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Abstract. A combined finite/discrete element method is pregodor the prediction of reinforced
concrete structure response under severe dynaats ks impacts due to natural or anthropic hazards.
bridging subdomain is used, the Hamiltonian is elmoas a linear combination of discrete and contimuu
Hamiltonians. Discrete Element displacements atatioms are linking to Finite Element displacements
by means of Lagrange multipliers. The discontimsitdf discretization introduce spurious reflection
numerical methods are proposed to attenuate it.

1. INTRODUCTION

The modeling of the whole structure under such itgppaeeds on one hand a model able to describe
the occurrence of severe damage (fragmentatiofljrgpaunneling) in the zone of impact, and on
another hand a model able to capture the globpbres of the structure. The study aims at showing
how the proposed combined finite/discrete elemeathod satisfies both conditions. Locally, the
discrete element model deals with nonlinear phemaméar from impacted zone the finite element
method allows the reduction of both times of maugknd computation. Using the combined method
allows the prediction of projectile penetratiomustural damage and global displacements.

The efficiency of DEM to study rocks, plain conereind reinforced concrete has already been shown
in 2D, Camborde [1], Potyondy [2] and in 3D, Hefi33. The applications of DEM to large scale
structures were limited due to computing costs;thmber of elements increase reduces drastically
computational efficiency. To improve that pointe tftegion without any assumed damage is modeled
by means of the FEM. The same media is model withdifferent methods; the discretization size at
the interface is discontinuous. In the vicinityiwfpact the DE discretization is fine, whereas E€ s

is adapted to the structural scale and is largen DE. Discretization discontinuity induces spusiou
reflections.

Such a multi-scale analysis with a combined distfigite elements approach has already been
proposed by different authors. Physicians firstpted FEM and molecular dynamics in order to look
in details the interaction between particles, ttack propagation Broughton [4]. A large synthedis o
these different approaches has been carried oltidy and Belytschko [5]. Suggested by these
authors, the coupling between the FE and DE donigicarried out into a bridging domain where the
Hamiltonian is taken as a linear combination otriite and finite Hamiltonians. Kinematic conditions
between FE and DE Degrees Of Freedom (DOF) alloavdisplacement continuities inside the
bridging domain. These conditions are satisfiedn@ans of Lagrange multipliers.
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2. DISCRETE ELEMENTS METHOD
2.1 Modelling scale

Contrary to FEM, the DEM, Cundall [6] is convenig¢mtdescribe discontinuous phenomena and large
deformation into dynamical problems. Occurrence mpmapagation of fracture is naturally taken into

account with a discrete model. DEM was originalgveloped for granular materials but seems well
adapted to cohesive materials, like concrete. @igsrete method allows to model heterogeneous
materials at a micro level i.e. the millimetric &etgeneity scale. Another approach consists in
modeling the material at a higher scale, where whele assembly reproduces the macroscopic
behavior, the fracturing process can be describadl the response of large structures can be
evaluated. Due to computational times in 3D prolsleiit is proposed to model concrete at a
mesoscale.

2.2 Proposed discrete elements model

The model is constituted with spheres of diffenexdius. Each sphere is a DE, those elements are in
interaction. The overall behavior of a material t@nreproduced by associating a simple constitutive
law to each interaction.

Two elementsa andb of radiusR, andR, respectively, can interact without contact. It @snfrom the
interaction range parameter(y > 1) . Elementsa andb will interact if :y(Ra + Rn) 2D,

WhereD,,, is the distance between the centroids of elenwatglb. The interaction range parameter
has a large influence for cohesive materials,cteéase the number of interaction by element.

In order to analyze the response of concrete, théelrhas to be isotropic and homogeneous with a
maximum compacity. The positions of elements aneloanly distributed.

As DE are spherical, the interactions laws take atcount, forces and momentum between two
elements. They are calculating from normal andyeatial stiffnessesk, and K; and relative
displacements. A modified Mohr-Coulomb model witlitsning is used.

More details about the constitutive equations efft model are presented in Hentz [3].

2.3 Discrete elements rotation characteristics

In comparison with FE node, a DE node has threeerdegrees of freedom, the three rotations. In
order to couple the sub-domains, it is necessamyntterstand the signification of DE rotations at a
macro-scale. The following results refer to statialysis of a 2D model. Loads are such that materia
remains elastic and all elements have the samag.a@lhe central difference integration algorithm is
used. The static response is obtained by meansistaus damping.

Numerical experiments show that in small pertudratiypothesis, the discrete rotation is the rigid
rotation, i.e. the antisymmetric part of the disglaent gradient. In the continuum model and with

- - = —_— = = _— T—
U(N)OU(M)+&(M)MN + wMN w:l[grad U - grad uj
small strains, the displacement of poMitclose toM, is given
by:

We can also introduce the vector rotation : Z)(M )W\i = 5(M ) OMN
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The displacement is written as the sum of a rigidybtranslation, a part due to strain and one due t
rotation. The vector rotation is equal to vediarorresponding to the rotation of DE.

3. COUPLING METHODS : the bridging domain method
3.1 Local equations

The start point of the method is based on a brigigib-domain where the Hamiltonian is taken as a
linear combination of discrete and continuum Haonilhns. For that, a scaling parametelis
introduced in the overlapping domain.is defined on FE by means of the element intetfmoia
functions in order to ensure the continuityudfetween elements.

In the following, we considen for FE node displacement; is the number of FE node angl, the
number of FE node in the bridging domainrepresent thé" degree of freedom of Fi.represents
the vector displacement of DE nodatg.is the number of DE node ang, the number of DE node in
the bridging domainw represents the vector of DE node rotations.

In the overlapping subdomain, DE degree of
freedom are linking to FE degree of freedom with
the coupling relations, defined as :

3.n fr 3.n i

d :Z;,kij“i @ =3 hyu,
i= i=1

0]; The solution minimize the Hamiltonian with the

1 coupling constrains introduced by means of
Lagrange multipliers defined with two vectors of
size 3R,. The function, Hg, to minimize is :

0 >

o[ &4, 2°) = W{d. i) (d -k} 2%~ i)
So local equations are :

e on FE and DE sub-domain, the local equation argemrclassical with mass lumping.
« on the bridging sub-domain, the local equationdafaned by :

For discrete element : For finite element
md =F +/]d 3ndr 3ndr
o : ] M.G, :Fi+z/]ldkil +2/]Iwhil
ch',')j :Cj +/]’Jf’ I=1 I=1
3.2 Algorithm

The explicit central difference method is useddlves the local equations.
At first we compute the expression without Lagrangstipliers :

_ At?
u(t +At) = 2u(t) —u(t — At) +W F . The verification of coupling relation at timeeptt+At

allows the calculation of multipliers. Then dispatent at time step i are update. The expressions
of displacement and rotation are :
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2 3ndr
. forfinite element U, (t + At) = G (t + At) + % Z (/],d k, +A’h, )

i =1

d,(t+at)=d, (t+At)+AmLAj.‘

. j
» for discrete element :

w (t+At) = (t+At)+AJL/1“’

j
With the coupling relation :
3nfr

1=1

g?):g)j(t+At) %h; |(t+At) ( w sifrm(giw/]—dk +/]wh|jj

Mi

Those expressions can be summarized in matrixragste

_At? o k,pkm 2 hlpkpl
=_ =._ = -t
§' = At 4B | P =T 0 Z M, 2w,
—w _~7d |, W 3nfr 2 3t h. h
g“=CA" +D —At kahpl D, = AJt 0, —At Z L
M, j p=1 My

With known Lagrange muItlphers, we obtain the eated finite and discrete displacements and
discrete rotations.

A, B, C, D are scare matrix of size 3.n The determination of Lagrange multipliers neatlgach
time step the resolution of a linear system of 8igg With a linear behavior in the mixed domain, we
need only to compute the matrix inversion at thst fitep. Xiao proposed to replace this matrix by a
diagonalized matrix. They sum each line of the matn the diagonal term. This method is less time
consuming and we will see in an example, its effecthe spurious wave reflection.

3.3 Relaxed Lagrange multipliers

To reduce spurious reflections due to discretizatiscontinuity on FE/DE interface, we proposed to
attenuate Lagrange multipliers by a parametsgfore to compute displacements and rotations/t t

d w
A° —/]— and A“ = A .

r r
As Lagrange multipliers can be considered as fapeéseen a DE and a FE node, the method relaxes
forces applied to the DE. This relaxation redudesgpurious wave. We have also demonstrated that
using diagonal matrix and relaxation is very et for applications, this approach is equivalent t
penality method where displacement in penality teame compute With](t + At) . The penality

coefficient is adapted to each dof, or if we waorigtant penality parameters we choose the minimum.
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4. APPLICATIONS
4.1 Wave propagation
Due to discontinuity of discretization size in theedia, a reflection wave occurs when the wave

frequency is too high to be defined by FE. Spuriaases may affect the damage prediction in the
impacted zone, the method must attenuate this phemnon.

Table 1 Percentage of attenuation of the total

— Reflection for 3 FE layers with relaxed Lagrange multipliers . reflective energy.
— Reflection for 3 FE layers with relaxed Lagrange multipliers and diagonal matrix
Classical Lagrange multipliers : Total reflection

Nb. FE layers 0 3 6 9

SEEEE R 1 |Usual Lag. Multipliers 0% | 0%| 0% 0 %

B
\ [T
T R L L A T

MR e — ) ) -
i ] W 1| With diag. matrix | 09%)| 16 %20 %23 %

\h‘””g

U

Relax. Lag. multipliers 0 % | 56 %982 %84 %

Relax. And diag. matrjx0 % | 94 %496 %98 %

3‘6 3‘8 A‘t 4‘2 4‘4 4‘6 4‘8
Figure 1 comparison of spurious reflections

When considering classical Lagrange multipliershaitt simplification or relaxation, high frequency
waves see the bridging domain as a rigid body. Bees of freedom are strongly linked to FE ones,
so discretization size in the bridging domain mikar to the FE discretization size.

Using matrix simplification or relaxed Lagrange tipliers introduce freedom on DE and reduce the
spurious reflection.

Concerning relaxed Lagrange multipliers, numergiaiulations demonstrate that the best parameter
for relaxation is the number of DE layers in theedapping domain. Table 1 gives a comparison
between the percentage of attenuation of the &statgy in the spurious wave, for classical Lagrange
multipliers and the relaxed Lagrange multipliersewhmatrix are taking without simplification, or
when matrix are diagonalized.

Best results are obtained with a diagonal matrik mtaxed Lagrange multipliers. The impact of the
method on low frequencies is small (less than 04f %tal energy, but it depends of application).

4.2  Impact on a concrete slab

In this part, the behavior of a concrete slab urdeycky impact is studied. This slab is the upgpeet

of a rock shed used to protect roads. The proposghod is compared with an equivalent DE method
without coupling. Figure 3 compares the displacenwérDE node between the pure DEM and the
coupled method, the node is not exactly at the gaoimg.

Complete comparison and results on the slab wiifesented.
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Figure 2 : Discrete model Figure 3: Comparison of displacement between
DE (red’ methocand coupled nthod(blue’

The combined method is more than 10 times fastar the DE method. Moreover we did not use a
multi-time step algorithm for this application.

5. CONCLUSION

The presented method reduce drastically computtiome, this method introduce spurious reflexion
which become negligible with specific numerical hedls. Two more aspects have not been
presented: the attenuation of spurious reflexioth wiamping, and the behavior of the method with

reinforcements. The general aspect of this metlamdbe applied on different material, preferably for
large models.
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