
Vol.:(0123456789)

The Journal of Supercomputing (2023) 79:11641–11659
https://doi.org/10.1007/s11227-022-04764-1

1 3

On the use of deep learning and parallelism techniques
to significantly reduce the HEVC intra‑coding time

Vicente Galiano1  · Héctor Migallón1 · Miguel Martínez‑Rach1 ·
Otoniel López‑Granado1 · Manuel P. Malumbres1

Accepted: 10 August 2022 / Published online: 3 September 2022
© The Author(s) 2022, corrected publication 2022

Abstract
It is well-known that each new video coding standard significantly increases in com-
putational complexity with respect to previous standards, and this is particularly true
for the HEVC and VVC video coding standards. The development of techniques for
reducing the required complexity without affecting the rate/distortion (R/D) per-
formance is therefore always a topic of intense research interest. In this paper, we
propose a combination of two powerful techniques, deep learning and parallel com-
puting, to significantly reduce the complexity of the HEVC encoding engine. Our
experimental results show that a combination of deep learning to reduce the CTU
partitioning complexity with parallel strategies based on frame partitioning is able
to achieve speedups of up to 26× when 16 threads are used. The R/D penalty in
terms of the BD-BR metric depends on the video content, the compression rate and
the number of OpenMP threads, and was consistently between 0.35 and 10% for the
video sequence test set used in our experiments

Keywords  CNN · Deep learning · HEVC · Deep learning · Parallel processing ·
Slices · Video coding

 *	 Vicente Galiano
	 vgaliano@umh.es

	 Héctor Migallón
	 hmigallon@umh.es

	 Miguel Martínez‑Rach
	 mmrach@umh.es

	 Otoniel López‑Granado
	 otoniel@umh.es

	 Manuel P. Malumbres
	 mels@umh.es

1	 Department of Computer Engineering, Miguel Hernández University, Avda. de la Universidad
s/n, Elche 03202, Alicante, Spain

http://orcid.org/0000-0002-6997-9953
http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-022-04764-1&domain=pdf

11642	 V. Galiano et al.

1 3

1  Introduction

The high-efficiency video coding (HEVC) standard was launched in 2013 [9] by
the Joint Collaborative Team on Video Coding (JCT-VC). Although HEVC can
compress a video sequence using half the bitrate of its predecessor, this perfor-
mance improvement comes at the expense of an increment in the computational
cost [1].

Great efforts have been made to speed up the encoding process. Several works
in the literature have tried to reduce the coding time using modern hardware
accelerators [2–8]. In [6, 8], computation of the motion estimation (ME) was
moved to the GPU, since in the same way as for previous video standards, ME
is the most complex task undertaken by the encoder, requiring more than 90% of
the encoding time [9]. In [2, 4, 7], the ME process was accelerated using a similar
approach based on FPGAs. In other approaches, various coding processes have
been moved to the FPGA, such as the 2D-DCT with variable size [3], the intra-
frame prediction process [5], and the CABAC entropy encoder [10].

Other works in the literature have used parallel computing strategies to reduce
the overall complexity of HEVC encoding, and to take advantage of the multi-
core processors available in modern HPC servers in order to speed up the over-
all encoding time for a video sequence [11–16]. There are also several other
approaches, which typically depend on the selected parallelisation strategy (tem-
poral or spatial) and the level at which parallelism is applied (fine, medium, or
coarse). For example, in [15], the authors applied a fine parallelism scheme to
reduce the complexity of the HEVC Sample Adaptive Offset (SAO) in-loop filter,
and obtained an speedup of 1.9× , while in [14], the authors employed a temporal
parallelism approach based on wavefront parallel processing which consisted of a
special type of pipeline processing for the Coding Tree Units (CTUs) of a given
frame when several computing OpenMP computing threads were available. The
latter approach obtained an speedup of 5.5× using 20 cores, with a BD-rate [17]
increment of 1.2%. In [12], a higher-level parallelisation scheme (at the frame
level) was proposed based on the partition of each frame using tiles (a new fea-
ture available in HEVC). In this approach, a maximum speedup of up to 9 × was
obtained for the all intra (AI)-coding mode using 10 cores. The study in [16] pre-
sented a thorough analysis of the need to adaptively evaluate the workload of the
different tiles in order to determine the best CTU partitioning is presented. In
[13], the authors developed a parallel HEVC encoder using frame-level parallel-
ism by means of slices rather than tiles, obtaining speedups of up to 9.3× and
8.7× for the AI and Random Access (RA) coding modes, respectively. In [11], a
coarse-grained parallelisation scheme was presented (at the sequence level), in
which different groups of pictures could be independently encoded by several pro-
cessing nodes. This parallel approach was well-suited to the distributed memory
architectures of modern federated clusters, and obtained speedups of up to 11.84×
using 12 cores for the RA coding mode, with a BD-rate increment of 1.3%.

Finally, there are other works that have focused on optimisation of the source
code of specific parts of the HEVC encoder [18–24]. In [18, 19], a pre-analysis

11643

1 3

On the use of deep learning and parallelism techniques to…

technique was proposed to reduce (a) the size of the search area; (b) the number
of reference frames in the inter-frame prediction; (c) the number of intra-predic-
tion modes; and (d) the number of best candidates for the intra-frame prediction
process. This approach achieved a 49% reduction in coding time on average for
the RA coding mode with an average BD-rate increment of 1.08%. In [21], the
authors developed a fast decision method to perform efficient asymmetric mode
partition, thus reducing the computational complexity. They also proposed an
adaptive motion search area estimator to reduce the overall inter-coding complex-
ity even further. Their results demonstrated that their algorithm could reduce the
encoding time by 31.37% in the RA coding mode with a negligible BD-rate incre-
ment. In [20], the authors reported on a fast decision mode based on CABAC rate
estimation with a coding time reduction of 15%, while in [22], a fast CTU parti-
tioning algorithm was developed in which the CTU texture was used to prune the
CTU quad-tree structure. The results proved that the proposed fast coding unit
(CU) partitioning algorithm yielded savings of 41% in the encoding time on aver-
age, with a BD-rate increment of 0.69%. In [23], a decision tree-based algorithm
for CTU partition was presented. The authors implemented three decision trees
classifiers for all the three depths of the CU partition. However, the thresholds
required by this algorithm needed to be selected manually. This technique was
able to reduce the encoding time by 42.1% on average, with a BD-rate increment
of 0.7%. The authors of [24] proposed a Bayesian decision rule for an early ter-
mination CU algorithm. This Bayesian decision rule was used to estimate a like-
lihood function and the prior probability of a new scene. The model was then
updated for the following frames, to predict the CU size. Although the proposed
model had a negligible training time compared with other machine learning mod-
els, its accuracy depended on the particular scene, making it inaccurate. The
results showed that an average reduction in coding time of 36% could be achieved
with a BD-rate increment of 1.08% for the AI coding mode.

With regard to source code optimisation techniques, several authors have devel-
oped deep learning approaches to reduce the complexity of the HEVC encoder
[25–33]. For example, to reduce the complexity of inter-mode prediction in the
Low Delay B coding mode (LB), Zhang et al. [29] proposed a coding unit (CU)
depth decision algorithm with a three-level joint classifier based on a support vector
machine (SVM), which predicted the splitting of CTUs based on as a three-level of
hierarchical binary decision problem. The proposed algorithm was able to reduce the
encoding time by 51.45% on average, with a BD-rate increment of 1.98%. For the
intra-coding mode, Liu et al. [26] developed a convolutional neural network (CNN)
approach that predicted the CTU partitioning, thus reducing the coding time by 72%
on average, with a BD-rate increment of 4.79%. The authors of [28] proposed a
CNN-based algorithm for predicting the CU size for both inter- and intra-prediction
coding using CNN models, where the quantisation parameter (QP) was used as one
of the inputs to the classifier. In this scheme, reductions in coding time of 66.47%
and 62.94% were achieved for the intra- and inter-coding modes, respectively. In
[31], the authors developed a CNN-based algorithm to extract texture and objects
location features, which were used with a Softmax classifier to predict the CU
size. The results showed a reduction in the coding time of 66.89%, with a BD-rate

11644	 V. Galiano et al.

1 3

increment of 1.31% for the AI coding mode. In [32], the researches proposed a fast
CU size decision algorithm based on a CNN architecture, where four CNNs were
used as classifiers at each of the four depths to make a decision (splitting or non-
splitting) for the given QP. The pruning algorithm achieved a coding time reduction
of 77% with a BD-rate increment of 3.1% on average for the AI coding mode. The
authors of [33] presented CtuNet, a CNN approach that predicted CTU partition-
ing. The CtuNet framework consisted of three CNN networks for the CU sizes of
64 × 64 , 32 × 32 , and 16 × 16 , with a residual network (ResNet18) [34] as the back-
bone model. This model obtained reductions in the coding time of 63.68% with a
BD-rate increment of 1.77% on average, for the AI coding mode.

Recently, Çetinkaya et al. [35] have published a survey of CTU depth decision
algorithms that covered classical statistics-based algorithms to modern advanced
deep learning algorithms such as deep neural networks. In another recent paper,
Wang and Li [36] designed a one-stage decision network(OSDN) structure to
determine the CU/PU partition and prediction mode for intra-coding. Their exper-
imental results showed that the proposed method could reduce the intra-encoding
time by 73.69%, with a BD-PSNR loss of 0.1673 dB on average.

The most important contributions of the present work are as follows:

1	 A hybrid HEVC encoder that combines two different acceleration strategies based
on parallel computing and source code optimisation techniques is designed and
developed. The first acceleration technique is a parallel scheme that uses a domain
decomposition model based on HEVC slice partitioning, which is particularly
suitable for exploiting the shared memory parallelism of multicore processors.
The second technique uses optimisation methods at the CTU level to reduce the
complexity of the quad-tree splitting process by means of a CNN.

2	 The benefits of our hybrid solution are demonstrated, and it is shown to be fully
compliant with the HEVC standard, to give good encoding performance for the
HEVC, and to achieve outstanding speedups.

3	 The hybrid proposal also includes extra parallelisation of the additional process-
ing steps required by the machine learning-based acceleration approach.

The remainder of this paper is organised as follows. In Sect. 2, we explain the deep
learning approach used to predict the CU partition and the slice-based parallelism
strategy. Sect. 3 describes the proposed hybrid approach for improving the speed
of the HEVC coding stage, and in Sect. 4, experimental results from the proposed
hybrid algorithm are presented. Finally, in Sect. 5, some conclusions are drawn.

2 � Related work

In this section, we explain the main features of the techniques used in this work
to create the hybrid acceleration scheme in order to significantly improve the
speedup of the HEVC encoding process.

11645

1 3

On the use of deep learning and parallelism techniques to…

2.1 � Neural network algorithm

The HEVC algorithm reduces the bit rate of the encoded video at the cost of a con-
siderable increase in the encoding complexity. One of the most time-consuming
process is the decision on the optimal quad-tree partitioning of each CTU. To find
an optimal CTU partitioning from the 83522 possible partitions (see [35]), HEVC
searches 85 CUs with different sizes ranging from 64 × 64 to 8 × 8 pixels. In addi-
tion to finding the correct CU depth structure, the prediction unit (PU) modes and
the transform unit (TU) partitioning must be properly determined for each CU. Thus,
the search for the optimal CTU structure requires the largest amount of time in the
encoding process [37], since it uses a brute force approach to find the one with the
minimum rate-distortion (RD) cost.

Several schemes for reducing the computational cost of the CU partition have
been reviewed in Sect. 1, some of which reduce the complexity of the algorithm at
the cost of an increase in bit rate to maintain the reconstructed video quality; others
replace the brute force search for R/D optimisation (RDO) with a deep neural net-
work that is trained to estimate the CTU partitioning. Of the numerous complexity
reduction schemes based on deep learning that have been proposed, we highlight the
one presented by Xu et al. [28]. The main factors that differentiate this proposal from
the alternatives involve the definition of a hierarchical CU partition map (HCPM)
to represent the CU partition. Given sufficient training data and an efficient HCPM
representation, the authors propose a deep CNN structure called an early-terminated
hierarchical CNN (ETH-CNN) that can be trained to explore various patterns for the
CTU partition and thus reduce the complexity of the HEVC coding process.

A CTU has a size of 64 × 64 pixels by default, and can either contain a single CU
or be recursively split into multiple smaller CUs, based on the quad-tree structure
shown in Fig. 1.

In the CU partition structure in HEVC, four different CU sizes are supported by
default; these are 64 × 64 , 32 × 32 , 16 × 16 and 8 × 8 , corresponding to four CU
depths of 0, 1, 2 and 3. For a coding unit U, the first-level binary label y1(U) indi-
cates whether U is split (= 1) or not (= 0). If U is split, its sub-CUs of depth one are

(a) (b)

Fig. 1   Example of CTU quad-tree structure defined in HEVC

11646	 V. Galiano et al.

1 3

denoted as {Ui}
4

i=1
 . As stated above, in HEVC, the binary labels for splitting each

CU are obtained using a time-consuming RDO process, but these can be predicted
faster via a deep learning algorithm using a simple multi-class classification in one
step call (ETH-CNN). Note that the input CTU is extracted from raw images, and
only the Y channel is used in ETH-CNN. The structure of ETH-CNN consists of
two pre-processing layers, three convolutional layers, and one concatenating layer
[28]. Using this ETH-CNN structure, the model is trained to minimise the R/D loss
function (see Equation (2)), and can finally be used to predict the CTU partitioning
in the form of HCPM. For each training sample r the loss function LFr sums the
cross-entropy over all valid elements of HPCM (see Equation (1)).

where
{

ŷr
1
(U), ŷr

2
(Ui)

4

i=1
, ŷr

3
(Ui,j)

4

i,j=1

}NoTS

k=1
 are the labels of the hierarchical CU parti-

tion map predicted by ETH-CNN and r represents the number of training samples
(NoTS). Moreover, H(y, ŷ) is the cross-entropy between the ground-truth (y) and the
predicted labels ( ̂y ). The proposed ETH-CNN model is trained by optimising the
global loss function (LF) shown in Equation (2).

Given an input CTU, ETH-CNN provides the splitting probabilities at each level
P1(U) , P2(Ui) and P3(Ui,j) for the binary labels y1(U) , y2(Ui) and y3(Ui,j) , to predict
the CU partitioning. In general, a decision threshold �l = 0.5 is set for levels 1, 2 and
3. Hence, a CU with Pl(U) > 𝛼l is split into four sub-CUs. The author of [28] also
provides a convolutional network for inter-coding called ETH-LSTM. However, as
our proposal is focused on the intra-coding we will use the ETH-CNN network spe-
cially developed for intra-coding.

2.2 � Slice‑based parallel algorithm

The HEVC standard allows each frame of a video source to be segmented into a
set of CTUs, each of which can be configured as an independent block that can be
encoded in parallel. The HEVC standard offers two options for dividing the video
source to be encoded into independent sets of CTUs: slice and tile partitioning.
Slices are sets of correlative CTUs where the number of CTUs in each set are the
same for all slices (except where necessary for the last slice containing the CTUs
in the lower right-hand corner of the frame). In the HEVC standard, the number of

(1)

LFr = H
(

yr
1
(U), ŷr

1
(U)

)

+

∑

i ∈ {1, .., 4}

yr
2
(Ui) ≠ null

H
((

yr
2
(Ui

)

, ŷr
2

(

Ui

))

+

∑

i, j ∈ {1, .., 4}

yr
3
(Ui,j) ≠ null

H
((

yr
3
(Ui,j

)

, ŷr
3

(

Ui,j

))

(2)LF =
1

NoTS

NoTS
∑

r=1

LFr

11647

1 3

On the use of deep learning and parallelism techniques to…

CTUs per slice needs to be established. The sizes of the slices (in terms of the num-
bers of CTUs) will determine the number of slices in each frame, depending on both
the resolution of the video sequence to be encoded and the size of the CTUs. Note
that each CTU is a square set of pixels for which the size is set to 64 × 64 pixels, as
specified in the HEVC common test conditions [38].

As each slice contains a data header, it can be decoded independently of the oth-
ers, even if the data from the others are not available when decoding. Since the size
of the header can affect the compression ratio (i.e. the number of bits per pixel in
the compressed bit stream), the number of slices in the proposed parallel algorithm
should be established with care, in order to avoid an excessive bitstream overhead
(see [39]). Each encoding process calculates the slice size, expressed in number of
CTUs, depending on (a) the number of CTUs in a frame; (b) the identification of
the encoding process

(

IEP
)

 ; and (c) the total number of available encoding processes
(

NEP

)

 , as indicated in Algorithm 1. The size of the last slice (in the lower right-hand
corner) is either equal to or smaller than the rest of the slices, and its size

(

SSlice
)

 is
determined based on the number of processes according to Algorithm 1.

The slice partitioning process in Algorithm 1 aims to achieve a balanced computa-
tional load, in which domain decomposition is performed to assign each process the
same (or a similar) amount of data. Note that if the computational load assigned to each
process is evaluated based on the number of CTUs in a frame

(

NCTUs

)

 it is only possi-
ble for the encoding process of the last slice to have an imbalanced computational load.
Depending on the video sequence resolution to be encoded, there may also be CTUs
at the right-hand or bottom edges of a frame with fewer than 4096 (64 × 64) pixels.
Figure 2a and b show two different partition schemes for encoding a video sequence

(a) (b)

Fig. 2   Slice partitioning of a 832 × 480 frame

11648	 V. Galiano et al.

1 3

of size (832 × 480) pixels, where the total number of CTUs is 104 (13 × 8) . Figure 2
shows partitioning into two slices of 52 CTUs each, while Fig. 2 shows partitioning
into six slices, where the first five slices contain 18 CTUs each and the last slice con-
tains 14. In the last slice, only the first CTU has 4096 (64 × 64) pixels, and the remain-
ing 13 CTUs have only 2048 (64 × 32) pixels.

Once the slices have been assigned to the processes, each process must encode the
CTUs contained in the assigned slice, and for each CTU, the quad-tree structure must
be computed using the brute force R/D algorithm as described in Sect. 2.1.

In order to significantly reduce the computing time of the HEVC encoding process,
we propose a hybridised scheme that includes both a deep learning approach to predict
the CU partition and a parallel processing scheme based on slice partitioning, and this
is described in the next section.

3 � Hybrid acceleration proposal

The deep learning algorithm described in Sect. 2.1 and the slice-based parallel algo-
rithm in Sect. 2.2 can be complemented by allowing for parallelisation and pre-calcu-
lation of CTU partitioning through deep learning. A general flowchart for the proposed
hybrid algorithm is shown in Fig. 3. The sliced parallel algorithm is represented using
red boxes, while the blue ones represent the contribution from deep learning. In the first
step, all of the OpenMP threads read the configuration parameters and encode a set of
frames depending on the total numbers of frames and threads. Each thread computes
the HCPM for all the CTUs in the assigned frame set, and the partition map is stored
in memory so that it can be accessed by all threads when the CTU partitioning tree is
computed for a given slice. Once all the HPCMs have been generated and saved in a
concurrent manner (which yields an improvement in computation time compared to
other approaches), all threads are synchronised to encode each frame. In this sense, the
slice-based parallel algorithm is applied at a higher level. As shown in Fig. 3, only the
master thread reads the new frame to be encoded, in order to reduce both the number
of disk accesses and the memory requirements. The frame to be encoded will there-
fore be stored in the shared memory, and will be accessed only for reading. In fact,
each thread will only access those CTUs that are part of the slice to be encoded by it.
The prediction for the CTU partition obtained from the deep learning approach is used
when coding the set of CTUs for the slice assigned to each thread. When each thread
has encoded the slice assigned to it, it writes its bit stream into the final bit stream, and
this process must be done in the right order, as shown in Fig. 3. Hence, thread 0 is the
first to become idle after storing its computed part of the bitstream. This thread can
then start reading or receiving the new data, while the rest of the OpenMP threads fin-
ish writing to the bitstream.

11649

1 3

On the use of deep learning and parallelism techniques to…

4 � Experimental results

In this section, we present the results of a set of experiments carried out to validate
the effectiveness of our proposal are presented. To evaluate the intra-frame coding
performance of our hybrid scheme, we compare the slice-based parallel approach
proposed in [13], the deep learning approach proposed in [28] and the proposed
hybrid approach. All three methods are based on the HEVC reference software
HM version 16.3 [40] (which was used as a benchmark), and the AI configuration
was applied using the default configuration file encoder_intra_main.cfg.
Four QP values (22, 27, 32, 37) were chosen for compression of the selected video
sequences as recommended by the HEVC common test conditions [38]. All experi-
ments were conducted on a server with two processors (Intel(R) Xeon(R) Gold 6140
@ 2.30 GHz) with 18 cores per processor, 400 GB RAM, four Tesla P100-PCIE
GPUs and CentOS Linux release 7.6.1810 as the operating system. For the deep
learning approaches, we used TensorFlow 1.8 with GPU support for CUDA 9.1 and

Fig. 3   Hybrid parallel algorithm

11650	 V. Galiano et al.

1 3

cuDNN 7.1 is used. The trained neural networks considered in the experiments were
provided by the authors of [28]. Eleven video sequences from the JCT-VC stand-
ard test set [38] were used to evaluate and compare our method, as summarised in
Table 1.

Table 2 shows the speedup and Bjontegaard delta bit rate (BD-BR) [41] obtained
for the Class A video sequences using the schemes in [13, 28] and our proposed
approach (Prop.). The time reduction is expressed based on the speedup as an accel-
eration measurement in order to directly relate the coding latency to the number of
OpenMP threads (Th.) used. All the speedups and the values for the BD-rate were
obtained with respect to the reference software, HM version 16.3 [40].

The experimental results from the deep learning approach were similar to those
obtained by the authors of [28]; for example, for the Traffic sequence, a reduction of
a 73.7% in the execution time was achieved for QP = 37, corresponding to an aver-
age speedup of 3.7× . The OpenMP approach described in [13] gave speedups of up
to 14.65× for 16 threads for same video sequences, with an efficiency of 75% (where
efficiency is defined as the ratio of useful work to the resources expended by each
thread in each core). This was as expected, since a slice-based distribution is more
efficient for higher-resolution video sequences where the computational load can
be equally distributed, as described by the authors of [13]. The proposed approach
which combines both strategies is able to considerably reduce the coding times. For
example, for the BQMall Class C video sequence encoded with QP = 37, a speedup
of 37.9× was achieved for 16 threads. These results clearly show that a combination
of slice-based parallelisation with a reduction in complexity from deep learning can
provide significant levels of acceleration for HEVC intra-frame coding, which are
greater than the accelerations obtained by the schemes in [28] and [13] (2.96× and
14.12× , respectively). In a practical scenario where the speed of intra-coding is deci-
sive, the proposed solution offers a much higher performance than all the proposals
described in Sect. 1.

The reduction in the complexity of the HEVC intra-frame coding mode is
achieved at the expense of a loss of R/D performance. Tables 2 , 3, 4 and 5 show the
values of BD-BR used to evaluate the R/D performance of the proposed scheme and
the other two alternatives [13, 28]. As expected, the BD-BR for our hybrid proposal
is approximately the sum of the penalties obtained by the approaches in [28] and
[13]. For example, it can be seen from Table 5 that for QP = 37, the algorithm pro-
posed in [28] shows an increase in the BD-rate of 1.43% for RaceHorses, whereas
the penalty obtained by the algorithm proposed in [13] is 1.76% for 16 threads.

Table 1   Test video sequences

Class Size Sequence Frame rate

A 2560 × 1600 PeopleOnStreet, Traffic 30fps, 30fps
B 1920 × 1024 BasketballDrive, BQTerrace, Cactus 50fps, 60fps, 50fps
C 833 × 488 BasketballDrill, BQMall, PartyScene 50fps, 60fps, 50fps
D 384 × 192 BlowingBubbles, BQSquare,RaceHorses 50fps, 50fps, 50fps

11651

1 3

On the use of deep learning and parallelism techniques to…

Ta
bl

e 
2  

S
pe

ed
up

 a
nd

 B
D

-B
R

 fo
r C

la
ss

 A
 v

id
eo

 se
qu

en
ce

s

Se
qu

en
ce

Sp
ee

du
p

B
D

-B
R

 [2
8]

Th
.

 [1
3]

Pr
op

.
 [2

8]
 [1

3]
Pr

op
.

Q
P

Q
P

Q
P

22
27

32
37

22
27

32
37

22
27

32
37

Pe
op

le
O

nS
tre

et
2.

44
2.

50
2.

56
2.

70
1.

00
1.

00
1.

00
0.

99
2.

37
2.

42
2.

71
2.

69
2.

41
%

0.
00

%
2.

24
%

2
1.

91
1.

90
1.

92
1.

94
4.

37
4.

51
4.

98
4.

98
0.

17
%

2.
43

%
4

3.
87

3.
72

3.
85

3.
57

7.
96

8.
26

8.
81

8.
56

0.
46

%
2.

85
%

8
7.

17
6.

50
6.

98
6.

95
14

.7
3

14
.7

6
15

.1
0

15
.6

4
1.

04
%

3.
41

%
16

15
.3

6
15

.1
2

15
.2

5
15

.4
1

25
.6

8
26

.2
5

27
.4

8
26

.6
8

2.
15

%
4.

52
%

Tr
affi

c
2.

94
3.

33
3.

45
3.

70
1

1.
00

1.
00

1.
00

0.
99

2.
28

2.
38

2.
69

2.
62

2.
35

%
0.

00
%

2.
45

%
2

1.
85

1.
81

1.
93

1.
85

4.
34

4.
39

4.
88

4.
92

0.
14

%
2.

55
%

4
3.

49
3.

50
3.

68
3.

54
7.

75
8.

19
8.

72
8.

23
0.

41
%

2.
75

%
8

7.
10

7.
02

6.
33

6.
56

14
.2

5
14

.6
0

14
.8

8
15

.1
9

1.
14

%
3.

49
%

16
15

.3
1

14
.4

0
14

.8
8

14
.6

5
24

.4
4

25
.2

7
26

.4
7

25
.5

9
1.

97
%

4.
42

%

11652	 V. Galiano et al.

1 3

Ta
bl

e 
3  

S
pe

ed
up

 a
nd

 B
D

-B
R

 fo
r C

la
ss

 B
 v

id
eo

 se
qu

en
ce

s

Se
qu

en
ce

Sp
ee

du
p

B
D

-B
R

 [2
8]

Th
.

 [1
3]

Pr
op

.
 [2

8]
 [1

3]
Pr

op
.

Q
P

Q
P

Q
P

22
27

32
37

22
27

32
37

22
27

32
37

B
as

ke
tb

al
ld

riv
e

2.
54

3.
51

4.
42

4.
76

1
1.

00
1.

00
1.

00
0.

99
2.

52
3.

53
4.

42
4.

92
4.

29
%

0.
00

%
4.

29
%

2
1.

89
1.

98
1.

89
1.

93
4.

82
6.

58
8.

34
9.

09
0.

49
%

4.
77

%
4

3.
44

3.
62

3.
43

3.
68

7.
92

10
.3

2
13

.1
6

14
.6

5
0.

94
%

5.
22

%
8

6.
18

6.
63

6.
59

6.
87

13
.3

7
17

.9
8

23
.5

6
25

.8
5

2.
35

%
6.

55
%

16
14

.8
6

14
.9

2
15

.0
8

15
.2

1
22

.5
8

25
.4

5
30

.6
2

34
.4

6
4.

04
%

8.
33

%
B

Q
Te

rr
ac

e
2.

45
3.

47
4.

82
5.

04
1

1.
00

1.
00

1.
00

0.
99

2.
44

3.
51

4.
37

4.
80

4.
35

%
0.

00
%

4.
39

%
2

1.
82

1.
82

1.
76

1.
89

4.
61

6.
51

7.
94

8.
82

0.
48

%
4.

88
%

4
3.

52
3.

57
3.

53
3.

79
7.

64
10

.2
6

12
.8

2
14

.0
2

0.
91

%
5.

32
%

8
6.

07
6.

09
6.

30
6.

73
13

.3
1

17
.5

2
22

.7
2

25
.5

8
2.

30
%

6.
72

%
16

14
.3

5
14

.4
3

14
.6

2
14

.6
2

22
.0

9
24

.3
0

29
.8

8
33

.9
8

3.
97

%
8.

40
%

C
ac

tu
s

2.
41

3.
49

5.
04

5.
33

1
1.

00
1.

00
1.

00
0.

99
2.

36
3.

49
4.

23
4.

73
3.

81
%

0.
00

%
3.

85
%

2
1.

94
1.

98
1.

91
1.

99
4.

49
6.

19
7.

64
8.

80
0.

48
%

4.
33

%
4

3.
63

3.
89

3.
72

3.
91

7.
53

10
.1

9
12

.2
5

13
.8

1
0.

90
%

4.
76

%
8

6.
66

7.
12

6.
91

6.
98

12
.8

4
17

.4
4

22
.3

1
24

.3
2

2.
24

%
6.

11
%

16
14

.1
4

14
.2

3
14

.2
7

14
.4

8
21

.6
1

23
.3

7
29

.4
2

32
.4

8
3.

94
%

7.
82

%

11653

1 3

On the use of deep learning and parallelism techniques to…

Ta
bl

e 
4  

S
pe

ed
up

 a
nd

 B
D

-B
R

 fo
r C

la
ss

 C
 v

id
eo

 se
qu

en
ce

s

Se
qu

en
ce

Sp
ee

du
p

B
D

-B
R

 [2
8]

Th
.

 [1
3]

Pr
op

.
 [2

8]
 [1

3]
Pr

op
.

Q
P

Q
P

Q
P

22
27

32
37

22
27

32
37

22
27

32
37

B
as

ke
tb

al
ld

ril
l

1.
97

2.
05

2.
26

2.
75

1
1.

00
1.

00
1.

00
0.

99
1.

77
1.

85
2.

04
2.

46
1.

76
%

0.
00

%
1.

69
%

2
1.

95
1.

79
1.

83
1.

91
3.

47
3.

32
3.

72
4.

73
0.

12
%

1.
81

%
4

3.
51

3.
56

3.
39

3.
46

6.
26

6.
62

6.
91

8.
61

0.
45

%
2.

14
%

8
6.

49
6.

30
6.

00
6.

65
11

.5
4

11
.6

4
12

.3
1

16
.5

8
1.

24
%

2.
94

%
16

14
.0

1
14

.1
3

14
.1

9
14

.3
5

24
.9

7
26

.3
0

28
.9

1
35

.5
4

2.
37

%
4.

08
%

B
Q

m
al

l
1.

92
1.

98
2.

38
2.

96
1

1.
00

1.
00

1.
00

0.
99

1.
74

1.
79

2.
14

2.
66

1.
67

%
0.

00
%

1.
69

%
2

1.
84

1.
74

1.
78

1.
85

3.
18

3.
13

3.
83

4.
94

0.
11

%
1.

80
%

4
3.

17
3.

32
3.

35
3.

28
5.

52
5.

94
7.

25
8.

78
0.

45
%

2.
14

%
8

5.
77

5.
83

6.
19

5.
77

10
.0

4
10

.4
2

13
.2

7
15

.4
7

1.
19

%
2.

88
%

16
12

.1
2

13
.4

5
14

.0
9

14
.1

2
21

.0
5

24
.0

6
30

.1
9

37
.9

0
2.

25
%

3.
96

%
Pa

rty
sc

en
e

1.
90

2.
10

2.
45

2.
92

1
1.

00
1.

00
1.

00
0.

99
1.

71
1.

89
2.

23
2.

61
1.

68
%

0.
00

%
1.

70
%

2
1.

91
2.

01
2.

01
1.

84
3.

28
3.

82
4.

44
4.

88
0.

11
%

1.
81

%
4

3.
84

3.
93

3.
64

3.
60

6.
60

7.
44

8.
08

9.
56

0.
43

%
2.

13
%

8
6.

80
6.

67
6.

63
6.

63
11

.6
4

12
.6

0
14

.6
7

17
.5

3
1.

16
%

2.
87

%
16

11
.5

4
12

.9
7

13
.4

0
13

.6
3

19
.8

5
24

.6
5

29
.6

3
35

.9
1

2.
17

%
3.

89
%

11654	 V. Galiano et al.

1 3

Ta
bl

e 
5  

S
pe

ed
up

 a
nd

 B
D

-B
R

 fo
r C

la
ss

 D
 v

id
eo

 se
qu

en
ce

s

Se
qu

en
ce

Sp
ee

du
p

B
D

-B
R

 [2
8]

Th
.

 [1
3]

Pr
op

.
 [2

8]
 [1

3]
Pr

op
.

Q
P

Q
P

Q
P

22
27

32
37

22
27

32
37

22
27

32
37

B
lo

w
in

gb
ub

bl
es

1.
65

1.
67

2.
1

2.
54

1
1.

00
1.

00
1.

00
0.

99
1.

49
1.

51
1.

90
2.

28
1.

45
%

0.
00

%
1.

37
%

2
1.

97
1.

92
1.

94
1.

88
2.

93
2.

90
3.

70
4.

31
0.

09
%

1.
46

%
4

3.
46

3.
36

3.
36

3.
28

5.
18

5.
08

6.
39

7.
56

0.
41

%
1.

79
%

8
5.

48
4.

86
4.

97
5.

00
8.

17
7.

32
9.

45
11

.5
2

1.
14

%
2.

53
%

16
12

.1
3

10
.2

3
11

.2
0

11
.8

7
18

.0
5

15
.4

6
21

.2
6

27
.3

9
1.

82
%

3.
21

%
B

Q
sq

ua
re

1.
58

1.
78

2.
11

2.
62

1
1.

00
1.

00
1.

00
0.

99
1.

44
1.

61
1.

91
2.

35
1.

36
%

0.
00

%
1.

37
%

2
2.

02
1.

92
1.

87
1.

86
2.

90
3.

10
3.

58
4.

42
0.

09
%

1.
46

%
4

3.
52

3.
14

3.
33

3.
28

5.
03

5.
06

6.
33

7.
79

0.
40

%
1.

78
%

8
5.

45
4.

94
4.

76
5.

07
7.

79
7.

98
9.

09
11

.9
7

1.
12

%
2.

51
%

16
11

.6
0

10
.2

4
11

.4
4

11
.8

5
16

.5
1

16
.5

2
21

.7
3

28
.0

5
1.

78
%

3.
17

%
R

ac
eh

or
se

s
1.

55
1.

71
2.

01
2.

70
1

1.
00

1.
00

1.
00

0.
99

1.
41

1.
55

1.
82

2.
42

1.
43

%
0.

00
%

1.
44

%
2

1.
91

1.
80

1.
87

1.
93

2.
69

2.
79

3.
39

4.
71

0.
09

%
1.

53
%

4
3.

27
3.

19
2.

98
3.

21
4.

57
4.

96
5.

40
7.

80
0.

39
%

1.
84

%
8

5.
09

5.
00

5.
17

5.
27

7.
16

7.
76

9.
35

12
.8

1
1.

08
%

2.
53

%
16

11
.4

8
10

.2
8

11
.0

8
12

.0
8

17
.2

1
15

.9
5

20
.1

1
29

.4
9

1.
76

%
3.

22
%

11655

1 3

On the use of deep learning and parallelism techniques to…

Finally, our hybrid model has a penalty of 3.22% for the BD-rate. From an analysis
of these results, it can be concluded that deep learning and parallelism do not inter-
fere with or cancel each other out in terms of the video quality.

In Fig 4, we show the speedup behaviour of the three schemes under evaluation
as the number of the working threads increases, for three different Class B video
sequences encoded with a QP value of 22. For the deep learning approach, the
speedup is constant, as it does not use threads, whereas for the slice-based approach,
we find an speedup progression that indicates good scalability behaviour, which is
maintained for our hybrid proposal.

Finally, Table 6 shows the R/D performance results and the time reductions
achieved by several schemes in the literature and the approach presented in this
work. These results show that our scheme is able to achieve the greatest time reduc-
tions, with values that are consistently above 90%, and R/D performance losses of
under 5% on average. However, if the increase in bitrate is unacceptable, a slower
configurations may be chosen (with a lower number of threads), but with a minor
R/D loss.

5 � Conclusions

In this paper, we present a powerful technique to accelerate an HEVC encoder in
the intra-frame coding mode. Our scheme combines two different approaches and
exploits their characteristics to reap the benefits of both, and can considerably
increase the speedup. Our proposed algorithm combines a slice-based parallel pro-
posal for shared memory systems, with a deep learning approach. Although each
scheme obtains a significant speedup when applied separately, a combination of
both approaches considerably accelerates the HEVC encoder and achieves time sav-
ings of more than 90%. Our experimental results show a coding acceleration of up
to 35× . There have been many attempts in the literature to speed up intra-encoding
in HEVC, but they have not been jointly exploited. Our scheme achieved an accel-
eration of 35× with regard to the reference software, without the need for additional
hardware. However, this acceleration was obtained at the expense of a loss of R/D
performance. In our experiments, the maximum BD-rate penalty was 10.14% and
the minimum was -0.9%. It was found that the two base algorithms did not interfere

(a) (b) (c)

Fig. 4   Speedup behaviour versus number of threads for the approaches in [13, 28] and the proposed
scheme

11656	 V. Galiano et al.

1 3

Ta
bl

e 
6  

B
D

-B
R

 a
nd

 ti
m

e
re

du
ct

io
n
Δ

 T
(%

) f
or

 te
st

vi
de

o
se

qu
en

ce
s f

or
 av

er
ag

e
va

lu
es

 o
f Q

P
=

 2
2,

 2
7,

 3
2,

 a
nd

 3
7.

C
la

ss
Se

qu
en

ce
 [2

8]
 [3

2]
 [3

3]
 [3

1]
Pr

op
.

Δ
T(

%
)

B
D

-B
R

Δ
T(

%
)

B
D

-B
R

Δ
T(

%
)

B
D

-B
R

Δ
T(

%
)

B
D

-B
R

Δ
T(

%
)

B
D

-B
R

A
Pe

op
le

O
nS

tre
et

−
61

.0
1

2.
41

−
77

.8
0

3.
60

−
70

.7
6

1.
90

−
66

.8
6

1.
17

−
96

.2
3

4.
48

Tr
affi

c
−

70
.7

9
2.

35
−

79
.9

0
3.

31
−

69
.4

3
2.

11
−

72
.9

1
1.

14
−

93
.2

0
4.

18
B

B
as

ke
tB

al
lD

riv
e

−
76

.3
2

4.
29

−
81

.6
0

4.
26

−
76

.5
5

3.
20

−
73

.3
2

1.
52

−
91

.2
1

8.
33

B
Q

Te
rr

ac
e

−
64

.7
2

4.
35

−
75

.9
0

3.
36

−
60

.6
7

1.
20

−
65

.0
2

1.
68

−
90

.2
0

8.
40

C
ac

tu
s

−
63

.2
7

3.
81

−
78

.8
0

3.
33

−
68

.0
7

1.
90

−
60

.4
1

1.
79

−
93

.4
0

7.
82

C
B

as
ke

tB
al

lD
ril

l
−

52
.9

8
1.

76
−

73
.5

0
4.

82
−

58
.2

5
2.

80
−

76
.2

2
1.

52
−

96
.2

1
4.

08
B

Q
M

al
l

−
58

.4
2

1.
67

−
76

.1
0

2.
96

−
56

.7
0

1.
70

−
57

.8
6

1.
57

−
97

.1
4

4.
00

Pa
rty

Sc
en

e
−

44
.5

0
1.

68
−

68
.9

0
1.

52
−

45
.2

2
0.

40
−

54
.0

2
0.

32
−

95
.7

0
3.

86
D

B
lo

w
in

gB
ub

bl
es

−
40

.5
4

1.
45

−
67

.8
0

1.
73

−
49

.2
2

0.
80

−
52

.0
5

0.
34

−
95

.1
1

3.
21

B
Q

Sq
ua

re
−

45
.8

2
1.

36
−

69
.1

0
1.

56
−

44
.9

8
0.

30
−

65
.3

3
1.

45
−

94
.2

4
3.

18
R

ac
eH

or
se

s
−

55
.7

6
1.

43
−

73
.8

0
2.

53
−

53
.4

7
1.

10
−

75
.1

3
1.

06
−

96
.1

0
3.

22

11657

1 3

On the use of deep learning and parallelism techniques to…

with each other, as the results for the BD-rate obtained by the hybrid algorithm were
approximately the sum of the penalties of both algorithms.

Due to the high level of computational complexity of the newest video coding
standards, hybrid approaches that combines different acceleration techniques will
be necessary in order to reduce the computational requirements. As a future line of
research, we plan to use two levels of parallelisation based on heterogeneous plat-
forms (shared and distributed memory) in order to get closer to real-time encoding
with no change in the coding performance.

Acknowledgements  This research was supported by the Spanish Ministry of Science, Innovation and
Universities and the Research State Agency under Grant RTI2018-098156-B-C54 co-financed by FEDER
funds (MCIU/AEI/FEDER, UE) and by the Valencian Ministry of Innovation, Universities, Science and
Digital Society (Generalitat Valenciana) under Grants CIAICO/2021/278 and GV/2021/152.

Funding  Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature.

Data availability  The set of test video sequences used in the experiments are available at ftp://​hevc@​ftp.​
tnt.​uni-​hanno​ver.​de/​tests​equen​ces/ upon request to JCT-VC chairs. The datasets generated and analysed
during the current study are available from the corresponding author on reasonable request.

Declarations 

Conflict of interest  The authors declare no conflict of interest.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission
directly from the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​
ses/​by/4.​0/.

References

	 1.	 Bossen F, Bross B, Suhring K, Flynn D (2012) HEVC complexity and implementation analysis.
Circuits Syst Video Technol, IEEE Trans 22(12):1685–1696. https://​doi.​org/​10.​1109/​TCSVT.​2012.​
22212​55

	 2.	 Alcocer E, Gutierrez R, López-Granado O, Malumbres MP (2019) Design and implementation of
an efficient hardware integer motion estimator for an HEVC video encoder. J Real-Time Image Proc
16:547–557. https://​doi.​org/​10.​1007/​s11554-​016-​0572-4

	 3.	 Chen M, Zhang Y, Lu C (2017) Efficient architecture of variable size HEVC 2D-DCT for FPGA
platforms. AEU-Int J Electron C 73:1–8. https://​doi.​org/​10.​1016/j.​aeue.​2016.​12.​024

	 4.	 Haddar R, Chaari A, Kibeya H, Ben Ayed MA, Masmoudi N (2017) FPGA-based implementa-
tion of TZsearch algorithm for H.265/HEVC standard. In: 2017 18th International Conference on
Sciences and Techniques of Automatic Control and Computer Engineering (STA) pp. 605–610.
10.1109/STA.2017.8314939

	 5.	 Kalali E, Hamzaoglu I (2016) FPGA implementation of HEVC intra prediction using high-level
synthesis. In: 2016 IEEE 6th International Conference on Consumer Electronics - Berlin (ICCE-
Berlin), pp. 163–166. 10.1109/ICCE-Berlin.2016.7684745

	 6.	 Lee D, Sim D, Cho K (2016) Fast motion estimation for HEVC on graphics processing unit (GPU).
J Real-Time Image Proc 12:549–562. https://​doi.​org/​10.​1007/​s11554-​015-​0522-6

ftp://hevc@ftp.tnt.uni-hannover.de/testsequences/
ftp://hevc@ftp.tnt.uni-hannover.de/testsequences/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1109/TCSVT.2012.2221255
https://doi.org/10.1109/TCSVT.2012.2221255
https://doi.org/10.1007/s11554-016-0572-4
https://doi.org/10.1016/j.aeue.2016.12.024
https://doi.org/10.1007/s11554-015-0522-6

11658	 V. Galiano et al.

1 3

	 7.	 Vidyalekshmi VG, Yagain D, Ganesh Rao K (2014) Motion estimation block for HEVC encoder
on FPGA. In: International Conference on Recent Advances and Innovations in Engineering
(ICRAIE-2014), pp. 1–5. 10.1109/ICRAIE.2014.6909136

	 8.	 Xue Y-G, Su H-Y, Ren J, Wen M, Zhang C-Y, Xiao L-Q (2017) A highly parallel and scalable
motion estimation algorithm with GPU for HEVC. Sci Program 2017:1–15. https://​doi.​org/​10.​1155/​
2017/​14315​74

	 9.	 Medhat A, Shalaby A, Sayed MS, Elsabrouty M (2014) A highly parallel SAD architecture for
motion estimation in HEVC encoder. In: IEEE Asia Pacific Conference on Circuits and Systems
(APCCAS’14), Ishigaki, pp. 280–283

	10.	 Hahlbeck J, Stabernack, B (2014) A 4k capable FPGA based high throughput binary arithmetic
decoder for H.265/MPEG-HEVC. In: 2014 IEEE Fourth International Conference on Consumer
Electronics- Berlin (ICCE-Berlin)

	11.	 Migallón H, Galiano V, Piñol P, López-Granado O, Malumbres MP (2016) Distributed
memory parallel approaches for HEVC encoder. J Supercomput. https://​doi.​org/​10.​1007/​
s11227-​016-​1666-2

	12.	 Migallón H, López-Granado O, Galiano V, Piñol P, Malumbres MP (2016) Shared memory tile-
based vs hybrid memory gop-based parallel algorithms for HEVC encoder. Springer, Cham, pp
521–528. https://​doi.​org/​10.​1007/​978-3-​319-​49583-5_​40

	13.	 Piñol P, Migallón H, López-Granado O, Malumbres MP (2015) Slice-based parallel approach for
HEVC encoder. J Supercomput 71:1882–1892. https://​doi.​org/​10.​1007/​s11227-​014-​1371-y

	14.	 Radicke S, Hahn J, Grecos C, Qi Wang (2014) A multi-threaded full-feature HEVC encoder
based on wavefront parallel processing. In: 2014 International Conference on Signal Processing
and Multimedia Applications (SIGMAP), pp. 90–98

	15.	 Ryu E, Nam J, Lee S, Jo H, Sim D (2013) Sample adaptive offset parallelism in HEVC. Multime-
dia and ubiquitous engineering. Lecture Notes in Electrical Engineering 240. https://​doi.​org/​10.​
1007/​978-​94-​007-​6738-6_​137

	16.	 Storch I, Palomino D, Zatt B (2019) Speedup evaluation of HEVC parallel video coding using
tiles. J Real-Time Image Processing. https://​doi.​org/​10.​1007/​s11554-​019-​00900-y

	17.	 Bjontegaard G (2001) Calculation of average PSNR differences between RD-curves. Technical
Report VCEG-M33, Video Coding Experts Group VCEG, Austin

	18.	 Cebrián-Márquez G, Martínez JL, Cuenca P (2019) Adaptive inter CU partitioning based on a
look-ahead stage for HEVC. Signal Process: Image Commun 76:97–108. https://​doi.​org/​10.​
1016/j.​image.​2019.​04.​019

	19.	 Cebrián-Márquez G, Martínez JL, Cuenca P (2019) Inter and intra pre-analysis algorithm for
HEVC. J Supercomput 73:414–432. https://​doi.​org/​10.​1007/​s11227-​016-​1882-9

	20.	 Chen W, Wang X (2016) Fast entropy-based cabac rate estimation for mode decision in HEVC.
SpringerPlus 756:1–10. https://​doi.​org/​10.​1186/​s40064-​016-​2377-0

	21.	 Huang X, An P, Zhang Q (2017) Efficient AMP decision and search range adjustment algorithm
for HEVC. J Image Video Process 75:1–15. https://​doi.​org/​10.​1186/​s13640-​017-​0226-x

	22.	 Maazouz M, Batel N, Bahri N, Masmoudi N (2019) Homogeneity-based fast CU partitioning
algorithm for HEVC intra coding. Eng Sci Technol, Int J 22(3):706–714. https://​doi.​org/​10.​
1016/j.​jestch.​2018.​12.​016

	23.	 Westland N, Dias AS, Mrak M (2019) Decision trees for complexity reduction in video com-
pression. In: 2019 IEEE International Conference on Image Processing (ICIP). 10.1109/
icip.2019.8803302

	24.	 Kuang W, Chan Y-L, Tsang S-H, Siu W-C (2020) Online-learning-based bayesian decision rule for
fast intra mode and cu partitioning algorithm in HEVC screen content coding. IEEE Trans Image
Process 29:170–185. https://​doi.​org/​10.​1109/​TIP.​2019.​29248​10

	25.	 Correa G, Assuncao PA, Agostini LV, da Silva Cruz LA (2015) Fast HEVC encoding decisions
using data mining. IEEE Trans Circuits Syst Video Technol 25(4):660–673. https://​doi.​org/​10.​1109/​
TCSVT.​2014.​23637​53

	26.	 Liu Z, Yu X, Gao Y, Chen S, Ji X, Wang D (2016) CU partition mode decision for HEVC hardwired
intra encoder using convolution neural network. IEEE Trans Image Process 25(11):5088–5103.
https://​doi.​org/​10.​1109/​TIP.​2016.​26012​64

	27.	 Mallikarachchi T, Talagala DS, Arachchi HK, Fernando A (2018) Content-adaptive feature-based
CU size prediction for fast low-delay video encoding in HEVC. IEEE Trans Circuits Syst Video
Technol 28(3):693–705. https://​doi.​org/​10.​1109/​TCSVT.​2016.​26194​99

https://doi.org/10.1155/2017/1431574
https://doi.org/10.1155/2017/1431574
https://doi.org/10.1007/s11227-016-1666-2
https://doi.org/10.1007/s11227-016-1666-2
https://doi.org/10.1007/978-3-319-49583-5_40
https://doi.org/10.1007/s11227-014-1371-y
https://doi.org/10.1007/978-94-007-6738-6_137
https://doi.org/10.1007/978-94-007-6738-6_137
https://doi.org/10.1007/s11554-019-00900-y
https://doi.org/10.1016/j.image.2019.04.019
https://doi.org/10.1016/j.image.2019.04.019
https://doi.org/10.1007/s11227-016-1882-9
https://doi.org/10.1186/s40064-016-2377-0
https://doi.org/10.1186/s13640-017-0226-x
https://doi.org/10.1016/j.jestch.2018.12.016
https://doi.org/10.1016/j.jestch.2018.12.016
https://doi.org/10.1109/TIP.2019.2924810
https://doi.org/10.1109/TCSVT.2014.2363753
https://doi.org/10.1109/TCSVT.2014.2363753
https://doi.org/10.1109/TIP.2016.2601264
https://doi.org/10.1109/TCSVT.2016.2619499

11659

1 3

On the use of deep learning and parallelism techniques to…

	28.	 Xu M, Li T, Wang Z, Deng X, Yang R, Guan Z (2018) Reducing complexity of HEVC: a deep
learning approach. IEEE Trans Image Process 27(10):5044–5059. https://​doi.​org/​10.​1109/​TIP.​2018.​
28470​35

	29.	 Zhang Y, Kwong S, Wang X, Yuan H, Pan Z, Xu L (2015) Machine learning-based coding unit
depth decisions for flexible complexity allocation in high efficiency video coding. IEEE Trans
Image Process 24(7):2225–2238. https://​doi.​org/​10.​1109/​TIP.​2015.​24174​98

	30.	 Zhu L, Zhang Y, Pan Z, Wang R, Kwong S, Peng Z (2017) Binary and multi-class learning based
low complexity optimization for HEVC encoding. IEEE Trans Broadcast 63(3):547–561. https://​doi.​
org/​10.​1109/​TBC.​2017.​27111​42

	31.	 Kuanar S, Rao KR, Bilas M, Bredow J (2019) Adaptive CU mode selection in HEVC intra predic-
tion: a deep learning approach. Circuits Syst Signal Process 38:5081–5102. https://​doi.​org/​10.​1007/​
s00034-​019-​01110-4

	32.	 Chen Z, Shi J, Li W (2020) Learned fast HEVC intra coding. IEEE Trans Image Process 29:5431–
5446. https://​doi.​org/​10.​1109/​TIP.​2020.​29828​32

	33.	 Zaki F, Mohamed AE, Sayed SG (2021) CtuNet: a deep learning-based framework for fast CTU
partitioning of H265/HEVC intra- coding. Ain Shams Eng J 12(2):1859–1866. https://​doi.​org/​10.​
1016/j.​asej.​2021.​01.​001

	34.	 He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: IEEE Confer-
ence on Computer Vision and Pattern Recognition, pp. 1–17

	35.	 Cetinkaya E, Amirpour H, Ghanbari M, Timmerer C (2021) CTU depth decision algorithms for
HEVC: a survey. Signal Process: Image Commun 99:116442. https://​doi.​org/​10.​1016/j.​image.​2021.​
116442

	36.	 Wang Z, Li F (2021) Convolutional neural network based low complexity hevc intra encoder. Mul-
timed Tools Appl 80(2):2441–2460. https://​doi.​org/​10.​1007/​s11042-​020-​09231-8

	37.	 Feng Z, Liu P, Jia K, Duan K (2018) Fast intra CTU depth decision for HEVC. IEEE Access
6:45262–45269. https://​doi.​org/​10.​1109/​ACCESS.​2018.​28648​81

	38.	 Bossen F (2013) Common test conditions and software reference configurations. JCTVC-L1100
Joint Collaborative Team on Video Coding Technical Report, Geneva

	39.	 Piñol P, Migallón H, López-Granado O, Malumbres MP (2015) Slice-based parallel approach for
HEVC encoder. J Supercomput 71(5):1882–1892. https://​doi.​org/​10.​1007/​s11227-​014-​1371-y

	40.	 Fraunhofer-HHI (2015) HEVC Reference Software (HM-16.3). available at: http://​hevc.​hhi.​fraun​
hofer.​de/​svn/

	41.	 Bjontegaard G (2008) Improvements of the BD-PSNR model. VCEG-M33, Video Coding Experts
Group (VCEG) Technical Report, Berlin

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

https://doi.org/10.1109/TIP.2018.2847035
https://doi.org/10.1109/TIP.2018.2847035
https://doi.org/10.1109/TIP.2015.2417498
https://doi.org/10.1109/TBC.2017.2711142
https://doi.org/10.1109/TBC.2017.2711142
https://doi.org/10.1007/s00034-019-01110-4
https://doi.org/10.1007/s00034-019-01110-4
https://doi.org/10.1109/TIP.2020.2982832
https://doi.org/10.1016/j.asej.2021.01.001
https://doi.org/10.1016/j.asej.2021.01.001
https://doi.org/10.1016/j.image.2021.116442
https://doi.org/10.1016/j.image.2021.116442
https://doi.org/10.1007/s11042-020-09231-8
https://doi.org/10.1109/ACCESS.2018.2864881
https://doi.org/10.1007/s11227-014-1371-y
http://hevc.hhi.fraunhofer.de/svn/
http://hevc.hhi.fraunhofer.de/svn/

	On the use of deep learning and parallelism techniques to significantly reduce the HEVC intra-coding time
	Abstract
	1 Introduction
	2 Related work
	2.1 Neural network algorithm
	2.2 Slice-based parallel algorithm

	3 Hybrid acceleration proposal
	4 Experimental results
	5 Conclusions
	Acknowledgements
	References

