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Abstract 
This paper explores the use of cloud computing for 

scientific workflows, focusing on a widely used astronomy 
application-Montage. The approach is to evaluate from the 
point of view of a scientific workflow the tradeoffs between 
running in a local environment, if such is available, and 
running in a virtual environment via remote, wide-area 
network resource access. Our results show that for 
Montage, a workflow with short job runtimes, the virtual 
environment can provide good compute time performance 
but it can suffer from resource scheduling delays and wide-
area communications.  

 
1. Introduction 
Recently, cloud computing [1, 2] has been under a growing 
spotlight as a possible solution for providing a flexible, on-
demand computing infrastructure for a number of 
applications. Clouds are being explored as a solution to 
some of the problems with Grid computing, but the 
differences between cloud computing and the Grid are 
often so diminished and obscured that they become 
indistinguishable from one another.  The term “Grid” 
computing was coined in the early 1990's to liken a 
distributed computing infrastructure to the electrical power 
grid [3].  Like the electrical power grid, a computational 
Grid uses resources that are potentially very geographically 
far apart.  These resources can be allotted to combinations 
of one or more groups of users, with the owners of the 
resources deciding when and to whom they should be 
allotted.  In this manner, collaborations can integrate pools 
of resources to give supercomputer-class capability to their 
users. 
 
Just as resources can be spread out geographically, so too 
can the members of a virtual organization.  A virtual 
organization is a group of individuals or institutions who 
share direct access to resources such as computers, data, 
and software according to a set of rules [4].  The problems 
with dynamic sharing of resources are that an available 
resource may not meet the needs of a particular virtual 
organization or a particular member of a virtual 
organization.   As a result, resources may also become 
underutilized.  Conversely, a specific resource may not be 
available at the time it is needed, leaving the user to wait or 
to seek an alternative.  In addition, significant overhead is 
incurred to ensure software compliance on different 

clusters. Additionally, security is always an issue in any 
kind of networked environment. 
 
In the past decade, many of these issues have begun to be 
addressed, but several of the problems still exist when 
working with a Grid.  For example, security infrastructures 
have evolved and have been increasingly implemented as 
the use of Grid computing has grown, but issues with 
dynamic scheduling and planning still occur regularly.  One 
solution that has come about in recent years is cloud 
computing [5, 6].  “The Cloud” refers to the typical 
depiction of the Internet as a mass of thin, branching lines 
spreading in all directions.  Cloud computing is a set of 
virtual servers that work together through the Internet and 
can be dynamically managed, monitored, and maintained.  
Users are expected to develop their own virtual images or 
use existing ones as an executable environment on the 
cloud.  Using virtual machines (VMs) that can be 
configured before deployment has the potential to reduce 
inefficient resource allocation and excess overhead.  A VM 
can create an environment on a resource that is configured 
independently from that resource, allowing multiple such 
environments to be deployed on the same resource at the 
same time.  In this manner of separation, each environment 
is kept secure from any others.  Because sharing can be 
much more flexible, this also can also increase resource 
utilization [7].   
 
While reducing or eliminating some sources of overhead, 
cloud computing introduces a few others.  A network must 
be set up, and an image must be generated or discovered 
before any computations can take place.  In the case of a 
virtual cluster, several virtual nodes need to be launched 
within the same time frame and made aware of each other.  
Once all these requirements are complete, execution 
overheads must still be taken into account.  In addition, 
monetary costs must be considered.  A group can purchase 
a Grid cluster for a relatively high cost, but it has complete 
control and sole access to it.  The cluster will be sufficient 
for a certain amount of time until the cluster machines 
either break or become obsolete and a new cluster must be 
purchased.  In contrast, cloud allotments may be purchased 
for a relatively small cost and for a relatively small amount 
of time, but the cost is incurred every time resources are 
used. 
 



One of the primary obstacles Grid users face today is that 
while a Grid offers access to many heterogeneous 
resources, a user typically needs a very specific 
environment that is customized to support a legacy 
application, remains consistent across multiple executions, 
or supports the idiosyncrasies of many service 
configurations.  Resource providers clearly cannot support 
the diversity of all the required environments while users 
are often unable to use what is available.  Further, 
guaranteeing a desired resource allocation to a Grid user is 
difficult today as most of the available tools support only 
unstructured sharing which further limits the impact of Grid 
computing on science.  Using virtualization in conjunction 
with Grid computing, known as “cloud computing” or 
Infrastructure-as-a-Service (IaaS), has been recognized as a 
potential solution to these problems [8, 9]. 
 
This paper looks at the differences between running 
scientific workflows on the cloud and running them on the 
Grid, using the Montage [10] application and Pegasus-
WMS, a scientific workflow software [11, 12].  Our 
perspective is not that of a computer scientist trying to 
analyze detailed performance metrics, but rather that of a 
domain scientist who can use a number of different 
computing environments to perform computations. In our 
scenario, four different sizes of workflows were run on 
individual virtual machines and on a virtual machine cluster 
on the Nimbus science cloud [13] as well as on a local 
cluster without an overlying virtual environment to explore 
the differences in overhead.  Using this approach, the 
usability of cloud computing for large-scale scientific 
experiments is explored. 
 
2. Motivation 
With some of the limitations and inefficiencies of Grid 
computing exposed, such as heterogeneous execution 
environment, difficulties of acquiring resources when 
needed, etc., it may be surprising that large-scale 
computing using a virtual cloud is not more widespread.  
However, cloud technology is gaining in prominence as the 
forerunners of mainstream computing are beginning to use 
their marketing power.  Companies such as Google, IBM, 
Amazon, and Yahoo! are aiming to make supercomputing 
power available to the masses, not just a relatively tiny 
number of skilled users [2].  Services like online storage, 
social networking sites, e-commerce, and web-based email 
are all examples of how cloud computing has already begun 
to become mainstream.  In addition, users in scientific and 
research communities will have the opportunity to access 
resources as they need them and only pay for what they use 
instead of paying for a certain amount of time – scheduled 
in advance – on a certain number of resources.  Large 
corporations as well as individuals will be able to use cloud 
resources for their computing and storage needs. 

 
The potential applications of cloud computing are many: 
financial applications, health care services, business 
enterprises and many others. Unlike other technology 
advances such as the web and the Grid, this new model of 
computing is being initiated in the business sector [5, 1] 
rather than in the science domain. Thus, the benefits of 
cloud computing to the scientific community are largely 
unknown and many questions are being asked by domain 
scientists about the promise and the pitfalls of clouds [14].  
Additionally, very little research has been conducted in 
comparison with what has been done with Grid technology. 
 
The main goal of this work was to determine the 
applicability of cloud computing to large-scale scientific 
workflows that are usually run on a Grid.  Using the 
Pegasus-WMS software, workflows from the Montage 
application were run both on a Grid and on a science cloud 
to test for overall differences in time and overhead costs. 
 
3. Approach 
In order to provide a comparison between running on the 
cloud and on the Grid, Montage workflows of varying sizes 
were run in four different environments.  Combinations of 
individual virtual machines as well as a virtual cluster were 
run on a science cloud set up at the University of Chicago 
[13], and the results from these two environments were 
compared with the results of running workflows on a local 
machine and a local Grid cluster.  Different methods were 
implemented to configure each environment in order to 
improve the comparison between them, such as limiting the 
number of jobs to be released onto the local Grid cluster 
since it used more nodes than the science cloud as well as 
running workflows using several virtual machines that were 
not set up as a virtual cluster.  Much work has been done to 
date on detailed comparisons of various aspects of virtual 
machines, including differences between various 
virtualization approaches, performance of the I/O 
subsystem, etc,  [15, 16, 7, 17, 18]. In this paper we aim at 
providing a comparison from the perspective of a scientist 
who needs to run the computations and has access to 
limited local resources and to a potentially much larger 
pool of virtual resources.  
 
3.1 Experimental Setup 
Before any workflows could be run on the Nimbus science 
cloud, the appropriate software needed to be installed on a 
virtual machine image.  A single virtual machine was 
launched, and necessities including Globus [19] (GridFTP, 
and GRAM), xinetd, Condor [20], and Pegasus-WMS were 
installed.  The VM was terminated and saved to an image 
so that the software would be available for each VM that 
was deployed using that image. 



Figure 1 shows the process of creating and running a 
workflow from start to finish using a local machine, a Grid 
cluster, a virtual cluster run on the science cloud, and a 
single virtual machine run on the science cloud. Although 
one can potentially run workflows across these four 
different environments, in this paper, we ran the workflow 
in each of them in separation. To run a workflow, a directed 
acyclic graph XML file (DAX) representing the Montage 
computation was generated using a domain-specific code.  
The DAX workflow representation is a high-level resource-
independent description of the applicable tasks and their 
dependencies.  Using the Pegasus-WMS software to plan 
out the workflow and map each job to an appropriate 
resource or node, a directed acyclic graph file was created.  
This type of file contains specific information needed by 
Condor to submit each job to the correct resource.  After 
planning, a command given by Pegasus allows the 
workflow to be submitted to Condor.  Condor's directed 
acyclic graph manager (DAGMan) [21] sends jobs to 
Condor, which uses Condor-G [22], to be run on the sites 
that have been selected during planning. 
 
3.2 Tools 
Several tools were used to set up this experiment, the first 
of which are the Virtual Workspace Service and the 
workspace cloud client [6].  The Virtual Workspace Service 
is installed on a Grid, allowing users to create virtual 
environments using the workspace cloud client.  For part of 
this experiment, Xen virtual machines [15] were deployed 
using the cloud client on the University of Chicago's 
sixteen-node TeraPort cluster that had the Virtual 
Workspace Service installed to create the Nimbus science 
cloud [13].  The cloud client allows a user to upload virtual 
machine images, download, modify, delete, or save copies 
of preexisting images, deploy images as virtual machines, 
and deploy virtual clusters from virtual images. 
In order to obtain the workflows that were run, the Pegasus 
mapper was used to map high-level workflow descriptions 

onto distributed resources.  Pegasus stands for Planning for 
Execution in Grids and is used for numerous applications in 
many areas of science [23-25], including Montage, an 
astronomy application which creates science-grade image 
mosaics of the sky.  The workflow manager depends on 
Condor DAGMan, which launches workflow tasks and 
maintains the dependencies between them.  Pegasus and 
Condor were both installed on a running virtual machine, 
and then the VM was saved as an image that could be used 
to deploy future VMs.  A convenient benefit of using the 
cloud is that once an image is developed, it is not necessary 
to reinstall software each time a new VM is launched.  The 
configurations that are set up while a VM is running can be 
saved, and the image can be used to launch multiple copies 
of the original VM. 
 
Parts of the Globus Toolkit [19] were used in combination 
with Pegasus and Condor to run the workflows, most 
notably GridFTP [26] and GRAM.  GridFTP is a high-
speed transfer service that expands the File Transfer 
Protocol to include features needed for Grid computing 
applications [27].  Globus Resource Allocation Manager, or 
GRAM, provides a single protocol for communicating with 
different job schedulers.  It is used to locate, submit, 
monitor, and cancel jobs on remote resources while 
addressing security, reliability, and performance issues.  
This experiment used a pre-Web Services GRAM service.  
 
3.3 Environments 
We ran our experiments in four different environments: 1) 
on a local machine, 2) on multiple VMs, where each VM is 
treated as an independent computational site, 3) on a local 
cluster, and 4) on a Virtual cluster.  We note that the virtual 
machines each have 2 CPUs thus we compared the 
execution not based on machines but based on CPU counts.  
Table 1 shows the characteristics of the machines we used 
in our experiments. 

 
Figure 1: Experimental Setup. 



 
The local Grid cluster used was comprised of eight 
compute nodes, and it had GRAM, GridFTP, and PBS 
software installed on it.  Individual Xen virtual machines 
were deployed on nodes of the University of Chicago 
TeraPort cluster.  The TeraPort cluster is composed of 
sixteen nodes, but each VM was only run on one node.  
GridFTP, GRAM, and the other required software was 
installed on a template image before deployment.  The third 
environment on which the workflows were run was a 
virtual cluster.  The virtual cluster was composed of two to 
five VMs: a head node and one to four worker nodes.  The 
VMs each occupied one node of the TeraPort cluster, just 
as with a single VM.   
 
4 Experimental Results and Analysis 
We conducted the experiments using 4 different size 
mosaics: 0.1 deg2, 0.2 deg2, 0.5 deg2, and 1deg2, 
corresponding to workflows with 50, 74, 150, and 426 
application jobs respectively. There are also additional jobs 
in the workflow, inserted by Pegasus, to perform the data 
movement if any is necessary, to cleanup the data as the 
computation progresses [28, 29], and to register the newly 
created data products. Another important metric in the 
study is the total footprint of the workflow. This footprint is 
58MB, 122MB, 338MB, and 1,090MB for increasing 
mosaic sizes. The application executables add an additional 
11MB to total footprint of each workflow. In all cases input 
data was available on a machine on the same local area 
network as the local machines. The virtual environments 
were connected to the local submit host via a wide area 
network. As a result, data had to be automatically stage-in 
by Pegasus-WMS. In these experiments, the Montage 
workflow was not optimized for performance or data 
footprint. 
 
The following graphs show the execution times for the 
workflows of various sizes on resources with 1, 2, and 4 
CPUs.  The runtimes do not include the set up and 
teardown of the virtual environment. The local execution 
represents execution of the workflow on the local host. 
Figure 2 shows the execution of the workflow on 2 CPUs 
(for comparison we also include the local execution on 1 
CPU). The local cluster was configured to use no more than 
2 CPUs at any one time.  We used 1 VM with 2 CPUs, and 
a virtual cluster with one headnode that runs PBS and one 
worker node (with 2 CPUs).  We note that the 1 degree 
square runs conducted on individual VMs did not complete 

due to lack of disk space in the image. We also notice that 
the performance of a single processor machine outperforms 
that of other configurations, even though the local host is 
less powerful than others. Although we don’t see that in 
these experiments, the size of the mosaics one can run on a 
single machine is limited by the amount of memory on that 
machine, so using a single machine for large-scale mosaics 
is not possible. Additionally, the number of simultaneous 
mosaics that can be executed locally is limited. As a result 
relying on a single machine to do many large-scale mosaics 
is not feasible in general. Figure 3 shows the execution of 
the workflow on 4 CPUs (and includes the local 1 
processor execution for comparison). Again we see that 
local execution is the shortest.  In both the 2CPU and 4 
CPU case, the virtual cluster performs better than the local 
cluster.  In the 4CPU case individual VMs perform 
similarly to the local cluster. In order to understand the 
reason for good performance of the local host versus the 
performance of the other platforms, we examined the 
constituents of the end-to-end runtime. These are composed 
of the Computation Time (here it also includes data staging 
in and out), the time it takes DAGMan to release jobs ready 
to run into the Condor queue, the time jobs wait in the 
Condor queue, and the time the jobs wait in the queue in 
the scheduler at the remote resource. Figure 4 shows the 
breakdown of the quantities for the 0.5 degree square 
Montage workflow running on 4 CPUs.  We see that during 
local execution, the computational time is long—because 
the processor is slow. The Figure also shows that the 
DAGMan overhead is constant for all the runs. What is 
different is the overhead associated with the Condor queue. 
Once we are outside of the local machine, jobs need to go 
from the Condor queue across a network to the resource. 
Jobs incur the network delay as well as the delay related to 
the acknowledgment of the remote resource that the job has 
been accepted.  We can see that this delay is particularly 
long for the virtual cluster.  In our runs, the jobs also wait 
longer in the remote queue in the virtual cluster case.  
There is virtually no remote queue time seen in the virtual 
machine because these are managed by fork.  We also 
analyzed the computational time of the individual VMs 
because it was longer than that of the virtual cluster. The 
reason for the difference is that the cluster uses a shared file 
system to access data during the workflow execution, 
whereas the individual VMs need to share data via GridFTP 
transfers. The time for these data transfers constitutes 6% 
of the overall computation time. 
 

Table 1:  The type of machines used in the study. 
 Processor Type Memory Architecture Disk space Scheduler 
Local 
Machine Pentium, 2.2Ghz 1GB 32 bit > 100GB fork 
VM AMD 248, 2.2 Ghz 3.5GB 64 bit 1.0GB free local fork 
Local Cluster Xeon  2.4GB 32 bit > 100 GB pbs 
VM Cluster AMD 248, 2.2 Ghz 3.5GB 64 bit 1.5GB free shared pbs



5. Related Work 
Virtualization technologies have taken two main 
approaches [30]. VMware allows multiple unmodified 
operating systems to run on a single host by implementing 
a full virtualization of the hardware and has more recently 
developed software for paravirtualization [18].  Denali [31], 
IBM rHype [32], and Xen utilize paravirtualization for 
decreased overhead and potentially higher performance, but 
paravirtualization is limited in that it can only host specially 
modified operating systems.  A recent performance study of 
hypervisors showed that the VMware virtual machine 
monitors perform better than their Xen counterparts in a 

variety of tasks, but Xen is still widely used as it is open 
source [18].   
 
A study for high-performance computing was done to 
compare Linux to Xen [33].  It was found that Xen attained 
slightly higher memory bandwidth but was slower with 
disk I/O speed.  Another study using a FOAM MPI-based 
climate application showed a slowdown of only about 5% 
on 16 processors [7]. Our work differs in that we don’t 
focus on virtualization technologies but rather on their 
benefits for science applications. 
 

R u n tim e  fo r M o n ta g e  w ith  2  C P U s

0
5 00

10 00
15 00
20 00
25 00
30 00
35 00
40 00

0 .1deg ^2 0 .2 deg^2 0 .5deg^2 1deg^2

S iz e  o f th e  M o sa ic

R
un

tim
e 

in
 S

ec
on

ds
Loc a l M a c h ine
Loc a l C lus te r
V M
V irtua l C lus te r

 
Figure 2: Runtime of the Montage Application on 2 CPUs. 
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Figure 3: Runtime of the Montage Application on 4 CPUs. 
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Figure 4: Overheads in the Workflow Execution in Various Environments. 



6. Discussion and Conclusions 
In this paper, we aimed to quantify the performance 
differences an application scientist would see while running 
workflows on various types of resources, including both 
physical and virtual environments. Although we see that in 
some cases running in a local environment is sufficient, it is 
not a scalable solution. However, virtual environments can 
provide the necessary scalability.  In multi-resource 
environments, we noticed large overheads of jobs waiting 
in the Condor and resource queues. This is particularly 
exacerbated in applications such as Montage where the 
average execution time of a job is on the order of a few 
seconds.  However, clustering techniques [34] that cluster 
small jobs together can greatly reduce the scheduling 
overheads. In the future, we plan apply these techniques in 
our virtual environment evaluation studies. Finally, we also 
noticed that disk space management is critical in virtual 
environments. When a virtual image is created, the size of 
the disk is fixed. Having a too small initial virtual disk size 
can adversely affect the execution of the application. 
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