias, MSE, and success probability. In [58, 59],

the degradation in localization accuracy caused by

synchronization offsets and sensor position perturba-

tions is examined through the CRB analysis. Both theor-

etical and experimental results reveal that the TDOA

positioning accuracy is very sensitive to the two types of

errors, and the CRB performance cannot be achieved if

an estimator does not take the two errors into account.

On the other hand, most of the TDOA localization algo-

rithms mentioned above can be extended to the scenario

where either of the two special errors is present or both

are present. In general, the sensor position errors are

modeled as random variables. Moreover, there exist two

classes of methods that can remove the effects of the un-

certainties in sensor locations. The first one incorporates

the prior statistical distribution of noisy sensor positions

into the localization procedure [9, 15, 16, 24, 26, 29], and

the other performs joint estimation of emitter and sensor

locations [8, 10, 20, 30, 40]. The latter is usually more

computationally demanding, but it is able to improve the

sensor locations and has a higher level of noise tolerance

before the thresholding effect starts to occur. Different

from sensor position errors, the clock bias is generally

regarded as a deterministic parameter, and it can be esti-

mated together with emitter location. A number of effect-

ive methods for joint time synchronization and source

localization are presented in [60–70]. Additionally, it is

worth emphasizing that asynchronous sampling does not

always occur for different sensors. Note that when the

sensors are close to each other, it is relatively simple to

achieve synchronous sampling through the use of a single

hardware with multichannel acquisition capabilities.

Consequently, the synchronization errors should be con-

sidered only when the sensors are far away. In [59], a

number of spatially separated sensors for TDOA position-

ing are separated into many groups, and they are synchro-

nized within each group and synchronization timing
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offsets occur among different groups. In other words,

these sensors are partially synchronized. Based on this

localization scenario, some efficient localization ap-

proaches are developed in [57, 59, 70].

In order to further improve the source position estimate

in the presence of timing synchronization offsets and/or

sensor location errors, we need to utilize a set of calibra-

tion emitters whose positions are accurately or approxi-

mately known. Indeed, the introduction of calibration

source can provide much performance gain [71–78]. The

reason for this is that the TDOA measurements from

target source and calibration emitters are subject to the

same sensor position displacement and synchronization

clock bias. In [71], a single calibration source with accur-

ately known location is exploited to reduce the loss in

localization accuracy due to the uncertainties in sensor lo-

cations. The gain in localization accuracy resulted from a

calibration signal is examined through the CRB analysis.

An asymptotically efficient solution for source location

estimate is also presented in [71], which uses TDOA

measurements from both target and calibration source.

References [72–74] extend this work to TDOA/FDOA po-

sitioning scenario where the target source is moving. In

addition, the study in [71] is also generalized to some

more practical situations. For example, the accurate

position of calibration emitter is not available [75];

multiple target sources and calibration emitters exist sim-

ultaneously [76, 77]. Some efficient solutions are devel-

oped in [75–77]. Besides, the effects of sensor position

errors and the placement of calibration emitter for source

localization are studied in [78]. Theoretical and experi-

mental results show that it is possible to eliminate the ef-

fects of sensor position errors on source localization by

properly exploring calibration emitters, even if their posi-

tions are not known exactly.

It is noteworthy that none of the works in [71–78] takes

the consideration of the synchronization errors in the

presence of calibration emitter. Indeed, it can be expected

by intuition that the negative effect incurred by clock bias

on localization accuracy can also be mitigated through the

utilization of calibration emitter. Therefore, this work fo-

cuses on the use of calibration emitter for TDOA source

localization when both clock offsets and sensor position

uncertainties exist. To the best of our knowledge, this is

the first time this problem is addressed.

In this paper, the localization scenario is similar to the

one presented in [59], where the sensors are partially

synchronized. The study begins with the CRB investiga-

tion to examine the performance improvement due to

the utilization of the calibration emitters over the case

where no calibration sources are exploited. Some explicit

and useful CRB expressions are obtained. The insight

gained from the CRB indicates that the calibration

sources can significantly reduce the effects of clock bias

and sensor position errors. In order to achieve the

optimum estimation accuracy, we develop new TDOA

localization methods using the measurements from both

target source and calibration emitters. Specifically, two

dimension-reduction Taylor-series iterative algorithms

are proposed, and both of them have two stages. The

first stage estimates the clock offsets and refines the

sensor positions by using the calibration TDOA mea-

surements as well as the statistical characteristic of the

noisy sensor locations. The second stage provides the es-

timates of source location by combining the TDOA

measurements from the target signal and the estimated

values in the first phase. The theoretical MSEs of the

proposed methods are deduced based on the first-order

perturbation analysis. Moreover, the proposed solutions

are proved analytically to attain the CRB accuracy under

moderate noise level. The paper is closed by the use of

some simulations to support the theoretical develop-

ment. The novelty and technical contributions of the

paper are summarized as follows:

(1) The exact CRB expressions for TDOA source

localization in the presence of synchronization

clock bias and sensor location errors are first

obtained. The performance improvement due to the

use of the calibration sources is quantified through

the CRB analysis.

(2) Aiming at the localization problem addressed here,

we propose two efficient dimension-reduction

Taylor-series iterative algorithms based on the

property of the orthogonal projection matrix.

Both of them can significantly reduce the performance

loss in localization accuracy caused by synchronization

offsets and sensor location errors.

(3) The estimation MSEs of two proposed solutions are

derived by applying the first-order perturbation

analysis. Moreover, the analytical expressions for

the MSEs are proved to equal the CRB by making

use of the property of the orthogonal projection

matrix. More importantly, our performance analysis

is performed in a general mathematical framework,

which is not limited to a specific signal metric.

The obtained analytical result reveals that the new

methods are able to provide asymptotically optimal

estimation accuracy for source localization.

The rest of this paper is organized as follows. Section 2

lists the notational conventions and matrix identities that

will be used throughout the paper. In Section 3, the

localization scenario is described and the measurement

model is formulated. The CRB analyses are performed in

Section 4. Section 5 develops the proposed TDOA

localization methods. The asymptotic efficiency of the

proposed estimators is proved in Section 6. Section 7
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provides the simulation results which can corroborate the

theoretical analysis as well as the good performance of the

proposed solutions. Conclusions are drawn in Section 8.

The proofs of the main results are shown in Appendices

1, 2, 3, 4, 5, 6, 7, and 8.

2 Notational conventions and matrix identities
In this paper, lowercase and uppercase boldface letters

are used to denote vectors and matrices, respectively.

The notational conventions that are used throughout

this paper are listed in Table 1, where the right side de-

scribes the definition of some common mathematical

notations shown on the left side.

Table 2 shows four matrix identities, which are useful for

the theoretical development in this paper. It contains two

orthogonal projection matrix formulas for the full-column-

rank matrix, the partitioned matrix inversion formula for

symmetric matrix, and the matrix inversion lemma.

3 Measurement model and problem formulation
3.1 Measurement model for target source

We consider three-dimension (3D) localization scenario,

in which M sensors are used to capture the radiated signal

from an emitting point source. The sensors are located at

positions wm = [xr, m yr, m zr, m]
T (1 ≤m ≤M). The TDOAs

of the received signals with respect to the signal at refer-

ence sensor, say sensor 1, are estimated to determine the

location of the target source. The unknown position of

the transmitter is assumed to be u = [x y z]T.

As discussed in [59], perfect synchronization for all

sensors may not be feasible if the sensors are widely sep-

arated or there are a large number of sensors. However,

it is relatively simple to perform synchronous sampling

for some of the sensors that are close to each other. For

this reason, we can divide the sensors into N groups.

The number of sensors in the nth group is set to Mn,

which implies M ¼
PN

n¼1Mn . Within each group, the

signals received at the sensors are sampled synchron-

ously with respect to a common local clock. But, the

clocks from different sensor groups are not the same

and clock offsets exist among them. Without loss of gen-

erality, the sensors are grouped in the following manner.

In Fig. 1, Sm stands for the mth sensor and S1 repre-

sents the reference sensor. Since the reference sensor be-

longs to the first group, the clock bias of this group can

be assumed to be zero.

It is well known that TDOA measurement can be eas-

ily converted to range difference of arrival (RDOA)

measurement given the signal propagation speed. There-

fore, TDOA and RDOA are used interchangeably

throughout this paper. Based on the above assumption,

the RDOAs can be modeled as:

r̂m1 ¼ rm1 þ εm1 ¼ u−wmk k2− u−w1k k2 þ εm1

¼ f m u;wð Þ þ εm1 2≤m≤M1ð Þ

r̂m1 ¼ rm1 þ εm1 ¼ u−wmk k2− u−w1k k2 þ ρn þ εm1

¼ f m u;wð Þ þ ρn þ εm1
~Mn−1 þ 1≤m≤ ~Mn; 2≤n≤N
� �

8

>>>>><

>>>>>:

ð1Þ

where r̂m1 is the noisy measurement, rm1 is the true

value in the presence of synchronization errors, εm1 is

the additive noise, ρn is the range offset due to clock bias

of group n with respect to group 1, ~Mn ¼
Pn

j¼1M j and

~MN ¼ M, and fm(u,w) = ‖u −wm‖2 − ‖u −w1‖2.

For notation simplicity, we collect fr̂m1g2≤m≤M to form

a (M − 1) × 1 RDOA vector as follows:

r̂¼rþε¼ f u;wð Þ þ Γρþ ε ð2Þ

where

r̂ ¼ r̂21 r̂31 ⋯ r̂M1½ �T ; r ¼ r21 r31 ⋯ rM1½ �T ;

ε ¼ ε21 ε31 ⋯ εM1½ �T ; ρ ¼ ρ2 ρ3 ⋯ ρN
� �T

f u;wð Þ ¼ f 2 u;wð Þ f 3 u;wð Þ ⋯ f M u;wð Þ½ �T ;

Γ ¼ O N−1ð Þ� M1−1ð Þ

�
blkdiag 11�M2

11�M3
⋯ 11�MN

½ ��T

8

>>>>><

>>>>>:

ð3Þ

It is assumed that the error vector ε follows a zero-

mean Gaussian distribution with covariance matrix

Table 1 Notational conventions

Notation Explanation

⊗ Kronecker product

In n × n identity matrix

On ×m n ×m matrix of zeros

1n ×m n ×m matrix of ones

blkdiag[A1 A2 ⋯ An] A block diagonal matrix with matrices
{Ak}1≤ k ≤ n on the main diagonal

rank[A] Rank of matrix A

rank[A] Linear subspace spanned by the column
vectors of matrix A

A1/2 Square root of matrix A

A† Moore–Penrose inverse of matrix A

Π⊥[A] Orthogonal projection matrix onto the
orthogonal subspace of range[A]

Table 2 Matrix identities

Serial
number

Matrix identity

I A B

BT C

� �−1

¼
ðA−BC−1BTÞ

−1
−ðA−BC−1BTÞ

−1
BC−1

−C−1BTðA−BC−1BTÞ
−1

ðC−BTA−1BÞ
−1

" #

(A and C are symmetric matrices)

II (A + BCD)−1 = A−1
− A−1B(C−1 +DA−1B)−1DA−1

III Π⊥[A] = I − A(ATA)−1AT when A is full column rank
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Q = E[εεT]. Note that ρ is the clock bias vector and its

unit is meter not second because RDOA is used instead of

TDOA. Besides, from the definition of matrix Γ in (3), it

can be easily checked that rank[Γ] =N − 1.

On the other hand, the accurate sensor locations

{wm}1 ≤m ≤M are not known and only noisy versions of

them, denoted by fv̂mg1≤m≤M , are available. Mathemat-

ically, we have

v̂m ¼ wm þ ξm 1≤m≤Mð Þ ð4Þ

where ξm is the position error in v̂m . The collection of

fv̂mg1≤m≤M forms a 3M × 1 sensor location vector as

below:

v̂ ¼ w þ ξ ð5Þ

where v ¼ ½v̂T1 v̂T2 ⋯ v̂TM�
T
and ξ ¼ ½ξT1 ξT2 ⋯ ξTM�

T
. It

is assumed that ξ is Gaussian distributed with zero mean

and covariance matrix P = E[ξξT]. Moreover, ξ is inde-

pendent of ε.

3.2 Measurement model for calibration source

Assume that there exist some calibration emitters that are

not far from the target. Moreover, the locations of the cali-

bration sources are accurately known. The RDOAs of the

calibration signals are also measured based on the sensors

given in Fig. 1. These measurements are helpful in redu-

cing the effects of synchronization offsets and sensor loca-

tion errors.

The number of calibration emitters is set to D, and

the position of the dth calibration source is denoted as

uc, d = [xc, d yc, d zc, d]
T (1 ≤ d ≤D). Since timing

synchronization offsets are caused by the difference of

local clocks from different sensor groups, it is reason-

able to assume that the clock bias vector ρ remains the

same for different signals [79]. As a consequence, the

RDOA vector of the dth calibration signal can be writ-

ten as:

r̂c;d ¼ rc;d þ εc;d ¼ f uc;d;w
� �

þ Γρþ εc;d 1≤d≤Dð Þ

ð6Þ

where εc, d is the measurement error, which is modeled

as a zero-mean Gaussian random vector with covariance

matrix Qc, d. Besides, εc;d1 and εc;d2
are statistically inde-

pendent for d1 ≠ d2, and {εc, d}1 ≤ d ≤D are uncorrelated

with ε and ξ.

Putting all the D equations in (6) together yields

r̂c ¼ rc þ εc ¼ f wð Þ þ Γρþ εc ð7Þ

where

Γ ¼ 1D�1 � Γ ; f wð Þ ¼
�
f uc;1;w
� �� �T

f uc;2;w
� �� �T

⋯

f uc;D;w
� �� �T

�
T

r̂c ¼ r̂Tc;1 r̂Tc;2 ⋯ r̂Tc;D

h iT

; rc ¼ rTc;1 rTc;2 ⋯ rTc;D

h iT

;

εc ¼ εTc;1 εTc;2 ⋯ εTc;D

h iT

8

>>>>>>>>><

>>>>>>>>>:

ð8Þ

It follows from the above assumption that εc is a zero-

mean Gaussian random vector with covariance matrix

Qc = blkdiag[Qc, 1 Qc, 2 ⋯ Qc, D].

Fig. 1 Sketch map of sensor grouping
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3.3 Determination of covariance matrices

Before proceeding further, it must be noted that the the-

oretical development requires the knowledge of the co-

variance matrices Q, Qc, and P, which may not be

known in practice. Fortunately, they can be well esti-

mated in real-life application.

First, we discuss how to obtain the covariance matrix

of the TDOA measurement. According to [80], it can

be found that the TDOA estimated by generalized

cross-correlation with Gaussian data is asymptotically

normally distributed. Besides, it follows from [81] that

the TDOA noise vector in Hahn and Tretter’s estimator

is also asymptotically normal. Then, if the noise power

spectral densities are similar at sensors, the covariance

matrices can be replaced by a matrix of diagonal

elements 1 and 0.5 for all other elements according to

the analysis in [5]. If this condition is not satisfied, for

many estimation methods (such as maximum likeli-

hood (ML) estimator), Q and Qc approach the CRB

under Gaussian noise, and it has explicit form as

shown in [82, 83].

Second, the covariance matrix of sensor location errors

can be obtained by a large number of off-line observations.

Specifically, it can be estimated during calibration by using

a source of known location and by measuring the amounts

of perturbations in the sensor positions. The detailed esti-

mation method can be found in [84, 85]. On the other

hand, according to the discussion in [24], some scattering

models from the environment may also help to determine

the covariance matrix.

Although there is no mathematically substantiated ar-

gument to support that the approximation of covari-

ance matrices does not introduce much loss in

accuracy, some previous work indicates that the per-

formance degradation due to the approximation is in-

significant [86, 87]. The detailed sensitivity of the

inaccurate knowledge of Q, Qc, and P on the perform-

ance of the proposed estimator can be considered as a

subject for further study. Once the covariance matrices

mentioned above are obtained, or well estimated from

the estimation methods, we can use them for source

localization.

3.4 Problem formulation

In this work, two important problems need to be stud-

ied. First, we intend to determine the performance gain

in parameter estimation accuracy due to the introduc-

tion of calibration emitters. This problem can be solved

by deriving and analyzing the CRB expressions. Second,

it is necessary to present an effective method that can

provide the estimates of u, w, and ρ as accurate as pos-

sible with the help of RDOA measurements from the

calibration sources.

4 CRB derivation and analysis
It is well known that the CRB establishes a lower bound

on the error covariance matrix for any unbiased estimate

of a parameter vector. It is often used to investigate the

optimality of parametric estimators. This section is de-

voted to the derivation of the CRB on the estimation of

the parameters of interest. The obtained results can pro-

vide some valuable insights into the performance gain

for source localization through the introduction of cali-

bration signals. Additionally, they can also be considered

as a performance benchmark for the proposed solutions

in Section 5.

4.1 CRB derivation and analysis based on all the RDOA

measurements

In this subsection, the CRB on the covariance matrix of

parameter estimation is deduced based on the RDOA mea-

surements from both target source and calibration emit-

ters. In this situation, the observations consist of r̂, v̂, and

r̂c , and the unknowns include u, ρ, and w. Hence, we need

to define the data vector η ¼ ½̂rT v̂T r̂Tc �
T
as well as the

parameter vector μ = [uT w
T ρT]T. Under the assump-

tions stated in Section 3, the logarithm probability density

function (PDF) of η parameterized on μ is given by

ln p ηjμð Þð Þ ¼ L−
1

2
r̂−f u;wð Þ−Γρð ÞTQ−1 r̂−f u;wð Þ−Γρð Þ

−

1

2
v̂−wð ÞTP−1 v̂−wð Þ

−

1

2
r̂c−f wð Þ−Γρ
� �T

Q−1
c r̂c−f wð Þ−Γρ
� �

ð9Þ

where L is a constant independent of μ. It can be readily

verified from (9) that

∂ ln p ηjμð Þð Þ

∂μ
¼

F1 u;wð Þð ÞTQ−1ε

F2 u;wð Þð ÞTQ−1εþ F wð Þ
� �T

Q−1
c εc þ P−1ξ

ΓTQ−1εþ Γ
T
Q−1

c εc

2

6
4

3

7
5

ð10Þ

where F1ðu;wÞ ¼
∂ fðu;wÞ
∂uT

, F2ðu;wÞ ¼
∂ fðu;wÞ
∂wT , and

FðwÞ ¼
∂ fðwÞ

∂wT
. Using (10), we can obtain the CRB matrix for

μ as

For convenience, we define the matrices

Then, applying the matrix identities I and II in Table 2

yields

At this point, we would like to derive the per-

formance gain for source localization accuracy due
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to the introduction of calibration sources. For this

purpose, it is necessary to compare CRB(u) with the

CRB of u for the case without calibration emitters.

This CRB is denoted as CRBo(u), and it can be

written as [24]

CRBo uð Þ ¼ X−1 þ X−1Y Zo−Y
TX−1Y

� �
−1
YTX−1 ð14Þ

where

Zo ¼
F2 u;wð Þð ÞTQ−1F2 u;wð Þ þ P−1 F2 u;wð Þð ÞTQ−1Γ

ΓTQ−1F2 u;wð Þ ΓTQ−1Γ

� �

ð15Þ

It is straightforward to verify from the third equality in

(12) and (15) that

Z ¼ Zo þ
F wð Þ
� �T

Γ
T

" #

Q−1
c

F wð Þ
� �T

Γ
T

" #T

ð16Þ

which combined with the first equality in (13), (14) and

the matrix identity (II) in Table 2 leads to

CRBo uð Þ−CRB uð Þ ¼ X−1Y Zo−Y
TX−1Y

� �
−1 F wð Þ
� �T

Γ
T

" #

Q−1=2
c

 

ID M−1ð Þ

þQ−1=2
c

F wð Þ
� �T

Γ
T

" #T

Zo−Y
TX−1Y

� �
−1 F wð Þ
� �T

Γ
T

" #

Q−1=2
c

!
−1

�Q−1=2
c

F wð Þ
� �T

Γ
T

" #T

Zo−Y
TX−1Y

� �
−1
YTX−1

ð17Þ

Before proceeding, some remarks are in order.

4.1.1 Remark 1

The term on the right side of (17) represents the perform-

ance improvement resulted from the utilization of the cali-

bration sources. It is clear that if Q−1=2
c →O , then

CRBo(u)→CRB(u), which means that there is no improve-

ment in the localization accuracy. This is not unexpected

because Q−1=2
c →O implies that the RDOA measurements

of the calibration emitters are so noisy and become useless.

4.1.2 Remark 2

It is easy to check that the term on the right side of (17)

has a symmetric structure and it is a positive semidefi-

nite matrix. Therefore, using the calibration emitters is

helpful in improving the best localization accuracy. In

CRB μð Þ ¼ E
∂ ln p ηjμð Þð Þ

∂μ

∂ ln p ηjμð Þð Þ

∂μ

� 	T
" # !

−1

¼

F1 u;wð Þð ÞTQ−1F1 u;wð Þ F1 u;wð Þð ÞTQ−1F2 u;wð Þ F1 u;wð Þð ÞTQ−1Γ

F2 u;wð Þð ÞTQ−1F1 u;wð Þ
F2 u;wð Þð ÞTQ−1F2 u;wð Þ

þ F wð Þ
� �T

Q−1
c F wð Þ þ P−1

F2 u;wð Þð ÞTQ−1Γþ F wð Þ
� �T

Q−1
c Γ

ΓTQ−1F1 u;wð Þ ΓTQ−1F2 u;wð Þ þ Γ
T
Q−1

c F wð Þ ΓTQ−1Γþ Γ
T
Q−1

c Γ

2

6
6
6
4

3

7
7
7
5

−1

ð11Þ

X ¼ F1 u;wð Þð ÞTQ−1F1 u;wð Þ ; Y ¼ F1 u;wð Þð ÞTQ−1 F2 u;wð Þ Γ½ �

Z ¼
F2 u;wð Þð ÞTQ−1F2 u;wð Þ þ F wð Þ

� �T
Q−1

c F wð Þ þ P−1 F2 u;wð Þð ÞTQ−1Γþ F wð Þ
� �T

Q−1
c Γ

ΓTQ−1F2 u;wð Þ þ Γ
T
Q−1

c F wð Þ ΓTQ−1Γþ Γ
T
Q−1

c Γ

" #

8

><

>:

ð12Þ

CRB uð Þ ¼ X−1 þ X−1Y Z−YTX−1Y
� �

−1
YTX−1

CRB wð Þ ¼ I3M O3M� N−1ð Þ

� �
Z−1 I3M

O N−1ð Þ�3M

� �

þ I3M O3M� N−1ð Þ

� �
Z−1YT X−YZ−1YT

� �
−1
YZ−1 I3M

O N−1ð Þ�3M

� �

CRB ρð Þ ¼ O N−1ð Þ�3M IN−1

� �
Z−1 O3M� N−1ð Þ

IN−1

� �

þ O N−1ð Þ�3M IN−1

� �
Z−1YT X−YZ−1YT

� �
−1
YZ−1 O3M� N−1ð Þ

IN−1

� �

8

>>>>>><

>>>>>>:

ð13Þ
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fact, the resulting performance gain is considerable at

typical measurement error level, as illustrated in the

simulation section.

4.1.3 Remark 3

In Appendix 1, we provide an alternative expression for

CRB(u) as follows:

CRB uð Þ ¼

�

F1 u;wð Þð ÞT
�

Q þ
F2 u;wð Þð ÞT

ΓT

� �T

Φ
F2 u;wð Þð ÞT

ΓT

� �	
−1

F1ðu;wÞ

	
−1

ð18Þ

where

Φ ¼
F wð Þ
� �T

Q−1
c F wð Þ þ P−1 F wð Þ

� �T
Q−1

c Γ

Γ
T
Q−1

c F wð Þ Γ
T
Q−1

c Γ

" #
−1

ð19Þ

Note that this CRB expression is useful for the per-

formance analysis in Section 6.2.1.

4.1.4 Remark 4

In Appendix 2, the explicit expressions for CRB

�
u

w

� �	

,

CRB

�
w

ρ

� �	

, and CRB(ρ) are shown. They are useful in

the subsequent theoretical development. In addition, it is

worthy to point out that all the CRBs obtained above are

uncorrelated with ρ.

4.2 CRB derivation and analysis based on the RDOA

measurements of calibration signals

The aim of this subsection is to derive the CRB on the

estimation of parameters ρ and w based on the RDOA

measurements from the calibration emitters only. The

associated CRB matrix is denoted by CRBc

�
ρ

w

� �	

. In

this situation, the observation and parameter vector

should be defined as ηc ¼ ½v̂T r̂Tc �
T
and μc = [wT ρT]T,

respectively. It follows from the assumptions described

in Section 3 that the logarithm PDF of ηc conditioned

on μc can be written as:

ln pc ηcjμcð Þð Þ ¼ Lc−
1

2
r̂c− f wð Þ−Γρ
� �T

Q−1
c r̂c−f wð Þ−Γρ
� �

−

1

2
v̂−wð ÞTP−1 v̂−wð Þ

ð20Þ

where Lc is a constant that is unrelated to μc. From (20),

we have

∂ ln pc ηcjμcð Þð Þ

∂μc

¼
F wð Þ
� �T

Q−1
c εc þ P−1ξ

Γ
T
Q−1

c εc

" #

ð21Þ

which implies that the CRB matrix for μc = [w
T

ρ
T

]
T

is

equal to

CRBc
w

ρ

� �� 	

¼ E
∂ ln pc ηcjμcð Þð Þ

∂μc

∂ ln p ηcjμcð Þð Þ

∂μc

� 	T
" # !

−1

¼
F wð Þ
� �T

Q−1
c F wð Þ þ P−1 F wð Þ

� �T
Q−1

c Γ

Γ
T
Q−1

c F wð Þ Γ
T
Q−1

c Γ

" #
−1

¼ Φ

ð22Þ

Combining (22) and (84) leads to

CRBc
w

ρ

� �� 	� 	
−1

− CRB
w

ρ

� �� 	� 	
−1

¼
F2 u;wð Þð ÞT

ΓT

� �

Q−1=2Π⊥ Q−1=2F1 u;wð Þ
h i

Q−1=2 F2 u;wð Þð ÞT

ΓT

� �T

≥O

⇒CRBc
w

ρ

� �� 	

≤CRB
w

ρ

� �� 	

ð23Þ

which means that the RDOA measurements from the

target source can be exploited to improve the optimum

estimation accuracy for w and ρ.

On the other hand, applying the matrix identities (I–III)

in Table 2 yields

CRBc wð Þ ¼ F wð Þ
� �T

Q−1=2
c Π⊥ Q−1=2

c Γ
h i

Q−1=2
c F wð Þ þ P−1


 �
−1

ð24Þ

CRBc ρð Þ ¼ Γ
T
Q−1

c Γ

 �

−1

þ Γ
T
Q−1

c Γ

 �

−1

Γ
T
Q−1

c F wð ÞCRBc wð Þ F wð Þ
� �T

Q−1
c Γ Γ

T
Q−1

c Γ

 �

−1

ð25Þ

It is noteworthy that these two CRB expressions are

useful for the theoretical analysis in Section 5.2. In

addition, it can be easily observed from (24) and (25)

that both CRBc(w) and CRBc(ρ) are independent of ρ.

5 Proposed TDOA localization methods
The objective of this section is to develop effective TDOA

localization methods in the presence of synchronization off-

sets and sensor location errors when a set of calibration

emitters are available. The presented methods are based on

the Taylor-series expansion. In order to decrease the num-

ber of variables involved in iteration, we devise dimension-

reduction Taylor-series iterative algorithms. More specific-

ally, the novel approach consists of two stages. The first

stage estimates the clock bias and refines the sensor posi-

tions based on the calibration RDOA measurements as well

as the prior knowledge of sensor locations. The second stage

provides the estimates of source location by combining the

RDOA measurements of the target signal and the estimated

values in the first phase. Moreover, the sensor locations and
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the clock bias can be further refined compared to the esti-

mates in the first step.

5.1 Stage 1 of the proposed methods

In the first stage, the measurement vectors r̂c and v̂ are

combined to estimate ρ and w. In order to obtain the

optimum accuracy, the ML criterion is adopted, and the

corresponding minimization problem can be formulated as:

min
w;ρ

Q−1=2
c r̂c

P−1=2v̂

� �

−
Q−1=2

c f wð Þ þ Γρ
� �

P−1=2w

� ��
�
�
�

�
�
�
�

2

2

( )

ð26Þ

There is no doubt that the conventional Taylor-series it-

erative algorithm, as discussed in [8, 88], can be used to

solve (26) and jointly estimate ρ and w. However, in this

subsection, we would like to present an alternative Taylor-

series iterative algorithm, which is able to reduce the num-

ber of parameters involved in the iteration. Note that the

objective function in (26) is quadratic in ρ; hence, the opti-

mal solution to ρ can be obtained in closed form as below:

ρ̂ f;opt ¼ Γ
T
Q−1

c Γ

 �

−1

Γ
T
Q−1

c r̂c−f wð Þ
� �

ð27Þ

where subscript “f” is added to emphasize that this is the

solution in the first stage. Inserting (27) back into (26) re-

sults in the following concentrated objective function:

min
w

Π⊥ Q−1=2
c Γ

h i

Q−1=2
c r̂c

P−1=2v̂

" #

−
Π⊥ Q−1=2

c Γ
h i

Q−1=2
c f wð Þ

P−1=2w

" #�
�
�
�
�

�
�
�
�
�

2

2

8

<

:

9

=

;

ð28Þ

The unknowns that need to be optimized in (28) in-

clude w only, and this minimization problem can be

solved by the traditional Taylor-series iterative algo-

rithm. The corresponding iterative formula is given by

ŵ
kþ1ð Þ
f ¼ ŵ

kð Þ
f þ

�

F ŵ
kð Þ
f


 �
 �T

Q−1=2
c Π⊥ Q−1=2

c Γ
h i

Q−1=2
c F ŵ

kð Þ
f


 �

þP−1Þ
−1

�



F ŵ
kð Þ
f


 �
 �T

Q−1=2
c Π⊥ Q−1=2

c Γ
h i

Q−1=2
c r̂c− f ŵ

kð Þ
f


 �
 �

þP−1 v̂−ŵ
kð Þ
f


 ��

ð29Þ

where superscript k indexes iteration number and ŵ
ðkÞ
f de-

notes the estimate at the kth iteration. If the sequence

fŵ
ðkÞ
f g

1≤ k ≤þ∞
converges to ŵ f , then this vector can be

regarded as the solution of sensor locations in the first phase.

When the iteration process in (29) is terminated, the

solution of ρ can be immediately determined by

ρ̂ f ¼ Γ
T
Q−1

c Γ

 �

−1

Γ
T
Q−1

c r̂c−f ŵ fð Þ
� �

ð30Þ

At this point, we make two important remarks about

the proposed algorithm in the first stage.

5.1.1 Remark 5

In the procedure stated above, the estimation of w and ρ

is decoupled and each is estimated sequentially with

lower computational complexity.

5.1.2 Remark 6

Both ŵ f and ρ̂ f are asymptotically efficient solutions be-

cause their performance can attain the CRB derived in

Section 4.2. We prove this result in Section 5.2 with an

analytical manner.

5.2 MSE analysis in the first stage

The aim of this subsection is to deduce the MSE expres-

sions of ŵ f and ρ̂ f by employing the first-order perturb-

ation analysis. Moreover, the two MSEs are proved to

asymptotically reach the corresponding CRBs given in

Section 4.2. It is worth emphasizing that the MSE ex-

pressions for the estimates in the first phase are import-

ant because they are used in the second stage.

5.2.1 MSE expression of ŵ f

The theoretical MSE of ŵ f is derived here. Taking the

limit on both sides of (29) produces

F ŵ fð Þ
� �T

Q−1=2
c Π⊥ Q−1=2

c Γ
h i

Q−1=2
c r̂c− f ŵ fð Þ
� �

þ P−1 v̂−ŵ fð Þ ¼ O3M�1

ð31Þ

where ŵ f ¼ lim
k→þ∞

ŵ
ðkÞ
f . Substituting (5) and (7) into (31)

and ignoring the second- and higher-order error terms

leads to

O3M�1 ¼ F ŵ fð Þ
� �T

Q−1=2
c Π⊥ Q−1=2

c Γ
h i

Q−1=2
c

�

f wð Þ−f ŵ fð Þ

þΓρþ εcÞ þ P−1 w−ŵ f þ ξð Þ

≈ F wð Þ
� �T

Q−1=2
c Π⊥ Q−1=2

c Γ
h i

Q−1=2
c εc−F wð ÞΔw f

� �

þP−1 ξ−Δw fð Þ

ð32Þ

where Δw f ¼ ŵ f−w is the estimation error in ŵ f . Note

that the second (approximate) equality in (32) exploits

the relation Π⊥½Q−1=2
c Γ�Q−1=2

c Γ ¼ ODðM−1Þ�ðN−1Þ . It fol-

lows immediately from (32) that

Δw f ≈ F wð Þ
� �T

Q−1=2
c Π⊥ Q−1=2

c Γ
h i

Q−1=2
c F wð Þ þ P−1


 �
−1

� F wð Þ
� �T

Q−1=2
c Π⊥ Q−1=2

c Γ
h i

Q−1=2
c εc þ P−1ξ


 �

ð33Þ

which yields
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MSE ŵ fð Þ ¼ E Δw f Δw fð ÞT
h i

¼ F wð Þ
� �T

Q−1=2
c Π⊥ Q−1=2

c Γ
h i

Q−1=2
c F wð Þ þ P−1


 �
−1

¼ CRBc wð Þ

ð34Þ

Therefore, the estimate ŵ f is asymptotically efficient.

5.2.2 MSE expression of ρ̂ f

This subsection is devoted to deriving the analytical MSE

expression of ρ̂ f . Inserting (7) into (30) and neglecting the

second- and higher-order error terms, we obtain

Γ
T
Q−1

c Γ ρþ Δρ fð Þ ≈ Γ
T
Q−1

c Γρþ εc−F wð ÞΔw f

� �
⇒Δρ f

≈ Γ
T
Q−1

c Γ

 �

−1

Γ
T
Q−1

c εc− Γ
T
Q−1

c Γ

 �

−1

Γ
T
Q−1

c F wð ÞΔw f

ð35Þ

where Δρ f ¼ ρ̂ f−ρ is the estimation error in ρ̂ f . It can

be checked from (35) that

MSE ρ̂ fð Þ ¼ E Δρ f Δρ fð ÞT
h i

¼ A1 þ A2 þ A3 þ AT
3 ð36Þ

where

A1 ¼ Γ
T
Q−1

c Γ

 �

−1

A2 ¼ Γ
T
Q−1

c Γ

 �

−1

Γ
T
Q−1

c F wð ÞCRBc wð Þ F wð Þ
� �T

Q−1
c Γ Γ

T
Q−1

c Γ

 �

−1

A3 ¼ − Γ
T
Q−1

c Γ

 �

−1

Γ
T
Q−1

c � E εc Δw fð ÞT
h i

� F wð Þ
� �T

Q−1
c Γ Γ

T
Q−1

c Γ

 �

−1

8

>>>><

>>>>:

ð37Þ

Appendix 3 shows that A3 =O(N − 1) × (N − 1), which, to-

gether with (36) and (37), implies

MSE ρ̂ fð Þ ¼ Γ
T
Q−1

c Γ

 �

−1

þ Γ
T
Q−1

c Γ

 �

−1

Γ
T
Q−1

c F wð ÞCRBc

wð Þ F wð Þ
� �T

Q−1
c Γ Γ

T
Q−1

c Γ

 �

−1

¼ CRBc ρð Þ

ð38Þ

It can be seen from (38) that ρ̂ f also has asymptotic

efficiency.

Two remarks are drawn at the end of this subsection.

5.2.3 Remark 7

The asymptotic optimality of ŵ f and ρ̂ f only holds when

the RDOA measurements of target source are not used.

Hence, the estimation accuracy of sensor locations and clock

bias may be further improved in the subsequent phase.

5.2.4 Remark 8

Applying (35), the cross-covariance matrix between ρ̂ f

and ŵ f is given by

cov ρ̂ f ; ŵ fð Þ ¼ E Δρ f Δw fð ÞT
h i

¼ Γ
T
Q−1

c Γ

 �

−1

Γ
T
Q−1

c

� E εc Δw fð ÞT
h i

− Γ
T
Q−1

c Γ

 �

−1

Γ
T
Q−1

c F wð Þ

� E Δw f Δw fð ÞT
h i

ð39Þ

Putting (87), (34), and (39) together produces

cov ρ̂ f ; ŵ fð Þ ¼ − Γ
T
Q−1

c Γ

 �

−1

Γ
T
Q−1

c F wð ÞCRBc wð Þ

ð40Þ

It can be verified from the matrix identity (II) in Table 2

that covðρ̂ f ; ŵ fÞ is equal to the lower-left-hand corner of

CRBc

�
w

ρ

� �	

. So, using (34) and (38), we have

MSE
ŵ f

ρ̂ f

� �� 	

¼ E
Δw f

Δρ f

� �
Δw f

Δρ f

� �T
 !

¼
CRBc wð Þ cov ρ̂ f ; ŵ fð Þð ÞT

cov ρ̂ f ; ŵ fð Þ CRBc ρð Þ

� �

¼ CRBc
w

ρ

� �� 	

¼ Φ

ð41Þ

5.3 Stage 2 of the proposed methods

In the second phase, we combine the measurement vector

r̂ with the estimates of w and ρ in the first stage, denoted

by ŵ f and ρ̂ f , to locate the target source. Moreover, the

estimates in the first step can be further refined. As in the

first stage, the ML criterion is utilized again to obtain the

asymptotic optimum performance. It is important to note

that two dimension-reduction Taylor-series iterative algo-

rithms are proposed in the second step.

5.4 The first algorithm

The first algorithm not only determines the position of

target source, but also further improves the estimates of

sensor locations and clock bias provided in the first

stage. Since the measurement error in r̂ is independent

of the estimation errors Δwf and Δρf, the corresponding

ML estimator can be formulated as:
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min
u;w;ρ

Q−1=2r̂

Ψ1ŵ f þΨ2ρ̂ f

� �

−
Q−1=2 f u;wð Þ þ Γρð Þ

Ψ1w þΨ2ρ

� ��
�
�
�

�
�
�
�

2

2

( )

ð42Þ

where Ψ1 and Ψ2 are defined as follows:

Φ−1=2 ¼
Ψ1
|{z}

3MþN−1ð Þ�3M

Ψ2
|{z}

3MþN−1ð Þ� N−1ð Þ

� �

ð43Þ

It is obvious that this minimization problem can be

efficiently solved through the conventional Taylor-

series iterative technique. However, for the purpose of

reducing the number of parameters in the iterative

procedure, we still exploit the dimension-reduction

Taylor-series iterative algorithm. Due to the fact that

(42) is a quadratic minimization problem with respect

to ρ, its optimal solution can be written in closed

form as:

ρ̂s1;opt ¼ ΓTQ−1ΓþΨT
2Ψ2

� �
−1
�

ΓTQ−1 r̂− f u;wð Þð Þ

þΨT
2Ψ1 ŵ f−wð Þ þΨT

2Ψ2ρ̂ f

	

ð44Þ

where subscript “s1” is used to highlight that this is

the solution in the second phase for the first algo-

rithm. Putting (44) back into (42) yields the following

concentrated minimization problem:

min
u;w

�
�
�
�

�
�
�
�Π

⊥ Q−1=2Γ

Ψ2

� �� 	

Q−1=2r̂

Ψ1ŵ f þΨ2ρ̂ f

� �

−Π⊥ Q−1=2Γ

Ψ2

� �� 	

Q−1=2 f u;wð Þ
Ψ1w

� ��
�
�
�

�
�
�
�

2

2

�

ð45Þ

The set of unknown parameters in (45) consists of u

and w, which cannot be decoupled. As a result, they

should be jointly estimated by the traditional Taylor-

series iterative technique. The associated update formula

for parameter estimation is given by

where superscript k denotes iteration number; û
ðkÞ
s1 and

ŵ
ðkÞ
s1 are the estimates of u and w at the kth iteration, re-

spectively. Let lim
k→þ∞

û
ðkÞ
s1 ¼ ûs1 and lim

k→þ∞

ŵ
ðkÞ
s1 ¼ ŵs1 .

Then, ûs1 and ŵs1 can be regarded as the final estimates

for target position and sensor locations, respectively. Be-

sides, once the convergence criterion is satisfied and the

iteration procedure is terminated, the final estimate for

clock bias can be explicitly obtained as:

ρ̂s1 ¼ ΓTQ−1ΓþΨT
2Ψ2

� �
−1
�

ΓTQ−1 r̂− f ûs1; ŵs1ð Þð Þ

þΨT
2Ψ1 ŵ f−ŵs1ð Þ þΨT

2Ψ2ρ̂ f

	

ð47Þ

Before we proceed, three important remarks concern-

ing the procedure described above are concluded.

5.4.1 Remark 9

In optimization problem (45), matrices Ψ1 and Ψ2 are not

accurately known because they depend on w, which is to be

estimated. In order to overcome this difficulty, we can use

the iteration vector ŵ
ðkÞ
s1 instead of the true sensor locations,

which means that Ψ1 and Ψ2 should be updated at every it-

eration step. Let us assume that the approximations of Ψ1

and Ψ2 at the kth iteration are denoted by Ψ̂
ðkÞ

1 and Ψ̂
ðkÞ

2 ,

respectively. The performance analysis in Section 6.1.1

shows that such an approximation does not affect the

asymptotic properties of the estimator. Plentiful simulation

results also indicate that the estimation accuracy is rela-

tively insensitive to the noise in these two matrices.

5.4.2 Remark 10

Since Φ−1 =Φ−1/2Φ−1/2 = (Φ−1/2)TΦ−1/2, putting (22),

(41), and (43) together produces

Φ−1 ¼
ΨT

1Ψ1 ΨT
1Ψ2

ΨT
2Ψ1 ΨT

2Ψ2

� �

¼ CRBc
w

ρ

� �� 	� 	
−1

¼
F wð Þ
� �T

Q−1
c F wð Þ þ P−1 F wð Þ

� �T
Q−1

c Γ

Γ
T
Q−1

c F wð Þ Γ
T
Q−1

c Γ

" #

ð48Þ

which implies

û
kþ1ð Þ
s1

ŵ
kþ1ð Þ
s1

" #

¼
û

kð Þ
s1

ŵ
kð Þ
s1

" #

þ
Q−1=2F1 û

kð Þ
s1 ; ŵ

kð Þ
s1


 �

Q−1=2F2 û
kð Þ
s1 ; ŵ

kð Þ
s1


 �

O 3MþN−1ð Þ�3 Ψ1

" #T

Π⊥ Q−1=2Γ

Ψ2

� �� 	

Q−1=2F1 û
kð Þ
s1 ; ŵ

kð Þ
s1


 �

Q−1=2F2 û
kð Þ
s1 ; ŵ

kð Þ
s1


 �

O 3MþN−1ð Þ�3 Ψ1

" #0

@

1

A

−1

�
Q−1=2F1 û

kð Þ
s1 ; ŵ

kð Þ
s1


 �

Q−1=2F2 û
kð Þ
s1 ; ŵ

kð Þ
s1


 �

O 3MþN−1ð Þ�3 Ψ1

" #T

Π⊥ Q−1=2Γ

Ψ2

� �� 	
Q−1=2 r̂− f û

kð Þ
s1 ; ŵ

kð Þ
s1


 �
 �

Ψ1 ŵ f−ŵ
kð Þ
s1


 �

þΨ2ρ̂ f

2

4

3

5

ð46Þ
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ΨT
1Ψ1 ¼ F wð Þ

� �T
Q−1

c F wð Þ þ P−1 ; ΨT
1Ψ2

¼ F wð Þ
� �T

Q−1
c Γ ; ΨT

2Ψ2 ¼ Γ
T
Q−1

c Γ ð49Þ

These matrices are used in (46) and (47). Besides, they

are also required for the theoretical analysis in Section 6.

5.4.3 Remark 11

Section 6.1.1 proves that the joint estimate
ûs1

ŵs1

� �

can

asymptotically attain the CRB computed by (81). More-

over, Section 6.1.2 shows that the solution ρ̂s1 is also

asymptotically efficient because its performance can

achieve the CRB given by (85) before the thresholding

effect occurs.

5.4.4 The second algorithm

The aim of this subsection is to present an alternative

dimension-reduction Taylor-series iterative formula in

which the iteration variable is composed of u only. The

basic idea behind this algorithm is to automatically miti-

gate the effects of sensor location errors produced in the

first stage, rather than further improving the sensor po-

sitions. As a result, the computational load can be

reduced.

For this purpose, we use a first-order Taylor- series ex-

pansion, leading to the following approximation:

r̂ ≈ f u; ŵ fð Þ þ Γρþ ε−F2 u; ŵ fð ÞΔw fð Þ ð50Þ

where the second- and higher-order terms of estimation

error Δwf are ignored. It is immediately obvious that the

last term F2ðu; ŵ fÞΔw f can also be regarded as a measure-

ment error as ε. The ML estimator is therefore given by

min
u;ρ

r̂−f u;wð Þ−Γρ
ρ̂ f−ρ

� �T

Ω u; ŵ fð Þð Þ−1
r̂−f u;wð Þ−Γρ

ρ̂ f−ρ

� �( )

ð51Þ

where

Ω u; ŵ fð Þ ¼ E
ε−F2 u; ŵ fð ÞΔw f

Δρ f

� �
ε−F2 u; ŵ fð ÞΔw f

Δρ f

� �T
 !

¼
Q þ F2 u; ŵ fð ÞΦ1 F2 u; ŵ fð Þð ÞT −F2 u; ŵ fð ÞΦ2

−ΦT
2 F2 u; ŵ fð Þð ÞT Φ3

� �

ð52Þ

in which Φ1, Φ2, and Φ3 are defined as follows:

Φ ¼

Φ1
|{z}

3M�3M

Φ2
|{z}

3M� N−1ð Þ

ΦT
2

|{z}

N−1ð Þ�3M

Φ3
|{z}

N−1ð Þ� N−1ð Þ

2

6
6
6
4

3

7
7
7
5

ð53Þ

Likewise, the optimal solution of ρ in (51) can also be

written explicitly as below:

ρ̂s2;opt ¼
Γ

IN−1

� �T

Ω u; ŵ fð Þð Þ−1
Γ

IN−1

� � !
−1

Γ

IN−1

� �T

� Ω u; ŵ fð Þð Þ−1
r̂− f u; ŵ fð Þ

ρ̂ f

� �

ð54Þ

where subscript “s2” is used to emphasize that this is the

solution in the second phase for the second algorithm.

By substituting (54) into (51), we obtain the following

concentrated minimization problem

min
u

�
�
�
�

�
�
�
�Π

⊥ Ω u; ŵ fð Þð Þ−1=2
Γ

IN−1

� �� 	

Ω u; ŵ fð Þð Þ−1=2
r̂

ρ̂ f

� �

−Π⊥ Ω u; ŵ fð Þð Þ−1=2
Γ

IN−1

� �� 	

ðΩðu; ŵ fÞÞ
−1=2 f u; ŵ fð Þ

O N−1ð Þ�1

� ��
�
�
�

�
�
�
�

2

2

�

ð55Þ

Similar to (28) and (45), the Taylor-series iterative for-

mula for solving (55) can be expressed as:

û
kþ1ð Þ
s2 ¼ û

kð Þ
s2 þ

 



Ω û
kð Þ
s2 ; ŵ f


 �
 �
−1=2 F1 û

kð Þ
s2 ; ŵ f


 �

O N−1ð Þ�3

" #!T

Π⊥ Ω û
kð Þ
s2 ; ŵ f


 �
 �
−1=2 Γ

IN−1

� �� 	

Ω û
kð Þ
s2 ; ŵ f


 �
 �
−1=2

�
F1 û

kð Þ
s2 ; ŵ f


 �

O N−1ð Þ�3

" #!
−1

�

�

Ω û
kð Þ
s2 ; ŵ f


 �
 �
−1=2

�
F1 û

kð Þ
s2 ; ŵ f


 �

O N−1ð Þ�3

" #!T

Π⊥ Ω û
kð Þ
s2 ; ŵ f


 �
 �
−1=2 Γ

IN−1

� �� 	

� Ω û
kð Þ
s2 ; ŵ f


 �
 �
−1=2 r̂−f û

kð Þ
s2 ; ŵ f


 �

ρ̂ f

" #

ð56Þ

where superscript k stands for iteration number and û
ðkÞ
s2

is the estimate of u at the kth iteration. The convergence

result of sequence fû
ðkÞ
s2 g1≤ k ≤þ∞

, denoted by ûs2 , can be

viewed as the final estimate of target position for the

second algorithm. Moreover, once the iteration process

is completed, the final solution of clock bias can be

expressed in a closed form as:

ρ̂s2 ¼
Γ

IN−1

� �T

Ω ûs2; ŵ fð Þð Þ−1
Γ

IN−1

� � !
−1

Γ

IN−1

� �T

� Ω ûs2; ŵ fð Þð Þ−1
r̂− f ûs2; ŵ fð Þ

ρ̂ f

� �

ð57Þ

At the end of this subsection, two remarks about the

second algorithm are in order.
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5.4.5 Remark 12

The estimates of sensor locations obtained in the first

stage cannot be further refined in this algorithm.

5.4.6 Remark 13

Similar to the solutions ûs1 and ρ̂s1 obtained by the first al-

gorithm, the estimates ûs2 and ρ̂s2 are also asymptotically

efficient. Section 6.2 proves that the estimation accuracy of

ûs2 and ρ̂s2 can attain the CRBs given by (18) and the third

equality in (13), respectively, under mild condition.

5.5 Summary of the proposed methods

According to the description in Sections 5.1 and 5.3, we

get two novel TDOA localization algorithms when the

TDOA measurements from the calibration emitters are

available. Both of them require two stages, and moreover,

the first phases of the two algorithms have the same com-

putational procedure. In the sequel, we summarize the

two newly proposed algorithms, which are called algo-

rithm I and algorithm II, respectively (Figs. 2 and 3).

We make the following two remarks about the pro-

posed algorithms described above.

5.5.1 Remark 14

In the first stage of algorithm I, the initial value ŵ
ð0Þ
f can

be set to be the available erroneous sensor positions v̂. In

the second phase of algorithm I, the initial solution ŵ
ð0Þ
s1

can be selected as ŵ f and the initial guess û
ð0Þ
s1 can be ob-

tained by the non-iterative algebraic solution proposed in

[59]. Simulation results in Section 7 show that using these

initial solutions is able to achieve asymptotically efficient

performance. Moreover, this initialization method is also

suitable for algorithm II. From our simulation results, it

can be observed that fifteen iterations are generally

enough to achieve the convergence criterion.

5.5.2 Remark 15

As mentioned in Section 5.4.4, algorithm II involves a

smaller amount of computation than algorithm I because

the sensor locations are not refined in the second stage of

algorithm II. In Appendix 4, we provide the numerical

Fig. 2 Logical flowchart of algorithm I
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complexities of the two algorithms, expressed in the num-

ber of multiplication operations.

6 Performance analysis of the proposed methods
This section is devoted to deriving the theoretical MSE

of the TDOA localization methods presented in Section

5. Besides, we prove analytically that the theoretical per-

formance of the proposed solutions can reach the corre-

sponding CRB accuracy under mild conditions.

6.1 Performance analysis of algorithm I

6.1.1 MSE expression of joint estimates ûs1 and ŵs1

The aim of this subsection is to deduce the theoretical

MSE of the joint estimate
ûs1

ŵs1

� �

. We start the derivation

by taking the limit on both sides of (46) as follows:

Q−1=2F1 ûs1; ŵs1ð Þ Q−1=2F2 ûs1; ŵs1ð Þ
O 3MþN−1ð Þ�3 Ψ̂ 1

� �T

Π⊥ Q−1=2Γ

Ψ̂ 2

� �� 	

�
Q−1=2 r̂− f ûs1; ŵs1ð Þð Þ
Ψ̂1 ŵ f −ŵs1

� �
þ Ψ̂ 2ρ̂ f

� �

¼ O 3Mþ3ð Þ�1

ð58Þ

where Ψ̂1 ¼ lim
k→þ∞

Ψ̂
ðkÞ

1 and Ψ̂2 ¼ lim
k→þ∞

Ψ̂
ðkÞ

2 , and we

replaceΨ1 and Ψ2 with Ψ̂
ðkÞ

1 and Ψ̂
ðkÞ

2 , respectively, according

to the statement in Remark 9. Putting (2) into (58) and

neglecting the second- and higher-order error terms gives

O 3Mþ3ð Þ�1 ¼
Q−1=2F1 ûs1; ŵs1ð Þ Q−1=2F2 ûs1; ŵs1ð Þ

O 3MþN−1ð Þ�3 Ψ̂1

� �T

Π⊥ Q−1=2Γ

Ψ̂2

� �� 	

Q−1=2 f u;wð Þ−f ûs1; ŵs1ð Þ þ Γρþ εð Þ
Ψ̂1 Δw f−Δws1ð Þ þ Ψ̂2 ρþ Δρ fð Þ

� �

≈
Q−1=2F1 u;wð Þ Q−1=2F2 u;wð Þ
O 3MþN−1ð Þ�3 Ψ1

� �T

Π⊥ Q−1=2Γ

Ψ2

� �� 	

�
Q−1=2 ε−F1 u;wð ÞΔus1−F2 u;wð ÞΔws1ð Þ

Ψ1 Δw f−Δws1ð Þ þΨ2Δρ f

� �

ð59Þ

where Δus1 ¼ ûs1−u and Δws1 ¼ ŵs1−w are the estima-

tion errors in ûs1 and ŵs1 , respectively. Moreover, it is

worthy to mention that the second (approximate) equality

in (59) makes use of the relation Π⊥

�

Q−1=2Γ

Ψ̂2

� �	

�

Q−1=2Γ

Ψ̂2

� �

¼ Oð4MþN−2Þ�ðN−1Þ. From (59), we have

Fig. 3 Logical flowchart of algorithm II
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Δus1

Δws1

� �

≈

�

Q−1=2F1 u;wð Þ Q−1=2F2 u;wð Þ
O 3MþN−1ð Þ�3 Ψ1

� �T

Π⊥ Q−1=2Γ

Ψ2

� �� 	

Q−1=2F1 u;wð Þ Q−1=2F2 u;wð Þ
O 3MþN−1ð Þ�3 Ψ1

� �	
−1

�
Q−1=2F1 u;wð Þ Q−1=2F2 u;wð Þ
O 3MþN−1ð Þ�3 Ψ1

� �T

Π⊥ Q−1=2Γ

Ψ2

� �� 	

�
Q−1=2ε

Ψ1Δw f þΨ2Δρ f

� �

ð60Þ

Besides, it follows from (41) and (43) that

E
Q−1=2ε

Ψ1Δw f þΨ2Δρ f

� �

Q−1=2ε

Ψ1Δw f þΨ2Δρ f

� �T
 !

¼
Q−1=2QQ−1=2 O M−1ð Þ� 3MþN−1ð Þ

O 3MþN−1ð Þ� M−1ð Þ Φ−1=2ΦΦ−1=2

" #

¼ I4MþN−2 ð61Þ

which together with (60) produces

MSE
ûs1

ŵs1

� �� 	

¼ E
Δus1

Δws1

� �
Δus1

Δws1

� �T
 !

¼

�

Q−1=2F1 u;wð Þ Q−1=2F2 u;wð Þ
O 3MþN−1ð Þ�3 Ψ1

� �T

Π⊥ Q−1=2Γ

Ψ2

� �� 	

Q−1=2F1 u;wð Þ Q−1=2F2 u;wð Þ
O 3MþN−1ð Þ�3 Ψ1

� �

Þ
−1

ð62Þ

In Appendix 5, we prove that MSE

��
ûs1

ŵs1

�	

¼ CRB

�
u

w

�	�

,

which immediately implies that the joint estimate
ûs1

ŵs1

� �

can asymptotically achieve the optimum

performance.

6.1.2 MSE expression of ρ̂s1
Here, the analytical MSE of ρ̂s1 is derived. Inserting (2)

into (47) and neglecting the second- and higher-order

error terms leads to

ΓTQ−1Γþ Ψ̂
T

2 Ψ̂2


 �

ρþ Δρs1ð Þ ≈ ΓTQ−1ðΓρ

þε−F1 u;wð ÞΔus1−F2 u;wð ÞΔws1Þ

þΨT
2Ψ1 Δw f−Δws1ð Þ þ Ψ̂

T

2 Ψ̂2 ρþ Δρ fð Þ⇒Δρs1

≈ ΓTQ−1ΓþΨT
2Ψ2

� �
−1
ðΓTQ−1ε−ΓTQ−1F1 u;wð ÞΔus1

− ΓTQ−1F2 u;wð Þ þΨT
2Ψ1

� �
Δws1 þΨT

2 Ψ1Δw f þΨ2Δρ fð ÞÞ

ð63Þ

where Δρs1 ¼ ρ̂s1−ρ is the estimation error in ρ̂s1 . It is

important to note that in (63), Ψ1 and Ψ2 are replaced

by Ψ̂1 and Ψ2, respectively.

Putting (43) and (63) together yields

Δρs1 ≈ ΓTQ−1ΓþΨT
2Ψ2

� �
−1
ðΓTQ−1εþΨT

2Φ
−1=2 Δw f

Δρ f

� �

−
F1 u;wð Þð ÞTQ−1Γ

F2 u;wð Þð ÞTQ−1ΓþΨT
1Ψ2

� �T
Δus1

Δws1

� �	

ð64Þ

Then, we have

MSE ρ̂s1ð Þ ¼ E Δρs1 Δρs1ð ÞT
h i

¼ B1 þ B2 þ B3 þ BT
3 ð65Þ

where

B1 ¼ ΓTQ−1ΓþΨT
2Ψ2

� �
−1

B2 ¼ ΓTQ−1ΓþΨT
2Ψ2

� �
−1 F1 u;wð Þð ÞTQ−1Γ

F2 u;wð Þð ÞTQ−1ΓþΨT
1Ψ2

� �T

CRB
u

w

� �� 	

F1 u;wð Þð ÞTQ−1Γ

F2 u;wð Þð ÞTQ−1ΓþΨT
1Ψ2

� �

ΓTQ−1ΓþΨT
2Ψ2

� �
−1

B3 ¼ − ΓTQ−1ΓþΨT
2Ψ2

� �
−1

�E ΓTQ−1εþΨT
2Φ

−1=2 Δw f

Δρ f

� �� 	
Δus1

Δws1

� �T
 !

�
F1 u;wð Þð ÞTQ−1Γ

F2 u;wð Þð ÞTQ−1ΓþΨT
1Ψ2

� �

ΓTQ−1ΓþΨT
2Ψ2

� �
−1

8

>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>:

ð66Þ

It is shown in Appendix 6 that B3 =O(N − 1) × (N − 1),

which combined with (65) and (66) produces

MSE ρ̂s1ð Þ ¼ ΓTQ−1ΓþΨT
2Ψ2

� �
−1

þ ΓTQ−1ΓþΨT
2Ψ2

� �
−1

�
F1 u;wð Þð ÞTQ−1Γ

F2 u;wð Þð ÞTQ−1ΓþΨT
1Ψ2

� �T

�CRB
u

w

� �� 	

F1 u;wð Þð ÞTQ−1Γ

F2 u;wð Þð ÞTQ−1ΓþΨT
1Ψ2

� �

� ΓTQ−1ΓþΨT
2Ψ2

� �
−1

ð67Þ

From (85), (49), and (67), we have MSEðρ̂s1Þ ¼ CRBðρÞ,
which means that the solution ρ̂s1 is asymptotically

efficient.

6.2 Performance analysis of algorithm II

6.2.1 MSE expression of ûs2

The objective of this subsection is to derive the theoretical

MSE of ûs2. Taking the limit on both sides of (56) gives
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Ω ûs2; ŵ fð Þð Þ−1=2
F1 ûs2; ŵ fð Þ
O N−1ð Þ�3

� �� 	T

Π⊥ Ω ûs2; ŵ fð Þð Þ−1=2
Γ

IN−1

� �� 	

� Ω ûs2; ŵ fð Þð Þ−1=2
r̂−f ûs2; ŵ fð Þ

ρ̂ f

� �

¼ O3�1

ð68Þ

Inserting (2) into (68) and neglecting the second- and

higher-order error terms leads to

O3�1 ¼ Ω ûs2; ŵ fð Þð Þ−1=2
F1 ûs2; ŵ fð Þ
O N−1ð Þ�3

� �� 	T

Π⊥ Ω ûs2; ŵ fð Þð Þ−1=2
Γ

IN−1

� �� 	

Ω ûs2; ŵ fð Þð Þ−1=2

�
f u;wð Þ−f ûs2; ŵ fð Þ þ Γρþ ε

ρþ Δρ f

� �

≈ Ω u;wð Þð Þ−1=2
F1 u;wð Þ
O N−1ð Þ�3

� �� 	T

Π⊥ Ω u;wð Þð Þ−1=2
Γ

IN−1

� �� 	

� Ω u;wð Þð Þ−1=2
ε−F1 u;wð ÞΔus2−F2 u;wð ÞΔw f

Δρ f

� �

ð69Þ

where Δus2 ¼ ûs2−u is the estimation error in ûs2 .

Additionally, the second (approximate) equality in

(69) exploits the relation Π⊥

�

ðΩðûs2; ŵ fÞÞ
−1=2 Γ

IN−1

� �	

ðΩðûs2; ŵ fÞÞ
−1=2 Γ

IN−1

� �

¼ OðMþN−2Þ�ðN−1Þ . From (69),

we can obtain

Δus2 ≈

�

Ω u;wð Þð Þ−1=2
F1 u;wð Þ
O N−1ð Þ�3

� �� 	T

Π⊥ Ω u;wð Þð Þ−1=2
Γ

IN−1

� �� 	

� Ω u;wð Þð Þ−1=2
F1 u;wð Þ
O N−1ð Þ�3

� �	
−1

� Ω u;wð Þð Þ−1=2
F1 u;wð Þ
O N−1ð Þ�3

� �� 	T

Π⊥ Ω u;wð Þð Þ−1=2
Γ

IN−1

� �� 	

� Ω u;wð Þð Þ−1=2
ε−F2 u;wð ÞΔw f

Δρ f

� �

ð70Þ

which combined with (52) results in

MSE ûs2ð Þ ¼ E Δus2 Δus2ð ÞT
h i

¼

�

Ω u;wð Þð Þ−1=2
F1 u;wð Þ
O N−1ð Þ�3

� �� 	T

Π⊥ Ω u;wð Þð Þ−1=2
Γ

IN−1

� �� 	

Ω u;wð Þð Þ−1=2
F1 u;wð Þ
O N−1ð Þ�3

� �	
−1

ð71Þ

In Appendix 7, it is proved that MSEðûs2Þ ¼ CRBðuÞ,
which indicates that the estimate ûs2 has asymptotically

optimal accuracy.

6.2.2 MSE expression of ρ̂s2
Here, we need to derive the analytical MSE of ρ̂s2 . Sub-

stituting (2) into (57) and neglecting the second- and

higher-order error terms produces

Γ

IN−1

� �T

Ω ûs2; ŵ fð Þð Þ−1
Γ

IN−1

� �

ρþ Δρs2ð Þ ≈
Γ

IN−1

� �T

� Ω ûs2; ŵ fð Þð Þ−1
Γρþ ε−F1 u;wð ÞΔus2−F2 u;wð ÞΔw f

ρþ Δρ f

� �

⇒Δρs2 ≈
Γ

IN−1

� �T

Ω u;wð Þð Þ−1
Γ

IN−1

� � !
−1

Γ

IN−1

� �T

� Ω u;wð Þð Þ−1
ε−F2 u;wð ÞΔw f

Δρ f

� �

−
F1 u;wð Þ
O N−1ð Þ�3

� �

Δus2

� 	

ð72Þ

where Δρs2 ¼ ρ̂s2−ρ is the estimation error in ρ̂s2.

Combining (52) and (72) leads to

MSE ρ̂s2ð Þ ¼ E Δρs2 Δρs2ð ÞT
h i

¼ C1 þ C2 þ C3 þ CT
3

ð73Þ

where

C1 ¼
Γ

IN−1

� �T

Ω u;wð Þð Þ−1
Γ

IN−1

� � !
−1

C2 ¼ C1
Γ

IN−1

� �T

Ω u;wð Þð Þ−1
F1 u;wð Þ
O N−1ð Þ�3

� �

CRB uð Þ
F1 u;wð Þ
O N−1ð Þ�3

� �T

Ω u;wð Þð Þ−1
Γ

IN−1

� �

C1

C3 ¼ −C1
Γ

IN−1

� �T

Ω u;wð Þð Þ−1�

E
ε−F2 u;wð ÞΔw f

Δρ f

� �

ΔuT
s2

� 	

�
F1 u;wð Þ
O N−1ð Þ�3

� �T

Ω u;wð Þð Þ−1
Γ

IN−1

� �

C1

8

>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>:

ð74Þ

In Appendix 8, we prove that C3 =O(N − 1) × (N − 1), which

together with (73) and (74) produces

MSE ρ̂s2ð Þ ¼ C1 þ C1
Γ

IN−1

� �T

Ω u;wð Þð Þ−1
F1 u;wð Þ
O N−1ð Þ�3

� �

CRB uð Þ
F1 u;wð Þ
O N−1ð Þ�3

� �T

Ω u;wð Þð Þ−1
Γ

IN−1

� �

C1

ð75Þ

Combining (12), (19), and (52) and taking some alge-

braic manipulations lead to
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C1 ¼ O N−1ð Þ�3M IN−1

� �
Z−1 O3M� N−1ð Þ

IN−1

� �

C1
Γ

IN−1

� �T

Ω u;wð Þð Þ−1
F1 u;wð Þ
O N−1ð Þ�3

� �

¼ O N−1ð Þ�3M IN−1

� �
Z−1YT

8

>><

>>:

ð76Þ

Inserting (76) into (75) and using CRB(u) = (X−YZ
−1
Y
T)−1,

we have

MSE ρ̂s2ð Þ ¼ O N−1ð Þ�3M IN−1

� �
Z−1 O3M� N−1ð Þ

IN−1

� �

þ O N−1ð Þ�3M IN−1

� �
Z−1YT X−YZ−1YT

� �
−1
YZ−1

�
O3M� N−1ð Þ

IN−1

� �

¼ CRB ρð Þ

ð77Þ

which implies that the solution ρ̂s2 is also asymptotically

efficient.

Finally, we would like to stress that the performance

analysis described above is performed in a general math-

ematical framework, which is not limited to a specific

signal metric.

7 Numerical experiments
This section presents a set of Monte Carlo simulations

to examine the behavior of the proposed TDOA

localization algorithms. The root-mean-square error

(RMSE) and radius of circular error probability (CEP)

are chosen as performance metrics. All the simulation

results are averaged over 2000 independent noise reali-

zations. It should be pointed out that, to the best our

knowledge, there is no existing algorithm that utilizes

calibration emitters to improve the localization accuracy

for the scenario where both synchronization clock bias

and sensor location errors are present. As a result, there

are relatively few algorithms that can be directly used for

fair performance comparison. Note that, as mentioned

in [71], the differential calibration (DC) technique is

commonly used in global positioning systems (GPS) to

mitigate the effect of uncertainties in satellite position,

and various errors caused by satellite clock mismatch

and tropospheric and ionospheric layers. Moreover, this

method can be easily extended to the localization sce-

nario studied here. So, it is reasonable to compare our

methods with the DC approach. Additionally, we also

compare the performance of the proposed solutions with

the TWLS algorithm in [59], the Taylor-series iterative

algorithm extended from [8], and the algorithm in [70],

none of which makes use of the calibration emitters.

From this comparison, we can clearly observe the

performance improvement resulted from the use of the

calibration sources. On the other hand, the CRBs de-

rived in Section 4 are also used as an important per-

formance benchmark, which can corroborate the

asymptotic efficiency of the new algorithms.

In the first set of experiments, we compare the radiuses

of CEP of the two proposed algorithms with the TWLS al-

gorithm in [59], which does not utilize the TDOA measure-

ments obtained from the calibration signals. The simulation

scenario contains an unknown source located at

u = [4000 4000 4000]T (m) and the localization task is

performed by an array ofM = 15 passive sensors. The actual

sensor locations are tabulated in Table 3, which shows that

the sensors are divided into 5 groups. The clock offset vec-

tor is set as ρ = [20 − 25 15 − 10]T (m). Besides, two

calibration emitters are deployed near the target source,

and they are located at uc, 1= [3200 5800 2500]T (m)

and uc, 2 = [6200 3800 5600]T (m). In generating the

simulation results, the RDOA measurements from the tar-

get source and calibration emitters are generated by add-

ing to the true values zero-mean Gaussian noise with

covariance matrix Q ¼ σ2RDOAT and Qc ¼ σ2
RDOATc , re-

spectively. T is an (M − 1) × (M − 1) matrix with diagonal

elements equal to 1 and all other elements equal to 0.5; Tc

is an D(M − 1) ×D(M − 1) block diagonal matrix and its

diagonal blocks are equal to T. The erroneous sensor posi-

tions are created in a similar way using covariance matrix

P ¼ σ2PI3M . σRDOA and σP denote the standard deviations

of RDOA measurement errors and sensor position pertur-

bations, respectively.

We set σRDOA = 10 (m) and σP = 5 (m). The number of

Monte Carlo runs equals 2000. Figs. 4 and 5 show the

scatter plots of the source location estimates in the x–y and

y–z plane, respectively. The radiuses of CEP for the three

localization algorithms are also provided in the figures.

It can be easily observed from Figs. 4 and 5 that the esti-

mation performances of the two new algorithms are the

same since they have the same radius of CEP. Moreover,

the two proposed algorithms can achieve much higher

localization accuracy than the TWLS algorithm in [59].

Obviously, the performance improvement in location ac-

curacy mainly results from the utilization of the calibra-

tion emitters.

Table 3 Sensor positions in the unit of meters

Group 1 Group 2 Group 3 Group 4 Group 5

xr, m 1800 2100 1600 1400 − 2100 − 1700 − 2100 − 1700 1800 1600 2000 − 1500 − 1600 − 1800 − 1500

yr, m 1500 1800 1700 2400 − 1500 − 1800 − 1500 − 1800 − 1300 − 1500 − 1000 1700 2100 − 1900 − 1200

zr, m 1200 1600 1800 1300 1900 1400 1800 1600 1200 1600 1700 1500 2000 − 1600 − 2000
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The second set of experiments evaluates the estimation

RMSEs of different localization algorithms mentioned above.

The simulation parameters are the same as those for the

previous experiments, except that σRDOA, σP, and the norm

of ρ (i.e., ‖ρ‖2) are changed. First, the standard deviation of

sensor position errors is set to σP= 5 (m) and the clock off-

set vector is fixed at ρ = [20 − 25 15 − 10]T (m).

Figs. 6, 7, and 8 depict the RMSEs of the estimated target

location, sensor position, and clock offset versus σRDOA,

respectively. Subsequently, we set σRDOA = 10 (m) and

ρ = [20 − 25 15 − 10]T (m). Figs. 9, 10, and 11 show

the RMSEs of target location, sensor position, and clock

offset estimates as a function of σP, respectively. Next,

σRDOA and σP are fixed at 10 (m) and 5 (m), respectively,

and the direction of clock offset vector is the same as

ρ = [20 − 25 15 − 10]T (m). The RMSEs of the esti-

mated target location, sensor position, and clock offset

against ‖ρ‖2 are plotted in Figs. 12, 13, and 14,

respectively.

From Figs. 6, 7, 8, 9, 10, 11, 12, 13, and 14, it can be

found that the two new algorithms are both asymptotically

efficient since they can achieve the relevant CRBs obtained

in Section 4.1. As a result, the effectiveness of the theoret-

ical derivation carried out in Section 6 can be confirmed.

Moreover, the superiority of the proposed algorithms over

the TWLS algorithm in [59], the Taylor-series iterative al-

gorithm extended from [8], and the algorithm in [70] is

noticeable. The reason is that the latter three algorithms

do not exploit the measurements from the calibration

sources. In other words, this significant performance gap

is mainly due to the use of the calibration emitters. In

addition, all the three algorithms can achieve the CRB for

the case of no calibration signal, before the non-linear ef-

fect dominates performance. We can also observe that the

TWLS algorithm breaks away from the CRB earlier than

the other two algorithms. The possible reason for this is

that the TWLS algorithm may generate complex values

when finding the square root in its second stage. However,

the TWLS algorithm is more computationally efficient

and does not require initialization and iteration. On the

other hand, it can be seen that the proposed algorithms

outperform the DC algorithm and the RMSE improve-

ment increases as σRDOA is increased. It is clear that the

RMSE of the DC algorithm is larger than the associated

CRB. This observation is consistent with the analytical re-

sult in [71]. More importantly, the DC algorithm cannot

further refine the sensor locations and provide the solu-

tion for clock bias, while the proposed algorithms can.

Finally, we would like to clarify that the estimation accur-

acies of all the above algorithms are not dependent on the

Fig. 4 Scatter plots of the source location estimates in the x–y plane. a Location estimation results for algorithm I in the x–y plane. b Location

estimation results for algorithm II in the x–y plane. c Location estimation results for the TWLS algorithm in the x–y plane
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Fig. 6 RMSE of target location estimate versus σRDOA

Fig. 5 Scatter plots of the source location estimates in the y–z plane. a Location estimation results for algorithm I in the y–z plane. b Location

estimation results for algorithm II in the y–z plane. c Location estimation results for the TWLS algorithm in the y–z plane
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norm of clock offset vector, which is consistent with the

CRB analysis in Section 4.

The third set of experiments studies the effect of the

number of calibration sources. Assume that the 3D

localization scenario comprises 16 sensors whose true loca-

tions are given in Table 4. They are used to locate a source

through the RDOA measurements from both target source

and calibration emitters. The covariance matrices of the

RDOA measurements and sensor location errors are

chosen in the same way as previously specified. As shown

in Table 4, the sensors are separated into 5 sets and the

sensors within the same set are close to each other. The

Fig. 7 RMSE of sensor location estimate versus σRDOA

Fig. 8 RMSE of clock offset estimate versus σRDOA
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clock offset vector is set as ρ = [−18 22 − 15 24]T (m).

The target source is located at u = [5000 5000 5000]T

(m), which needs to be estimated with the help of calibra-

tion signals. The estimation accuracies of the proposed al-

gorithms are examined in three cases. In the first case, a

single calibration source is used for target localization,

and the position of this calibration source is given by

uc = [6800 5800 4500]T (m). The second case as-

sumes that there are two calibration emitters, which

are located at uc, 1 = [6800 5800 4500]T (m) and

uc, 2 = [7200 5500 5600]T (m), respectively. Three

calibration sources are deployed for locating the

Fig. 9 RMSE of target location estimate versus σP

Fig. 10 RMSE of sensor location estimate versus σP

Wang et al. EURASIP Journal on Advances in Signal Processing         (2019) 2019:37 Page 21 of 34



target in the third case and their locations are set as uc, 1 =

[6800 5800 4500]T (m), uc, 2= [7200 5500 5600]T (m),

and uc, 3 = [4000 3800 4200]T (m), respectively.

Figures 15, 16, and 17 illustrate the RMSEs of the estimated

target location, sensor position, and clock offset versus

σRDOA, respectively, when σP = 5 (m). Figures 18, 19, and 20

plot the RMSEs of target location, sensor position, and

clock offset estimates as a function of σP, respectively,

when σRDOA = 10 (m).

From Figs. 15, 16, 17, 18, 19, and 20, we can observe

that the proposed algorithms are shown to yield the so-

lutions reaching the CRB accuracy under moderate noise

Fig. 11 RMSE of clock offset estimate versus σP

Fig. 12 RMSE of target location estimate versus ‖ρ‖2
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level. This finding can further support the theoretical

development in Section 6. It can also be concluded that,

as expected, the parameter estimation accuracy will im-

prove when more calibration sources are available for

target localization. Moreover, the higher the noise level,

the greater the performance gain in localization

accuracy resulted from the increase in the number of

calibration signals.

In the fourth experiment, we compare the running

time of the proposed algorithms with the other TDOA

localization algorithms mentioned above. The simula-

tions are carried out using MATLAB R2017b on a

Fig. 13 RMSE of sensor location estimate versus ‖ρ‖2

Fig. 14 RMSE of clock offset estimate versus ‖ρ‖2
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ThinkPad laptop equipped with Intel Core i7-7500 CPU

and 8GB RAM. The simulation settings are the same

with those used to produce Figs. 4 and 5. In Table 5, the

average CPU computational time is compared for the

considered localization algorithms.

The results in Table 5 show that the TWLS algorithm

in [59] takes the least computation time, followed by the

Taylor-series iterative algorithm extended from [8] and

the algorithm in [70]. This observation is not unexpected

because none of these three algorithms take advantage of

the measurements from the calibration emitters. More-

over, the DC algorithm is more computationally efficient

than the two proposed algorithms. The reason is that the

DC algorithm does not refine the sensor locations and es-

timate the clock bias. Finally, algorithm II is less computa-

tionally demanding than algorithm I because the former

does not improve the sensor locations in its second stage.

Finally, we would like to point out that although our

proposed algorithms require more computation than the

other algorithms, the computational complexity is still ac-

ceptable when they are executed onboard a node of a

wireless sensor network (WSN). There are at least three

reasons. First, the new algorithms have fast convergence

rate. Second, the dimension of variables involved in the it-

eration is reduced in the proposed algorithms. Third, the

algorithms can be implemented through a graphics pro-

cessing unit (GPU) chip, which can support parallel opera-

tions and has much higher computation speed than CPU

chip. It is noteworthy that one of our future works is to

implement the new algorithms in a practical WSN.

8 Results and discussions
From the simulation results described above, we can ob-

serve that the two proposed algorithms are both asymp-

totically efficient because they can achieve the relevant

CRBs given in Section 4.1. The superiority of the proposed

algorithms over the TWLS algorithm in [59], the

Taylor-series iterative algorithm extended from [8], and

the algorithm in [70] is noticeable. The reason is that the

latter three algorithms do not exploit the measurements

from the calibration sources. In other words, this signifi-

cant performance gap is mainly due to the use of the cali-

bration emitters. In addition, it can be seen that the

Table 4 Sensor positions in the unit of meters

Group 1 Group 2 Group 3 Group 4 Group 5

xr, m 1400 1800 1700 1500 1400 1600 − 2300 − 1800 − 2100 − 1900 − 1400 − 1200 − 2000 2100 1600 1900

yr, m 1200 1300 1100 2200 − 1300 − 2100 1700 1400 1900 − 1800 − 1600 − 1700 − 1500 − 2000 − 1600 − 1400

zr, m 2100 1500 1200 1900 1600 2100 1400 1600 2300 − 1900 − 1500 − 2100 − 1100 − 1700 − 2300 − 1800

Fig. 15 RMSE of target location estimate versus σRDOA for a different number of calibration emitters
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proposed algorithms outperform the DC algorithm and

the RMSE improvement increases as σRDOA is increased.

This observation is consistent with the analytical result in

[71]. More importantly, the DC algorithm cannot further

refine the sensor locations and provide the solution for

clock bias, while the proposed algorithms can. It can also

be concluded that, as expected, the parameter estimation

accuracy improves when more calibration sources are

available for target localization. Moreover, the higher the

noise level, the greater the performance gain in localization

accuracy which resulted from the increase in the number

of calibration signals.

Fig. 16 RMSE of sensor location estimate versus σRDOA for a different number of calibration emitters

Fig. 17 RMSE of clock offset estimate versus σRDOA for a different number of calibration emitters
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9 Conclusions
This paper concentrates on the use of a set of calibration

signals positioned at known locations when both clock

offsets and sensor position errors are present. The

localization scenario is similar to the one presented in

[59], where the sensors are partially synchronized. The

study begins with the CRB investigation to examine the

performance gain due to the utilization of the calibration

emitters over the case where the calibration emitters are

not available. Some explicit and useful CRB expressions

are obtained. The insight gained from the CRB indicates

that the calibration sources can significantly reduce the

Fig. 18 RMSE of target location estimate versus σP for a different number of calibration emitters

Fig. 19 RMSE of sensor location estimate versus σP for a different number of calibration emitters
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effects of clock bias and sensor position errors. In order

to obtain the optimum estimation accuracy, new TDOA

localization methods using the measurements from both

target source and calibration emitters are developed.

Specifically, we propose two dimension-reduction

Taylor-series iterative algorithms, both of which have

two stages. The first stage estimates the clock offsets and

refines the sensor positions based on the calibration

TDOA measurements. The statistical characteristic of

the noisy sensor locations is also incorporated into this

computation procedure. The second stage yields the esti-

mates of source location by combining the TDOA mea-

surements of target signal and the estimated values in

the first phase. The theoretical MSEs of the two pro-

posed algorithms are deduced by applying the first-order

perturbation analysis. Besides, the proposed methods are

proved analytically to reach the CRB accuracy before the

thresholding effect takes place. Simulations are con-

ducted to support our theoretical development and

demonstrate the superiority of the proposed algorithms

over the existing localization algorithms.

Finally, it needs to be mentioned that the present

study assumes that the locations of calibration sources

are accurately known. In our future work, we intend to

extend the proposed algorithms to more practical situa-

tions where the exact positions of calibration emitters

are not available. In addition, we also intend to imple-

ment the new algorithms in a practical WSN through

parallel GPU acceleration technique.

10 Appendix 1
10.1 Proof of (18)

Combining (11), (12) and the matrix identity (I) in

Table 2 produces

CRB uð Þ ¼ ð F1 u;wð Þð ÞTðQ−1
−Q−1 F2 u;wð Þð ÞT

ΓT

� �T

Z−1 F2 u;wð Þð ÞT

ΓT

� �

Q−1ÞF1ðu;wÞÞ
−1

ð78Þ

In addition, it can be checked from the third equality in

(12) and (19) that

Z ¼
F2 u;wð Þð ÞT

ΓT

� �

Q−1 F2 u;wð Þð ÞT

ΓT

� �T

þΦ−1 ð79Þ

which combined with the matrix identity (II) in Table 2 gives

Putting (80) back into (78) proves (18).

Fig. 20 RMSE of clock offset estimate versus σP for a different number of calibration emitters

Table 5 Comparison of the running time

Localization algorithm Average CPU
time (ms)

TWLS algorithm in [59] 3.48

Taylor-series iterative algorithm extended from [8] 14.38

Algorithm in [70] 17.56

DC algorithm 24.32

Algorithm I in this paper 87.87

Algorithm II in this paper 68.32
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11 Appendix 2
11.1 Expressions of some CRB matrices

First, using the matrix identity (I) in Table 2 produces

Subsequently, from (82) and the matrix identity (III) in

Table 2, we have

Combing (83) and the matrix identity (II) in Table 2

yields

CRB
u

w

� �� 	

¼

F1 u;wð Þð ÞTQ−1F1 u;wð Þ F1 u;wð Þð ÞTQ−1F2 u;wð Þ
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12 Appendix 3
12.1 Proof of A3 = O(N − 1) × (N − 1)

It follows from (33) that

E εc Δw fð ÞT
h i

¼ E εcε
T
c

� �
�Q−1=2

c Π⊥ Q−1=2
c Γ

h i

Q−1=2
c F wð Þ

� F wð Þ
� �T

Q−1=2
c Π⊥ Q−1=2

c Γ
h i

Q−1=2
c F wð Þ þ P−1


 �
−1

¼ Q1=2
c Π⊥ Q−1=2

c Γ
h i

Q−1=2
c F wð Þ

� F wð Þ
� �T

Q−1=2
c Π⊥ Q−1=2

c Γ
h i

Q−1=2
c F wð Þ þ P−1


 �
−1

ð86Þ

Then, we have

Γ
T
Q−1

c � E εc Δw fð ÞT
h i

¼ Γ
T
Q−1=2

c Π⊥ Q−1=2
c Γ

h i

Q−1=2
c F wð Þ ðF wð Þ

� �T
Q−1=2

c Π⊥ Q−1=2
c Γ

h i

Q−1=2
c F wð Þ

þP−1Þ
−1

¼ O N−1ð Þ�3M

ð87Þ

which follows from the relation Π⊥½Q−1=2
c Γ�Q−1=2

c Γ

¼ ODðM−1Þ�ðN−1Þ . Inserting (87) into the expression of

A3 produces

A3 ¼ − Γ
T
Q−1

c Γ

 �

−1

Γ
T
Q−1

c � E εc Δw fð ÞT
h i

� F wð Þ
� �T

Q−1
c Γ Γ

T
Q−1

c Γ

 �

−1

¼ O N−1ð Þ� N−1ð Þ ð88Þ

which completes the derivation.

13 Appendix 4
13.1 Numerical complexities of the two proposed

algorithms

Tables 6 and 7 list the numerical complexities of the

two proposed algorithms, respectively, expressed in the

number of multiplication operations.

14 Appendix 5
14.1 Proof of MSE

�
ûs1

ŵs1

� �	

¼ CRB

�
u

w

� �	

Putting (62) and the matrix identity (III) in Table 2

together gives

MSE
ûs1

ŵs1

� �� 	� 	
−1

¼
F1 u;wð Þð ÞTQ−1F1 u;wð Þ F1 u;wð Þð ÞTQ−1F2 u;wð Þ
F2 u;wð Þð ÞTQ−1F1 u;wð Þ F2 u;wð Þð ÞTQ−1F2 u;wð Þ þΨT

1Ψ1

� �

−
F1 u;wð Þð ÞTQ−1Γ

F2 u;wð Þð ÞTQ−1ΓþΨT
1Ψ2

� �

ΓTQ−1ΓþΨT
2Ψ2

� �
−1

�
F1 u;wð Þð ÞTQ−1Γ

F2 u;wð Þð ÞTQ−1ΓþΨT
1Ψ2

� �T

ð89Þ

Substituting (49) into (89) and using (81), we have

MSE
ûs1

ŵs1

� �� 	� 	
−1

¼
F1 u;wð Þð ÞTQ−1F1 u;wð Þ F1 u;wð Þð ÞTQ−1F2 u;wð Þ

F2 u;wð Þð ÞTQ−1F1 u;wð Þ F2 u;wð Þð ÞTQ−1F2 u;wð Þ þ F wð Þ
� �T

Q−1
c F wð Þ þ P−1

" #

−
F1 u;wð Þð ÞTQ−1Γ

F2 u;wð Þð ÞTQ−1Γþ F wð Þ
� �T

Q−1
c Γ

" #

ΓTQ−1Γþ Γ
T
Q−1

c Γ

 �

−1

�
F1 u;wð Þð ÞTQ−1Γ

F2 u;wð Þð ÞTQ−1Γþ F wð Þ
� �T

Q−1
c Γ

" #T

¼ CRB
u

w

� �� 	� 	
−1

ð90Þ

which implies MSE

�
ûs1

ŵs1

� �	

¼ CRB

�
u

w

� �	

15 Appendix 6
15.1 Proof of B3 = O(N − 1) × (N − 1)

It can be verified from (60) and (62) that

E ΓTQ−1εþΨT
2Φ

−1=2 Δw f

Δρ f

� �� 	
Δus1

Δws1

� �T
 !

¼ E ΓTQ−1εþΨT
2Φ

−1=2 Δw f

Δρ f

� �� 	

Q−1=2ε

Ψ1Δw f þΨ2Δρ f

� �T
 !

Π⊥ Q−1=2Γ

Ψ2

� �� 	

Q−1=2F1 u;wð Þ Q−1=2F2 u;wð Þ
O 3MþN−1ð Þ�3 Ψ1

� �

MSE
ûs1

ŵs1

� �� 	

ð91Þ

Besides, from (43), we obtain

E ΓTQ−1εþΨT
2Φ

−1=2 Δw f

Δρ f

� �� 	

Q−1=2ε

Ψ1Δw f þΨ2Δρ f

� �T
 !

¼
Q−1=2Γ

Ψ2

� �T

ð92Þ

The substitution of (92) into (91) yields
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Table 6 Computational complexity of algorithm I

Stage Computational unit Computational complexity
of each unit

Total computational complexity

Stage 1 P−1 O((3M)3)
K1

3DðM−1Þð3M2 þMÞ
þ3D2MðM−1Þ2 þ 18M2 þ Oðð3MÞ3Þ

� 	

þK2

3ð4Mþ N−2Þð3M2 þ 7Mþ 4Þ
þð3Mþ N þ 2Þð4Mþ N−2Þ2

þ3DMðM−1Þð3Mþ N−1Þ
þðN−1Þ2ð7Mþ 2N−3Þ

þð3Mþ N−1Þ2 þ 3D2MðM−1Þ2

þð3Mþ 4ÞðM−1Þ2 þ OððN−1Þ3Þ
þOðð3Mþ 3Þ3Þ þ Oðð3Mþ N−1Þ3Þ

0

B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
A

þðN−1ÞðM2 þ 2Mþ N−1Þ
þDð2N2

−3N þ 1ÞðM−1Þ
þðN−1Þð3Mþ N−1Þ2

þ2D2ðN−1ÞðM−1Þ2

þðN−1Þ2ð4Mþ NÞ
þOðð3MÞ3Þ þ 2 � OððDðM−1ÞÞ3Þ
þ2 � OððM−1Þ3Þ þ 2 � OððN−1Þ3Þ

(where K1 and K2 denote the iteration numbers

for the dimension-reduction Taylor-series iterative
algorithms in the first and second stages,
respectively)

Q−1
c and Q−1=2

c
2 ⋅ O((D(M − 1))3)

Q−1=2
c Π⊥½Q−1=2

c Γ�Q−1=2
c 2D2ðN−1ÞðM−1Þ2

þ2DðN−1Þ2ðM−1Þ þ OððN−1Þ3Þ

ðFðŵ
ðkÞ
f ÞÞ

T
Q−1=2
c Π⊥½Q−1=2

c Γ�

�Q−1=2
c Fðŵ

ðkÞ
f Þ

( )

1≤ k≤K1

K1
3D2MðM−1Þ2

þ9DM2ðM−1Þ

� 	

(

ðFðŵ
ðkÞ
f ÞÞ

T
Q−1=2

c Π⊥½Q−1=2
c Γ�

�Q−1=2
c Fðŵ

ðkÞ
f Þ þ P−1

 !−1)

1≤ k≤ K1

K1 ⋅ O((3M)
3)

ðFðŵ
ðkÞ
f ÞÞ

T
Q−1=2
c Π⊥½Q−1=2

c Γ�

�Q−1=2
c ð̂rc− fðŵ

ðkÞ
f ÞÞ

( )

1≤ k≤K1

3K1DM(M − 1)

fP−1ðv̂−ŵ
ðkÞ
f Þg

1≤ k≤ K1
9K1M

2

fŵ
ðkþ1Þ
f g

1≤ k≤ K1
9K1M

2

Γ
T
Q−1
c ð̂rc− fðŵ fÞÞ D(N − 1)(M − 1)

ρ̂ f (N − 1)2

Stage 2 Q−1 and Q−1/2 2 ⋅ O((M − 1)3)

Q−1/2Γ and ΓTQ−1Γ (N − 1)2(M − 1) + (N − 1)(M − 1)2

fΨ̂
ðkÞ

1 g1≤ k≤ K2
and fΨ̂

ðkÞ

2 g1≤ k≤K2

K2

3DðN−1ÞMðM−1Þ
þ3D2MðM−1Þ2

þ9DM2ðM−1Þ
þOðð3Mþ N−1Þ3Þ

0

B
B
@

1

C
C
A

Q−1=2 F1ðû
ðkÞ
s1 ; ŵ

ðkÞ
s1 Þ Q−1=2 F2ðû

ðkÞ
s1 ; ŵ

ðkÞ
s1 Þ

Oð3MþN−1Þ�3 Ψ̂
ðkÞ

1

" #

1≤ k≤ K2

3K2(M + 1)(M − 1)2

fΠ⊥ð
Q−1=2Γ

Ψ̂
ðkÞ

2

� �

Þg
1≤ k≤ K2

K2

ðN−1Þ2ð7Mþ 2N−3Þ
þðN−1Þð4Mþ N−2Þ2

þOððN−1Þ3Þ

0

@

1

A

Q−1=2 ð̂r− fðû
ðkÞ
s1 ; ŵ

ðkÞ
s1 ÞÞ

Ψ̂
ðkÞ

2 ρ̂ f þ Ψ̂
ðkÞ

1 ðŵ f−ŵ
ðkÞ
s1 Þ

" #

1≤ k≤ K2

K2((3M + N − 1)2 + (M − 1)2)

û
ðkþ1Þ
s1

ŵ
ðkþ1Þ
s1

" #

1≤ k≤ K2

K2

3ð4Mþ N−2Þð3M2 þ 7Mþ 4Þ
þ3ðMþ 1Þð4Mþ N−2Þ2

þOðð3Mþ 3Þ3Þ

0

@

1

A

ðΓTQ−1Γþ Ψ̂
T

2Ψ̂2Þ
−1 (N − 1)2(3M + N − 1) + O((N − 1)3)

ΓTQ−1 ð̂r− fðûs1; ŵs1ÞÞ

þΨ̂
T

2Ψ̂1ðŵ f−ŵs1Þ þ Ψ̂
T

2Ψ̂2ρ̂ f

ðN−1Þð3Mþ N−1Þ2

þðN−1Þð4Mþ N−2Þ

ρ̂s1 (N − 1)2
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E ΓTQ−1εþΨT
2Φ

−1=2 Δw f

Δρ f

� �� 	
Δus1

Δws1

� �T
 !

¼
Q−1=2Γ

Ψ2

� �T

Π⊥ Q−1=2Γ

Ψ2

� �� 	

�
Q−1=2F1 u;wð Þ Q−1=2F2 u;wð Þ
O 3MþN−1ð Þ�3 Ψ1

� �

MSE
ûs1

ŵs1

� �� 	

¼ O N−1ð Þ� 3Mþ3ð Þ

ð93Þ

Inserting (93) into the expression of B3, we have B3 =

O(N − 1) × (N − 1). At this point, the derivation is completed.

16 Appendix 7
16.1 Proof of MSEðûs2Þ ¼ CRBðuÞ

First, it can be verified from (52) and (53) that

Q þ
F2 u;wð Þð ÞT

ΓT

� �T

Φ
F2 u;wð Þð ÞT

ΓT

� �

¼
IM−1

−ΓT

� �T

�
Q þ F2 u;wð ÞΦ1 F2 u;wð Þð ÞT −F2 u;wð ÞΦ2

−ΦT
2 F2 u;wð Þð ÞT Φ3

s

� �

�
IM−1

−ΓT

� �

¼
IM−1

−ΓT

� �T

Ω u;wð Þ
IM−1

−ΓT

� �

ð94Þ

Inserting (94) into (18) gives

CRB uð Þ ¼ F1 u;wð Þð ÞT
IM−1

−ΓT

� �T

Ω u;wð Þ
IM−1

−ΓT

� � !
−1

F1ðu;wÞ

 !−1

ð95Þ

On the other hand, from (71), we obtain

MSE ûs2ð Þ ¼

�

F1 u;wð Þð ÞT
�

IM−1

O N−1ð Þ� M−1ð Þ

� �T

Ω u;wð Þð Þ−1=2

Π⊥ Ω u;wð Þð Þ−1=2
Γ

IN−1

� �� 	

ðΩðu;wÞÞ−1=2

�
IM−1

O N−1ð Þ� M−1ð Þ

� �

ÞF1ðu;wÞÞ
−1

ð96Þ

Moreover, it can be checked that

Ω u;wð Þð Þ−1=2
Γ

IN−1

� �� 	T

Ω u;wð Þð Þ1=2
IM−1

−ΓT

� �� 	

¼ ΓT−ΓT ¼ O N−1ð Þ� M−1ð Þ

rank Ω u;wð Þð Þ−1=2
Γ

IN−1

� �� 	

¼ N−1 ;

rank Ω u;wð Þð Þ1=2
IM−1

−ΓT

� �� 	

¼ M−1

8

>>>>>>>>>>>>><

>>>>>>>>>>>>>:

ð97Þ

which implies

Table 7 Complexity of algorithm II

Stage Computational unit Computational complexity of each unit Total computational complexity

Stage 1 The same as algorithm I The same as algorithm I
K1

3DðM−1Þð3M2 þMÞ
þ3D2MðM−1Þ2 þ 18M2 þ Oðð3MÞ3Þ

� 	

þK2

3MðM−1Þð3Mþ N−1Þ
þ3ðMþ 3ÞðMþ N−2Þ
þðN þ 3ÞðMþ N−2Þ2

þ3MðM−1Þ2 þ OððN−1Þ3Þ
þ2 � OððMþ N−2Þ3Þ þ Oð27Þ

0

B
B
B
B
@

1

C
C
C
C
A

þ2D2ðN−1ÞðM−1Þ2 þ 3MðM−1Þ2

þðN−1ÞðN þM−2Þ þ 2ðN−1Þ2

þðN−1ÞðM−1Þð2N þM−3Þ
þ3DMðM−1Þð3Mþ N−1Þ
þ3MðM−1Þð3Mþ N−1Þ
þDð2N−1ÞðN−1ÞðM−1Þ

þOðð3MÞ3Þ þ 2 � OððN−1Þ3Þ
þ2 � OððDðM−1ÞÞ3Þ

(where K1 and K2 denote the iteration numbers for
the dimension-reduction Taylor-series iterative
algorithms in the first and second stages, respectively)

Stage 2 Φ 3DM(M − 1)(3M + N − 1)

fðΩðû
ðkÞ
s2 ; ŵ fÞÞ

−1
g1≤ k≤K2

and

fðΩðû
ðkÞ
s2 ; ŵ fÞÞ

−1=2
g1≤ k≤ K2

K2
3MðM−1Þð3Mþ N−1Þ

þ3MðM−1Þ2 þ 2 � OððMþ N−2Þ3Þ

� 	

fðΩðû
ðkÞ
s2 ; ŵ fÞÞ

−1=2 F1ðû
ðkÞ
s2 ; ŵ fÞ

OðN−1Þ�3

" #

g

1≤ k≤ K2

3K2(N +M − 2)(M − 1)

fΠ⊥ððΩðû
ðkÞ
s2 ; ŵ fÞÞ

−1=2 Γ

IN−1

� �

Þg
1≤ k≤K2

K2
ðN−1ÞðN þM−2Þ2

þOððN−1Þ3Þ

� 	

fðΩðû
ðkÞ
s2 ; ŵ fÞÞ

−1=2 r̂− fðû
ðkÞ
s2 ; ŵ fÞ
ρ̂ f

� �

g
1≤ k≤ K2

K2(N +M − 2)2

fû
ðkþ1Þ
s2 g1≤ k≤ K2 K2

12ðN þM−2Þ
þ3ðN þM−2Þ2 þ Oð27Þ

� 	

ð
Γ

IN−1

� �T

ðΩðûs2; ŵ fÞÞ
−1 Γ

IN−1

� �

Þ

−1 3MðM−1Þð3Mþ N−1Þ
þðN−1ÞðM−1Þð2N þM−3Þ
þ3MðM−1Þ2 þ OððN−1Þ3Þ

Γ

IN−1

� �T

ðΩðûs2; ŵ fÞÞ
−1 r̂− fðûs2; ŵ fÞ

ρ̂ f

� �
(N − 1)(N +M − 2)

ρ̂s2 (N − 1)2
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range Ω u;wð Þð Þ−1=2
Γ

IN−1

� �� 	

⊥range Ω u;wð Þð Þ1=2
IM−1

−ΓT

� �� 	

ð98Þ

It follows from (98) that

Π⊥ Ω u;wð Þð Þ−1=2
Γ

IN−1

� �� 	

¼ Π Ω u;wð Þð Þ1=2
IM−1

−ΓT

� �� 	

¼ Ω u;wð Þð Þ1=2
IM−1

−ΓT

� �
IM−1

−ΓT

� �T

Ω u;wð Þ
IM−1

−ΓT

� � !
−1

�
IM−1

−ΓT

� �T

Ω u;wð Þð Þ1=2

ð99Þ

Inserting (99) into (96) and using (95), we get

MSE ûs2ð Þ ¼ F1 u;wð Þð ÞT
IM−1

−ΓT

� �T

Ω u;wð Þ
IM−1

−ΓT

� � !
−1

F1ðu;wÞ

 !−1

¼ CRB uð Þ

ð100Þ

which completes the proof.

17 Appendix 8
17.1 Proof of C3 = O(N − 1) × (N − 1)

Using (70) and (71), we obtain

E
ε−F2 u;wð ÞΔw f

Δρ f

� �

ΔuT
s2

� 	

¼ E

�
ε−F2 u;wð ÞΔw f

Δρ f

� �

�
ε−F2 u;wð ÞΔw f

Δρ f

� �T

Þ Ω u;wð Þð Þ−1=2Π⊥ Ω u;wð Þð Þ−1=2
Γ

IN−1

� �� 	

� Ω u;wð Þð Þ−1=2
F1 u;wð Þ
O N−1ð Þ�3

� �

MSE ûs2ð Þ ¼ Ω u;wð Þð Þ1=2Π⊥

� Ω u;wð Þð Þ−1=2
Γ

IN−1

� �� 	

Ω u;wð Þð Þ−1=2
F1 u;wð Þ
O N−1ð Þ�3

� �

MSE ûs2ð Þ

ð101Þ

where the second equality follows from (52). From (101),

it can be checked that

Γ

IN−1

� �T

Ω u;wð Þð Þ−1 � E
ε−F2 u;wð ÞΔw f

Δρ f

� �

ΔuT
s2

� 	

¼
Γ

IN−1

� �T

Ω u;wð Þð Þ−1=2Π⊥ Ω u;wð Þð Þ−1=2
Γ

IN−1

� �� 	

Ω u;wð Þð Þ−1=2
F1 u;wð Þ
O N−1ð Þ�3

� �

MSE ûs2ð Þ ¼ O N−1ð Þ�3

ð102Þ

Putting (102) into the expression of C3, we have

C3 =O(N − 1) × (N − 1). Then, the derivation is completed.
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