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Abstract

Coordination among cortical neurons is believed to be key element in mediating many high level
cortical processes such as perception, attention, learning and memory formation. Inferring the
topology of the neural circuitry underlying this coordination is important to characterize the highly
non-linear, time-varying interactions between cortical neurons in the presence of complex stimuli.
In this work, we investigate the applicability of Dynamic Bayesian Networks (DBNs) in inferring
the effective connectivity between spiking cortical neurons from their observed spike trains. We
demonstrate that DBNs can infer the underlying non-linear and time-varying causal interactions
between these neurons and can discriminate between mono and polysynaptic links between them
under certain constraints governing their putative connectivity. We analyzed conditionally-Poisson
spike train data mimicking spiking activity of cortical networks of small and moderately-large sizes.
The performance was assessed and compared to other methods under systematic variations of the
network structure to mimic a wide range of responses typically observed in the cortex. Results
demonstrate the utility of DBN in inferring the effective connectivity in cortical networks.
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1 Introduction

Brain networks are of fundamental interest in systems neuroscience. An essential step towards
understanding how the brain orchestrates information processing in these networks is to
simultaneously observe the activity of their neuronal constituents that mediate perception,
learning and motor processing. Numerous functional neuroimaging studies suggest that cortical
regions selectively couple to one another (Greicius, Krasnow, Reiss et al. 2003; Koshino,
Carpenter, Minshew et al. 2005; Winder, Cortes, Reggia et al. 2007), for example, during
complex visual stimulus presentations (Hasson, Yang, Vallines et al. 2008; Tsao, Schweers,
Moeller et al. 2008; Bell, Hadj-Bouziane, Frihauf et al. 2009), during motor prehension and
execution in visuomotor tasks (Lotze, Montoya, Erb et al. 1999; Verhagen, Dijkerman, Grol
et al. 2008), or in working memory and auditory-related tasks (d'Esposito, Aguirre, Zarahn et
al. 1998; Caclin and Fonlupt 2006). Despite these significant findings, understanding the
highly-distributed nature of cortical information processing mechanisms remains elusive. It is
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widely believed that the temporal and spatial resolution of current neuroimaging techniques
do not enable the investigation of the brain's functional dynamics at the single cell level, nor
do they enable the identification of causal relationships between multi-units across distant
cortical regions.

Implantable high-density microelectrode arrays (Normann, Maynard, Rousche et al. 1999;
Wise, Anderson, Hetke et al. 2004) have enabled scrutinizing activity from cortical neurons at
an unprecedented scale, and greatly accelerated our ability to monitor functional alterations of
cortical networks in awake, behaving subjects beyond what fMRI studies have revealed.
Consequently, the development of analysis tools that can infer the functional connectivity in
these networks can yield more insight into how these networks form in response to dynamic
complex stimuli, or to signify movement intention and execution through causal interactions
between the observed neurons, often referred to as effective connectivity (Aertsen, Gerstein,
Habib et al. 1989). Such tools can reveal more evidence in support of modern views suggesting
that multisensory integration occurs early in the neocortex (Kayser and Logothetis 2009), as
opposed to the more traditional cognitive models of the sensory brain that contends higher
level integration of unisensory processing (Ghazanfar and Schroeder 2006). They can also be
useful in identifying plastic changes in cortical circuitry during learning and memory (Mehta,
Quirk and Wilson 2000; Brown, Nguyen, Frank et al. 2001; Martin and Morris 2002), or post
traumatic brain injury (Girgis, Merrett, Kirkland et al. 2007; Jurkiewicz, Mikulis, McIlroy et
al. 2007).

Graph theory, widely used in mathematics and machine learning applications, is increasingly
becoming popular in the analysis of large scale neural data (Sporns 2002; Denise, David,
Richard et al. 2007). In particular, Dynamic Bayesian Network (DBN) is one potential
graphical method for identifying causal relationships between simultaneously observed
random variables. It was introduced as a probabilistic model of dynamic systems in which
temporal dependency governs the statistical relationship between the system elements (Murphy
and Mian 1999; Murphy 2002). DBN has also been recently used in inferring transcriptional
regulatory networks from gene expression data (Bernard and Hartemink 2005; Dojer, Gambin,
Mizera et al. 2006; Geier, Timmer and Fleck 2007). For brain connectivity, DBN has been
coarsely applied to infer effective connectivity between multiple brain areas from fMRI data
(Zhang, Samaras, Alia-Klein et al. 2006; Rajapakse and Zhou 2007) and, at a more refined
resolution, from multi-unit activity recorded throughout the songbird auditory pathway (Smith,
Yu, Smulders et al. 2006). Nevertheless, the use of DBNs to characterize cortical networks at
the single neuron and the ensemble level has not been fully explored.

In this work, we investigate the application of DBNs to determine the effective connectivity
in spiking neuronal networks from the observed spike trains. We assess DBN performance in
identifying networks with excitatory, inhibitory, and mixed mono and polysynaptic
connectivity patterns with various characteristics using metrics from graph theory. We compare
their performance to two multivariate statistical measures, namely, Generalized Linear Models
(Dobson 2002) and Partial Directed Coherence (PDC) (Baccalá and Sameshima 2001). Both
have been used in studying coarse neural interaction in EEG (Astolfi, Cincotti, Mattia et al.
2006) and fMRI signals (Roebroeck, Formisano and Goebel 2005) as well as spike trains
(Sameshima and Baccala 1999; Okatan, Wilson and Brown 2005). We demonstrate the
superiority of DBN over these methods for inferring the connectivity of small and moderately
large size networks.
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2 Theory

2.1 Bayesian Networks

A Bayesian Network (BN) is a graphical representation of statistical relationships between
random variables, widely used for statistical inference and machine learning (Pearl 1988;
Heckerman 1995). A BN is denoted by B =< G, P >, where G is a directed acyclic graph (DAG)
and P is a set of conditional probabilities. Each graph G consists of a set of nodes V and edges
E, and is usually written as G =< V, E >. Each node in V, denoted by vi, corresponds to a random
variable xi. Each directed edge in E, denoted by vi → vj, indicates that node vi (i.e., random
variable xi) is a parent of node vj (i.e., random variable xj). Conditional probabilities in P are
used to capture the statistical dependence between child nodes and parent nodes. In particular,
given a random variable xi in the graph, we denote by xπ(i) the set of random variables that are
parents of xi. The statistical dependence between xi and its parent nodes xπ(i) is captured by the
conditional probabilities Pr(xi|xπ(i)). More precisely, the value of random variable xi is decided
by the values of its parents via the conditional probabilities Pr(xi|xπ(i)), and is independent from
the values of other random variables in the graph given the value of xπ(i). Thus, the joint
probability distribution of the random variables xi can be expressed given the conditional
dependence on the parents using the chain rule

(1)

Figure 1a shows an example of a Bayesian Network, in which we have three binary random
variables: random variable R indicates “if it rains” or not, W indicates “if the grass is wet” or
not, and U indicates “if people bring umbrella” or not. The arc from R to W indicates that “the
grass being wet” is decided by “if it rains”. Similarly, the arc from R to U indicates that “whether
or not people bring umbrella” is decided by “if it rains”. The conditional probabilities Pr(U|
R) and Pr(W|R) are summarized in Table 1. According to the chain rule described before, the
joint probability Pr(R, U, W) is written as

(2)

2.2 Dynamic Bayesian Network

A Dynamic Bayesian Network (DBN) is an extension of BN to handle time-series or sequential
data (Murphy 2002) and, therefore, are much more suitable to analyze nonstationary random
processes. In a DBN, the status of a node (variable) at time t0 is conditionally-dependent on
its parents' state in history. Specifically, given a random variable xi at time T = t + 1, denoted

by , and its parents xπ(i), the value of  is decided by the values of its parents xπ(i)

observed during the interval T = 1 to T = t, denoted by . Note that T here is assumed to be

a discrete variable. Similar to Bayesian networks, the statistical dependence between  and

 is captured by conditional probabilities , and the joint probability

 is computed as

(3)
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In many cases, and for the sake of simplicity, it is often assumed that  is only dependent
on the value of its parents observed at time T = t, which simplifies the conditional probabilities

 to . This is known as the Markov assumption with Markov lag
equal to 1. A special case of DBN is the well-known Hidden Markov Model (HMM) (Rabiner
1989). This simplification to the Markov assumption can be extended to include multiple

Markov lags. For instance, a DBN with maximum Markov lag equals 3 implies that  is

decided by the value of its parents observed at time T = t, t – 1, t – 2, or . Figure
1b is an example of a DBN. Each morning, an automatic sprinkler decides whether to water a
lawn. The sprinkler makes a probabilistic decision based on 1) whether it watered the lawn the
day before and 2) whether there was rain the day before. The conditional probability
distribution table of Pr(St+1= true| St, Rt) is listed in Table 2. Note that in this example, the
variable S is also one of its parents.

2.3 Learning Bayesian Networks

Learning a Bayesian network from data involves two tasks: learning the structure of the
network and learning the parameters of the conditional probability distributions. Structure
learning of Bayesian networks is much more difficult compared to parameter learning because
once the structure is known, it is easy to learn the parameters of the conditional probability
distributions using existing algorithms such as Maximum Likelihood Estimation (MLE).

Learning the structure of the network can be formulated as searching for a network structure
G* that best fits the observed data D. Formally, this is expressed as

(4)

where Pr(D|G) is the likelihood of the data D given the structure G and Pr(G) is the prior
probability of G. In our experiments, we assumed a uniform distribution for Pr(G).

There are many structure learning algorithms, and the most popular among them are the score-
based approaches (Heckerman 1995; Friedman, Nachaman and Peer 1999; Hartemink, Gifford,
Jaakkola et al. 2001). Figure 2 outlines the steps of the DBN structure search algorithm. A
scoring function is first defined to estimate the likelihood Pr(D|G) by which a given Bayesian
network structure is evaluated on a given dataset, and then a search is performed through the
space of all possible structures to find the one with the highest score. Score-based approaches
are typically based on well-established statistical principles such as Minimum Description
Length (MDL) (Lam and Bacchus 1994), Bayesian Dirichlet equivalent (BDe) score
(Heckerman, Geiger and Chickering 1995) or Bayesian Information Criterion (BIC) (Schwarz
1978). In our analysis, we used the BDe score. Let θG denote the parameters for the conditional
probability distribution for structure G. To evaluate the posterior Pr(D|G), one needs to consider
all possible parameter assignments of θG, namely

(5)

where Pr(D|G,θG) is the probability of the data given the network structure and the parameters
and Pr(θG|G) is the prior probability of the parameters which penalizes complex structures.
Under the assumption that the distribution of each node in the network can be learned
independently of all other distributions in the network and assuming Dirichlet priors, the BDe
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score can be expressed in a closed form of (5) as (Cooper and Herskovits 1992; Heckerman
1995)

(6)

where  dt is the Gamma function satisfying Γ(x+1)=xΓ(x) and

 is the number of times random variable  and 

and , where a is the equivalent sample size and G0 is a prior
structure.

The associated optimization of this approach, however, is intractable (Chickering, Meek and
Heckerman 2003). Commonly used methods to alleviate this problem include: 1) using some
preprocessing methods like conditional independence test to infer the Markov blanket for each
node, and thus limiting the candidate structure space; 2) using heuristics, like greedy search or
simulated annealing, to find the sub-optimal structures. Herein, we use a score-based approach
with simulated annealing search. Simulated annealing search avoids falling in local maxima
by choosing certain modifications to the structure that do not necessarily increase the score.
Specifically, if for a given modification the score increases, then this modification is accepted,
while if the score decreases, then this modification is accepted with probability exp(Δe/T0)
where Δe is the change in the score, which is negative in this case, and T0 is the system
`temperature'. The search starts with a very high T0 so that almost every structure modification
is accepted, and then decays gradually as the search process progresses (Kirkpatrick, Gelatt
and Vecchi 1983).

3 DBN and Spike Trains

In the context of spiking cortical networks, we model each neuron in the data by a set of nodes
where each node corresponds to the neuron's firing state (`0' or `1') at a given Markov lag. A
directed edge between two nodes represents a causal relationship between them that is detected
at the associated Markov lag. Figure 3 illustrates an example of a causal network and the
corresponding DBN. Consider for example the connection between neurons 3 and 4 with a
synaptic latency of 2 bins. This connection is represented in the DBN as a directed edge from
one node representing neuron 3 firing state at a Markov lag of 2 to another node representing
the current firing state of neuron 4. Modeling time dependency allows DBN to model cycles
or feedback loops as illustrated by the loop involving neurons 1, 2 and 3 (represented by a DAG
in the DBN). Moreover, this makes DBN capable of capturing relationships that appear at
different time lags. This is particularly useful considering that many unobserved neurons, e.g.
interneurons, may exist in the pathway between observed efferent and afferent neurons. This
may contribute considerable latency between causal events as a result of the aggregate synaptic
delay.

Existing directed and undirected techniques for identifying neuronal connectivity such as cross-
correlograms, partial correlation and partial directed coherence (Sameshima and Baccala
1999; Eichler, Dahlhaus and Sandkuhler 2003) mainly rely on pair-wise correlations assessed
over a very fine time scale (typically 0–5 milliseconds). While these techniques may be feasible
to implement for a small number of neurons, they become computationally prohibitive for large
number of cells and inadequate to collectively assess casual relationships in networks with
polysynaptic connectivity in which interaction occurs over broader time scales (10's-100's of
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milliseconds). DBN, on the other hand, does not rely on pair-wise relationships. It rather takes
into account the activity of the entire observed ensemble when searching for relationships
between the neurons as expressed in equations (1) and (3). This enables DBN to identify only
direct, and not indirect, relationships between observed neurons. This is particularly important
when dealing with cortical networks with complex connectivity patterns that are likely to span
broader temporal and spatial scales. In such a case, simple pair-wise measures may erroneously
lead to classify indirect relationships as direct, or entirely miss certain connections.

An added advantage is that DBN has a unique ability to detect nonlinear relationships that other
techniques for inferring effective connectivity (such as Granger causality (Granger 1969))
cannot detect. Nonlinear neuronal response to stimuli has been consistently found in auditory
neurons performing coincidence detection of their dendritic inputs in several regions of the
auditory system (Agmon-Snir, Carr and Rinzel 1998; Peña, Viete, Funabiki et al. 2001), and
in gain modulatory neurons in posterior parietal cortex in response to visual stimuli (Salinas
and Their 2000; Cohen and Andersen 2002). Thus, using DBN in analyzing neuronal spike
trains might facilitate revealing how the underlying cortical circuits are reconfigured in
response to complex, nonlinear stimuli features. Moreover, they can be used to explain the
observed correlation in cortical network states beyond what 2nd order maximum entropy
models can reveal, given their sensitivity to variations in temporal dependence (Shlens, Field,
Gauthier et al. 2006; Tang, Jackson, Hobbs et al. 2008).

4 Population Model

To examine the performance of DBN in reconstructing a spiking neuronal network, it was
essential to use a model to simulate the spike train data in which the “ground truth” was known.
We found that multivariate point process models (Brillinger 1975; Brillinger 1976; Brown
2005) are by far the most widely used in recent literature to fit statistics of spiking cortical
neurons in a wide variety of brain structures. In our simulations, we used a variant of the
generalized linear model (GLM) proposed by (Truccolo, Eden, Fellow et al. 2005). In this
model, the spike train Si of neuron i is expressed as a conditionally-Poisson point process with
mean intensity functionλi (t|Hi(t)), where Hi(t) denotes the firing history of all the processes
that affect the firing probability of neuron i up to time t (e.g. stimulus feature, other neurons'
interaction, the neuron's own firing history, etc…). Herein, we do not consider an explicit
external stimulus to drive the network, albeit this can be included as an object in the graphical
representation in the stationary case or as a set of objects with known transitions in the
nonstationary case. We focus on two main variants contributing to λi (t|Hi(t)): a) the neuron's
background level of activity; and b) the spiking history of the neuron itself and that of other
neurons connected to it. Mathematically, the firing probability f(Si(t) of postsynaptic neuron
i at time t can be expressed as

(7)

where Δ is a very small bin width, βi is the log of the background rate of neuron i, π(i) is the
set of pre-synaptic neurons of neuron i (this set includes neuron i itself to model self-inhibition),
Mij is the number of history bins that relate the firing probability of neuron i to activity from
presynaptic neuron j, αij models the connection between neuron i and neuron j (excitatory or
inhibitory), and Sj(t − mΔ) is the state of neuron j in bin m (takes the value of 0 or 1). Unlike
the model in (Truccolo, Eden, Fellow, Donoghue and Brown 2005), the length of the history
interval of interaction between neurons i and j (equals Mij × Δ) was not fixed for all neuron
pairs, consistent with the notion of cell assemblies (Hebb 1949). To mimic the influence of
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excitatory post-synaptic potential (EPSP) and inhibitory post-synaptic potential (IPSP), we
used the following decaying exponential functions for synaptic coupling (Kuhlmann, Burkitt,
Paolini et al. 2002; Zhang and Carney 2005; Sprekeler, Michaelis and Wiskott 2007)

(8)

where t is the time (in seconds), +/− indicate excitatory/inhibitory interactions, Aij models the
strength of the connection, and lij models the synaptic latency (in bins) associated with that
connection. Similar to the effects of EPSP and IPSP, the decaying exponential in these
expressions implies that a spike from a pre-synaptic neuron occurring towards the end of the
history interval has a smaller influence on the firing of the post-synaptic neuron than if it were
to occur at a closer time. Figure 4 illustrates α+

ij(t) showing that α+
ij(t) attains its peak value

at lijΔ and that the time constant of the decaying exponential is Mij/3000.

5 Results

We tested the algorithm on multiple network structures simulated using the point process model
in (7). For each parameter setting in the results that will follow, we generated 100 networks of
different structures, each containing 10 randomly connected neurons, where for each post-
synaptic neuron, the indices of pre-synaptic neurons were drawn from a uniform distribution
to avoid biasing the algorithm to a specific model. In addition, each neuron had a self-inhibitory
connection to model post-firing refractoriness and recovery effects. The duration of the
generated spike trains was set to 1 minute with a bin width of 3 ms that included the refractory
period.

In our experiments, we used the Bayesian Network Inference with Java Objects (BANJO)
toolbox (Smith, Yu, Smulders, Hartemink and Jarvis 2006). We used the simulated annealing
search algorithm in all the analyses (Kirkpatrick, Gelatt and Vecchi 1983). The search time
was set to 1 minute in all the analyses except for Section 5.6, where the performance was
examined as the search time was increased for large populations. All the analyses were
performed on a Dual Intel Xeon machine (2.33 GHz, 64 bit) with 8 GB of memory. We used
the F-measure to quantify the inference accuracy (Rijsbergen 1979). This measure is the
harmonic mean of two quantities: the recall R and the precision P, defined by

(9)

where C is the number of correctly inferred connections, M is the number of missed connections
and W is the number of erroneously inferred spurious connections. Thus, F will be `0' if and
only if none of the true connections are inferred (C = 0) and will be `1' if and only if all the
true connections are inferred (M = 0) and no spurious connections are inferred (W = 0). Note
that we are interested here in comparing the connections inferred by the DBN to the true
connections regardless of the Markov lag they appear at or the strength of the actual
connections. For example, if a true connection has a synaptic latency of 1 bin, it should be
inferred at a Markov lag of 1. If it were to be inferred at a Markov lag of 2, it will still be
considered as correct when computing F.
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5.1 Networks with Fixed Synaptic Latency

We thoroughly investigated the performance of DBN by varying the model parameters in (7)
and (8) while keeping the synaptic latency for all neurons fixed at 3 ms. This mimics direct
connectivity that may exist in a local population rather than diffuse connections that may be
observed across different parts of the cortex. Figure 5 shows the performance of DBN for
different settings of the model parameters when the DBN Markov lag was set to match the
synaptic latencies. Each point represents the mean and standard deviation of the inference
accuracy for 100 different network structures.

We initially examined the performance as the number of pre-synaptic neurons was varied
between 1 and 6 while fixing all other parameters. All the connections here were excitatory
with a history interval of 180 ms. We decreased the strength of the connections Aij in (7) as
shown in the inset in Figure 5a as the number of pre-synaptic neurons increased in order to
keep the mean firing rate in the range of 20 to 25 spikes/sec and prevent unstable network
dynamics while the background rate of each neuron was set to 10 spikes/sec. The results in
Figure 5a suggest that DBN achieves 100% accuracy with a slight decline above 4 pre-synaptic
connections. This decline can be attributed to the decrease in the synaptic strength Aij, thereby
reducing the influence a pre-synaptic spike has on the firing probability of the post-synaptic
neuron.

We then varied the history interval of the interaction by varying Mij and examined the
performance. Each neuron received two excitatory connections of equal weight from two
neurons. The weights were adjusted in order to keep the mean firing rate in the same regime
for different settings of Mij as illustrated in the inset of Figure 5b. Given that the synaptic
latency was fixed among all neurons and matched the DBN Markov lag used, we expected the
performance to be invariant to changes in the history interval length. Figure 5b illustrates that
this is indeed the case and that the DBN performance is almost steady regardless of the length
of the history interval.

When inhibitory connections exist, the inference task becomes more complicated, particularly
for hypoexcitable neurons, due to the fact that the neuron's spiking pattern becomes very sparse.
As a result, observing a spike event may contain a lot more information about causal effects
than not observing one. We further investigated the performance in the presence of inhibitory
connections with variable degrees of strength. Each neuron received two pre-synaptic
connections, one excitatory and one inhibitory. The excitatory synaptic strengths in (8) were
fixed at 2.5, while those of the inhibitory connections were varied. We defined I/E ratio as the
ratio of the cross-inhibitory to cross-excitatory synaptic strength and tested ratios of 0.25, 0.5,
1, 2, and 4, respectively. All other parameters were set as previously described. Taking the
self-inhibition mechanism inherent in our model into account (Aii = −2.5), an I/E ratio of 4
would correspond to a post-synaptic neuron with equal degree of inhibition and excitation.
Such neuron should display homogeneous – Poisson like - characteristics reminiscent of
independent firing. Figure 5c illustrates the inference accuracy as a function of the I/E ratio.
For ratios below 1, a neuron is more affected by the excitatory connection than the cross-
inhibitory one. Therefore, the drop in performance observed suggests that DBN is unable to
detect the presence of weak inhibition in the presence of a strong excitation. This can be
attributed to the relatively insignificant effect of weak inhibitory input on the firing
characteristics of post-synaptic neurons conditioned on receiving a strong excitation. When
the I/E ratio increases above 1, the accuracy rapidly gets closer to unity and does not deteriorate
even when the inhibitory connections are 4 times stronger than the excitatory connections.

To interpret these results, we used the coefficient of variation (CV) of the inter-spike interval
(ISI) histograms (CV = std(ISI)/mean(ISI)) to quantify the variability in the firing
characteristics of post-synaptic neurons for variable I/E ratios. We hypothesized that if weak
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inhibitory connections do not significantly influence the firing of these neurons, then the CV
should be close to those receiving pure excitation. Moreover, one would not expect to see a
sharp transition in CV characteristics for I/E values adjacent to purely-excitatory connections.
Figure 5d demonstrates that this is indeed the case. The average CV for I/E ratios of 0.25 is
not significantly different from that of purely-excitatory connections. This suggests that weak
cross-inhibition did not result in large effects on the post-synaptic neurons' firing
characteristics, making it more difficult for DBN to detect this type of connectivity. The CV
monotonically increases as the I/E ratio increases, reaching an average of 1 (similar to that of
an independent Poisson neuron) when cross-inhibition, on average, is 4 times stronger than
excitation (I/E ratio = 4).

We compared DBN performance to a related measure of connectivity - Partial Directed
Coherence (PDC) – that has been proposed to study causal relationships between signal sources
at coarser resolution in EEG and fMRI data (Sameshima and Baccala 1999). PDC is the
frequency domain equivalent of Granger causality that is based on vector autoregressive
models of certain order. A connection is inferred between a given pair of neurons if the PDC
at any frequency exceeded a threshold of 0.1. For each network, PDC was applied using models
of orders 1 to 30. The accuracy shown by the dashed plot in Figure 5c represents the maximum
accuracy achieved across all model orders. As can be seen, DBN outperformed PDC over the
entire range of the I/E ratio, while exhibits similar performance around an I/E ratio of 0.25.
Closer examination of the networks inferred using PDC for I/E ratios greater than 0.25 revealed
that the deterioration in the PDC performance compared to the DBN was due to its inability to
detect most of the inhibitory connections, consistent with previous findings with spectral
coherence as well as Granger causality (Dahlhaus, Eichler and Sandkuhler 1997; Cadotte,
DeMarse, He et al. 2008).

We also compared DBN performance to that obtained using a Generalized Linear Model
(GLM) fit (Truccolo, Eden, Fellow, Donoghue and Brown 2005; Czanner, Eden, Wirth et al.
2008). Ideally, GLM fit should yield the best result for our data since this is the generative
model we used in (7). A maximum likelihood estimate of the coupling function αij in (8) for
each neuron i is computed in terms of the spiking history of all other neurons j within a certain
window of length WGLM. Since our goal is to identify the existence of connections and not to
estimate the coupling function, we post-processed the estimated coupling functions such that
a connection was inferred if the estimated coupling function was larger/lower than a given
threshold for excitatory/inhibitory connections, respectively, for 3 consecutive bins while their
p-values were significant. The spiking history considered for fitting WGLM was set to 20 bins
(60 ms). The threshold was varied between 0 and ±1.5 and the p-value between 0.1 and 0.0001.

The dotted plot in Figure 5c shows the maximum accuracy obtained across all thresholds and

p-values. Superior performance of the GLM can be seen compared to DBN at I/E ratios below

1, while comparable if not slightly inferior for I/E ratios above 1. We note, however, that the

GLM approach has a number of limitations: First, the performance is highly dependent on the

choice of the fitting spiking history interval WGLM. Second, the inference threshold and the p-

values have to be carefully set to identify the connections. Finally, the GLM method search

time was approximately 20 times that needed by the DBN to estimate the coupling functions

for each 10-neuron population.

Finally, we examined the performance as a function of the background rate in (7). This may

mimic variations in the afferent input current to the neuron, and increments in this input when

there is not coupling to other neurons are known to impact estimates of correlation between

their output spike trains (Rocha, Doiron, Shea-Brown et al. 2007). This is because correlation

between a neuron pair cannot be orthogonally separated from their firing rates, thereby

potentially leading to spurious connectivity inference (Amari 2009). Here, we had 2 pre-

synaptic connections per neuron, one excitatory and one inhibitory having the same strength.
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Figure 5e illustrates that the inference accuracy was above 96% for background rates higher
than 5 spikes/sec. Most remarkable is the ability of DBN to infer roughly 70% of the
connections at background rates around 2 spikes/sec, despite that at this low rate, neurons are
“silent” most of the time.

5.2 Mismatch between Actual Synaptic Latency and DBN Markov Lag

In practice, the synaptic latency between any two observed neurons is unknown and it is more
likely that synaptic latencies between network elements to be heterogeneous, reflecting the
highly distributed nature of cortical processing. For example, the synaptic weight functions
expressing the EPSP and IPSP characteristics in Figure 6a for different choices of M illustrate
that for relatively longer history intervals, the effect of a pre-synaptic spike on the firing
probability of a post-synaptic neuron should last longer. This should enable the DBN to infer
these connections even if the Markov lag is chosen to be larger than the true synaptic latency.
On the other hand, the influence of a pre-synaptic spike on the post-synaptic neuron firing for
a short history interval should behave in a similar fashion.

Figure 6b demonstrates the performance of the DBN when there is a mismatch between the
DBN Markov lag and the synaptic latency in the model. In this experiment, we generated 100
different networks, 10 neurons each, in which each neuron had two pre-synaptic connections,
one excitatory and one inhibitory of the same strength. The synaptic latency was fixed for all
neurons at 4 bins. As can be seen, when the Markov lag was set to a value smaller than the
populations' true average synaptic latency, almost none of the connections was inferred. On
the other hand, when the Markov lag was set to be larger than the true synaptic latency, the
inference accuracy deteriorated only slightly for relatively long history intervals, while
deteriorated significantly for shorter history intervals. To interpret this result, let's first denote
by lij the synaptic latency between neurons j and i. The firing of neuron i at time bin m is only
affected by the firing of neuron j in the range [m−Mij, m−lij], where Mij is the number of bins
in the history interval. Thus, setting the Markov lag to a value less than lij (for example, trying
to relate the firing of neuron i at time bin m to that of neuron j at time bin m − lij + 1) did not
help to detect the presence of the connection between the neuron pair. Not surprisingly, DBN
attained accuracy close to unity when the Markov lag matched the synaptic latency, consistent
with the results previously shown in Figure 5b.

For the sake of comparison, Figure 6c and Figure 6d show the performance of PDC and GLM-
fit, respectively. For PDC, almost none of the true connections were inferred when the model
order was less than the synaptic latency. The performance improved when the model order was
set greater than or equal to the synaptic latency, but the accuracy never exceeded 0.8 across
the entire range of history intervals considered in the model. The drop in performance was
again due to the inability of PDC to infer inhibitory connections. For the GLM fit shown in
Figure 6d, the spiking history interval WGLM considered in the fitting procedure was kept fixed
at 20 bins (60 ms) for all the examined populations. As can be seen, the GLM fit highly depends
on the threshold used to detect the existence of connections.

To demonstrate GLM fit dependency on the choice of WGLM, we examined its performance in
Figure 6e when the history Mij in the model was fixed to 60 bins. Peak performance was
obtained when WGLM was set to 20 bins. For this choice of Mij (60 bins), the weight function
αij (t) in (8) falls to roughly 95% of its peak value after 20 bins (Figure 6a). Therefore, a choice
of WGLM that does not match the GLM model order may result in over or under fitting.

5.3 Networks with Variable Synaptic Latencies

As stated before, a functional cortical network is more likely to have heterogeneous synaptic
latencies. Typically, synaptic latencies can range from a few milliseconds for monosynaptic
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connections (Kandel, Schwartz and Jessell 2000; Debanne 2004) to a few tens of milliseconds
for polysynaptic connections (Molnar, Olah, Komlosi et al. 2008; Toni, Laplagne, Zhao et al.
2008). In addition, the limited sample size precludes the ability to record all the neurons that
are directly connected in a given population. It is therefore much more realistic for our model
to have variable synaptic latencies in order to test the applicability of the method to data from
real cortical networks.

We investigated the performance when multiple synaptic latencies exist within the population.
We defined a heterogeneity index (HI) as the number of distinct synaptic latencies that exist
in the network as illustrated by the simple network in Figure 7a. Figure 7b demonstrates the
accuracy for networks of 10 neurons with different HIs where HI=1 implies that all neurons
had the same synaptic latency while 5 implies that every 20% of the neurons in the network
had similar synaptic latency. Each neuron received 2 random connections, one excitatory and
one inhibitory. In order to identify connections at different synaptic latencies, we applied DBN
with a range of Markov lags such that the maximum lag matched the maximum synaptic latency
in the population while the minimum lag was set to 1. In this case, DBN considers those lags
simultaneously and tries to identify the best lag at which each connection is most prominent.
Surprisingly, Figure 7b demonstrates that the accuracy was not significantly impacted at high
HI. In addition, the DBN performance was superior to that of the GLM-fit and PDC for the
same populations.

5.4 Identifying Monosynaptic Connectivity

One important feature of using DBN in structure learning is its ability to detect causal
relationships between the children nodes and their immediate monosynaptic parents and not
the higher-order polysynaptic parents. Figure 8a shows a simple network consisting of a 3-
neuron chain where a directed information flow characterizes the connectivity such that neuron
A excites neuron B, while in turn neuron B excites neuron C. The synaptic latency of both
connections was set to 1 bin. In this case, neurons A and B are considered monosynaptic parents
of neurons B and C, respectively. On the other hand, neuron A is considered a 2nd order
polysynaptic parent (ancestor) of neuron C. It is expected that the connections between neurons
B and C and their monosynaptic parents can be best detected using a DBN with a single bin
Markov lag, while a spurious monosynaptic relationship between neuron A and neuron C
(2nd order connection) might be detected with a 2-bin Markov lag as a result of the polysynaptic
pathway between the two neurons. The complexity in discriminating between these two types
of connections would be most pronounced in the absence of prior knowledge of the best Markov
lag to use, particularly when analyzing a heterogeneous network such as the ones analyzed in
Figure 7. Herein, we demonstrate the ability of DBN to restrict its inference to only direct
causal relationships despite using a non-optimal Markov lag.

We investigated the performance using 100 different network structures with a history interval
fixed to 60 bins (180 ms), a fixed synaptic latency of 1 bin, and 1 excitatory and 1 inhibitory
pre-synaptic connections per neuron. Each of the 100 networks examined had a total of 40
chains with 3 neurons each similar to the one in Figure 8a. A successful DBN inference should
yield two connections matching the true monosynaptic connections and no 2nd order
connections per chain. Figure 8b shows the number of erroneously inferred 2nd order
connections per chain versus Markov lag. It can be seen that when a Markov lag of 1 bin was
used, DBN did not infer any of the spurious 2nd order connections as expected since the lag is
shorter than the superposition of two synaptic latencies. When a Markov lag of only 2 bins was
used, DBN surprisingly had a very low error rate despite that true monosynaptic connections
should be inferred in addition to the spurious 2nd order connection in each chain as shown in
Figure 8b. We attributed this superior performance to two factors: first, the effect of the pre-
synaptic neuron on the probability of firing of the post-synaptic neuron lasts for a period of
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time governed by the synaptic coupling function given in (8). Given the exponential decay
form of this coupling, it is expected that the probability of a post-synaptic neuron firing at times
beyond those governed by the synaptic latency will be influenced by the time constant of that
exponential function. Consider the example in Figure 8a, when the synaptic latency is 3 ms (1
bin) and given the firing of neuron A at time t, equation (8) yields a probability of firing for
neuron B at time t + 3 ms of 0.25, while that at time t + 6 ms (i.e. after 2 bins of neuron A firing)
to be 0.2. Thus, the probability of firing at t + 6 ms has only declined by 20% of its maximum
attained at t + 3 ms. Therefore, the connection A→B can still appear at a Markov lag of 2. The
same applies to the connection B→C. Second, as the DBN tends to find the network structure
with the least number of edges to explain the data, the connection A→C is a redundant one
given the presence of the connections A→B and B→C.

Figure 8b also shows that a Markov lag of 3 results in a slight increase in the number of spurious
2nd order connections. This can also be attributed to the effect of the time constant of the
synaptic coupling. As the lag increases, the effect of the pre-synaptic spike on the post-synaptic
neuron firing decreases, making it relatively harder to detect true monosynaptic connections,
while increasing the probability of detecting only spurious 2nd order connections. Finally, at a
Markov lag range of 1 and 2 in which connections at both lags should be simultaneously
identified, no 2nd order connections were inferred since in this case DBN finds the best lag (or
a combination of lags) that best explains the data. These results indicate that even if the Markov
lag is not correctly set, DBN can still succeed in identifying only true monosynaptic
connections provided that the lag range is chosen equal to or more than the maximum
anticipated synaptic latency in the population.

5.5 Networks with Unobserved and Independent Neurons

Cortical neurons are known to receive common excitatory and inhibitory inputs from other
regions (Turker and Powers 2001; Turker and Powers 2002; Keen and Fuglevand 2004;
Yoshimura, Dantzker and Callaway 2005). These common inputs are a major source of
complexity in inferring causal relationships since they cannot be distinguished from actual
coupling caused by true synaptic links. We investigated DBN performance when unobserved
common inputs exist in the form of synaptic coupling from unobserved neurons. Figure 9a
shows a sample structure of the network examined in which unobserved neurons in the top row
simultaneously excite pairs of observable neurons in the bottom row. The dashed connections
in the figure indicate the connections that are expected to be inferred by DBN when the synaptic
latency is fixed. These bidirectional connections indicate that each pair of neurons receives the
same input at the same time, and therefore there should be no causal, time-dependent
relationship between them.

We studied the performance of DBN in inferring connectivity between the observed neurons
(indexed 6 to 15). The synaptic latency of connections to even numbered neurons le was kept
fixed at 1 bin (3 ms) while that to odd numbered neurons lo was varied. Figure 9b demonstrates
the inference accuracy plotted as a function of the difference lo-le. We considered a bidirectional
connection as an indicator of a common input. The Markov lag of the DBN was set to 1 bin
(3ms). As can be seen, the inference accuracy peaks when the synaptic latency of the
connections to both odd and even numbered neurons was the same (i.e. the difference in
synaptic latency lo – le is 0). As the difference in synaptic latency increases, the accuracy
decreases. This may be interpreted as follows: when there is a difference between the synaptic
latencies of the common input, an indirect relationship between the neurons receiving that
common input emerges. For example, consider the common input from neuron 1 to neurons 6
and 7 shown in Figure 9a when the synaptic latency of the connection 1→ 6 is 1 bin (3 ms)
while that of 1→7 is 2 bins (6 ms) . In this case, the influence of an event from the common
input (neuron 1) on neuron 7 probability of firing has a latency of 1 bin relative to its influence
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on neuron 6. Thus, not observing the common input coupled with a difference in synaptic
latency between that input and the observed neurons results in a spurious connection between
the observed neurons directed from the shorter latency neuron to the longer latency one. On
the other hand, an inferred bidirectional connection between two observed neurons might
indicate a common input simultaneously received by both neurons. Nevertheless, it can still
be indicative of a pair of unidirectional physical connection between the two neurons rather
than a common input. Discrimination between the two cases can be achieved if prior knowledge
about the anatomy of the brain area and the duration of the synaptic latencies are available.

We further examined the performance in the case of unobserved neurons within the
population. We were interested in assessing whether this would hinder our ability to detect
functional relationships between the actual observed neurons. We randomly selected 6 neurons
to be unobserved from 20-neuron populations as shown in Figure 9c. DBN was applied to the
spike trains of the remaining 14 neurons. The synaptic latency of all the neurons was set to 1
bin (3 ms) and the Markov lag was also set to 1 bin to match the synaptic latency. The inference
accuracy achieved by examining 100 different networks was 0.96±0.03. When computing the

accuracy, all the connections that involved the unobserved neurons in the simulated networks

were not considered.

We also examined the performance when some of the observed neurons are not elements of

the functional network. These can be typically thought of as task-independent neurons.

Identifying these neurons can be useful in the context of decoding spike trains. In such a case,

the performance of a decoder should improve if the posterior probability of the stimulus is

expressed in terms of the conditional probabilities of the task-dependent neurons, while

excluding the task-independent ones from the computation of the joint prior distribution

(Aghagolzadeh, Eldawlatly and Oweiss 2009). Figure 9d shows a sample network of 15

neurons in which neurons 1–10 receive 2 pre-synaptic connections each (1 excitatory and 1

inhibitory), while neurons 11–15 are not connected to any other neurons. The Markov lag was

set at 1 bin. The inference accuracy obtained by applying the DBN to 100 networks was 0.98

±0.07. The number of spurious connections inferred per network between any of the connected

neurons (i.e. neurons 1–10) and the unconnected ones (i.e. neurons 11–15) was 0.1±0.3, and

occurred in 10 out of 100 networks. The number of connections inferred per network among

unconnected neurons (i.e. neurons 11–15) was 0.05±0.2 and occurred in only 5 out of 100

networks. To compare this number with what would be expected by chance, we simulated 100

different networks with 10 unconnected neurons each. The number of connections inferred per

network was 0.02±0.14, and occurred in 2 out of 100 networks.

5.6 Identifying Connectivity in Large Populations

All the analyses shown so far were carried out on relatively small populations of 10 to 15

neurons each. Given that simultaneous recording of multiple single units in excess of these

numbers is expected, we were interested to investigate how the method scales as a function of

the number of neurons in the population. We simulated 10 different populations, 120 neurons

each. Each population consisted of 12 clusters, 10 neurons each, in which each neuron received

3 excitatory connections from neurons belonging only to its own cluster. The history interval

was set to 60 bins (180 ms) and the synaptic latency to 1 bin (3 ms).

Figure 10a shows the inference accuracy when DBN was applied to the entire population with

a Markov lag set to 1 bin (3 ms) for different search times. For a search time of 1 min, it is

clearly seen that DBN was unable to infer the network structure (only 15% accuracy). To

improve the accuracy, two different approaches were examined. First, when allowing the DBN

more search time (2 hours), an inference accuracy of 100% was attained for the 120 neuron

population. Second, one can try to break down the large population into smaller, functionally-

interdependent subpopulations if prior knowledge of any clusters in the neural space is
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available. When this is the case, we found that applying DBN to subpopulations when keeping
the search interval fixed at 1 min significantly improved the performance. Specifically, we
divided each of the 120 neuron populations into 2 subpopulations with 60 neurons each (i.e.
clusters 1–6 in one subpopulation and clusters 7–12 in the other). The performance increased
in this case by more than two fold as indicated in Figure 10a. When subsequent division is
carried out into 3, 4, 6 and 12 subpopulations, with 40, 30, 20, and 10 neurons each,
respectively, accuracy of 100% was achieved on populations of sizes 10 to 20 neurons each.
In this realm, the functional connectivity algorithm reported in (Eldawlatly, Jin and Oweiss
2009) was applied prior to DBN analysis. In summary, for large populations, a two-stage
framework is suggested in which the neural space is first clustered to identify any potential
statistical dependence between neuronal elements. This is then followed by DBN analysis to
identify the effective connectivity structure within each cluster. Figure 10b illustrates the
minimum search time needed to achieve 100% accuracy for each subpopulation size. It can be
seen that the computational complexity increases exponentially with the population size.
Finally, we investigated the performance when no clusters are present. As can be seen in Figure
10c, when more search time is allowed (in this case by 2 fold), the underlying network was
correctly inferred.

5.7 Estimating the Markov Lag of Maximum Accuracy

We have demonstrated how the DBN performance is highly dependent on the selection of the
Markov lag and that the accuracy is maximized when the Markov lag is equal to or slightly
greater than the population true average synaptic latency. When dealing with real neural data,
prior knowledge of this synaptic latency may be unavailable, and therefore some measure is
needed to devise the best Markov lag to use for a given population. For that purpose, we
computed the mean influence score (IS), defined as the average absolute value of the influence
score for each inferred connection. The influence score IS(i, j) measures the degree to which
neuron j influences neuron i's firing, independent of the output of the other parents of neuron
i (Yu, Smith, Wang et al. 2004). Its computation is based on the same conditional probabilities
used in inferring the network structure. IS can be either positive or negative depending on
whether the connection is excitatory or inhibitory, respectively. Since IS measures the degree
of influence of the pre-synaptic neuron on the post-synaptic neuron for a given inferred
connection, it is expected that the mean of the absolute value of the IS of all the inferred
connections for a given network structure will be maximum if the inferred structure matches
the true one.

Figure 11a shows the mean IS at different Markov lags for the data sets previously analyzed
in Figure 6 in which the heterogeneity index (HI) was 0. Comparing the results in Figure 11a
with those in Figure 6, it can be seen that for each choice of history interval length M, the mean
IS profile matches the F-measure profile obtained when exact knowledge of the network
structures was available. Thus, the mean IS can be used to quantify the degree of confidence
in the inferred network and to potentially estimate the best Markov lag that explains the data.
Figure 11b shows the inference accuracy for more complex networks with HI = 3 at different
ranges of Markov lags. The inference accuracy peaks when the maximum Markov lag matches
the maximum synaptic latency in the population. Figure 11c shows similar result using the
mean IS. It is clearly seen that, similar to the fixed synaptic latency case (HI = 0), the mean IS
behaves similar to the F-measure. This confirms the utility of the mean IS as a metric for
determining which network best explains the data when information about the anticipated
synaptic latency is unavailable.
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6 Conclusion

Identifying the effective connectivity between cortical neurons is a fundamental goal in systems
neuroscience. In this work, we demonstrated the utility of Dynamic Bayesian Networks (DBN)
in inferring this connectivity from the observed spike trains under a wide variety of conditions.
Our main conclusion is that DBN is a useful tool for analyzing spike trains, and is capable of
identifying causal relationships between distinct neuronal elements in small and moderately-
large populations of neurons, particularly when nonlinear interaction between these neurons
is present.

We have applied the method to probabilistic neuronal network models. These models are
increasingly being used in the neuroscience community because they are highly non-linear,
stochastic, and faithfully model the dynamic discharge patterns of many cortical neurons. DBN
outperformed Partial Directed Coherence (PDC), particularly when temporal dependence was
variable among the population elements. The diminished PDC performance was mainly
attributed to its inability to detect inhibitory connections. Compared to GLM fit, DBN
performance was comparable overall, and occasionally superior in highly heterogeneous
network structures. The GLM performance was not surprising, given that it was tested on data
simulated using the same generative model, while the DBN did not assume any specific
generative model. Therefore, we expect DBN to have more powerful generalization capability
compared to GLM fit, although not tested here. Some disadvantages of the GLM method are
the need to specify a detection threshold (with associated p-values) due to the dependence of
the neuron's firing on the spiking history of other neurons that is likely to be variable across
neuron pairs. In addition, the orders of magnitude difference in computational time, in favor
of the DBN, makes the inference task more daunting for the GLM.

Two issues deserved detailed investigations in the proposed approach. The first is the
dependence of the DBN performance on the Markov lag, which can be regarded as playing the
same role as the model order in the GLM fit. Nevertheless, choosing the Markov lag to be
exactly matching the synaptic latencies is not necessary, as long as it is not smaller than the
maximum synaptic latency expected in the population. Information about synaptic latency may
be available if knowledge of the anatomical structure of the sampled cortical regions is
available. In such a case, running the DBN using different Markov lags and finding the Markov
lag(s) at which the mean influence score is maximized should yield the best accuracy. The
structure obtained would be the most likely network structure that best explains the data.

The second issue is the complexity of the search in the high-dimensional neural space that is
directly proportional to the number of the neurons in the population. We found that the
computational complexity increases exponentially with the population size. However, we
found that when clusters of functionally interdependent neurons do exist, the computational
complexity can be reduced. This is important, given the plethora of studies suggesting that
neuronal interaction across multiple time scales may underlie multisensory neuronal
integration in naturalistic behavior, perception, and cognition. The results suggest that a two-
step framework may be best suited for large-scale analysis, whereby populations are first
clustered to discover any inherent statistical dependency between their elements. These clusters
are subsequently analyzed by DBN to infer their underlying structures. The clustering step,
however, can be eliminated without affecting the DBN performance if longer search time is
permitted.

Though not included in this paper, the proposed approach can also be useful in quantifying
synaptic plasticity that is strongly believed to underlie learning and memory formation. In such
case, graphical approaches such as DBNs can reveal potential plastic changes reminiscent of
cortical re-organization during learning or recovery from injury. It can also be used to identify
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task-dependent neurons when neural decoding is sought to reconstruct a sensory stimulus or
predict an intended motor behavior in a wide range of neuroprosthetic applications. Our most
recent results demonstrate that DBN inference can be very useful in optimizing the decoder
structure during motor learning (Aghagolzadeh, Eldawlatly and Oweiss 2009).
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Figure 1.
(a) An example of a Bayesian Network. Random variable R indicates if it rains or not, W
indicates if the grass is wet or not, and U indicates if people bring umbrella or not.
(b) An example of a Dynamic Bayesian Network. Each morning an automatic sprinkler
randomly decides whether it should water the lawn or not conditioned on whether it watered
the day before and whether there was rain the day before.
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Figure 2.
Schematic of the DBN structure search algorithm.
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Figure 3.
(a) A simple causal network where nodes represent neurons and edges represent connections.
lij indicates the synaptic latency associated with each connection.
(b) Corresponding DBN where black nodes represent the neuron firing state at a specific
Markov lag while white nodes represent the present state.
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Figure 4.
An illustrative graph of αij

+ (t) where lijΔ is the synaptic latency, Aij models the connectivity
strength, Mij/3000 is the time constant of the decaying exponential where Mij denotes the
number of history bins, and MijΔ is the history interval.
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Figure 5.
(a) DBN performance vs. number of excitatory pre-synaptic connections. Inset: Connection
strengths Aij for each choice of that number.
(b) DBN performance vs. firing history interval length. Inset: Connection strengths Aij for each
choice of this length.
(c) DBN performance (solid) vs. ratio of inhibitory to excitatory synaptic strength (I/E Ratio).
The accuracy gets closer to unity as inhibition strength surpasses excitation strength (I/E ratio
increases above 1). Partial Directed Coherence (PDC) (dashed) and Generalized Linear Model
(GLM) fit (dotted) performance shown for comparison.
(d) Coefficient of variation for the data analyzed in (c).
(e) DBN performance vs. background rate.
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Figure 6.
(a) Coupling function αij

+ (t) for different history intervals M.
(b) DBN performance vs. Markov lag for variable history intervals and fixed synaptic latency
(4 bins).
(c) PDC performance vs. model order for the data analyzed in (a).
(d) GLM fit performance vs. detection threshold for the data analyzed in (b).
(e) GLM fit performance vs. GLM parameter WGLM when the model parameter M was set to
60 bins.
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Figure 7.
(a) A simple network illustrating the dependence on the synaptic heterogeneity index (HI). The
subpopulation inside the dashed circle has a HI of 3 while the entire population (neurons 1 to
6) has a HI of 5. The firing history was fixed at 60 bins (180 ms).
(b) DBN, PDC and GLM-fit performance vs. HI.
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Figure 8.
(a) Example 3-neuron chain, where solid arrows represent true connections while the dotted
one represents a spurious connection, l indicates the synaptic latency associated with each
connection.
(b) Average number of spurious connections inferred per chain.
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Figure 9.
(a) Network structure examined where black nodes 1–5 in the dashed rectangle represent
unobserved neurons. Solid arrows indicate real connections while dashed ones indicate the
expected connections to be inferred by DBN.
(b) DBN performance vs. difference between the synaptic latency of the connections to odd
numbered neurons and even numbered neurons (lo − le) where le is fixed at 1 bin.
(c) A network of 20 neurons, where white nodes indicate observed neurons while black nodes
indicate unobserved neurons.
(d) A network with 15 observed neurons; neurons 1–10 (inside the dashed circle) receive
connections while neurons 11–15 are not connected to any neurons. The history interval was
set to 60 bins (180ms) and the synaptic latency was fixed to 1 bin (3 ms) for all connections.
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Figure 10.
(a) DBN performance vs. number of neurons/subpopulation for different search intervals. 10
different populations of 120 neurons each were simulated.
(b) Search time required by DBN to achieve 100% accuracy (F-Measure=1) vs. number of
neurons/subpopulation.
(c) DBN performance vs. search time for 120 neuron populations with no clusters.
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Figure 11.
(a) Mean influence score (IS) vs. Markov lag for variable history intervals for the same data
analyzed in Figure 6a. Note that the mean IS has similar profile to the accuracy.
(b) DBN performance vs. Markov lag for networks with HI equals 3. Maximum accuracy is
attained when the maximum Markov lag matches the maximum synaptic latency in the
population.
(c) Mean influence score vs. Markov lag for networks with HI equals 3.
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Table 2

Conditional probabilities Pr(St+1| St,Rt).

Pr(St+1= true| St, Rt) St Rt

0.8 false false

0.3 true false

0.3 false true

0.1 true true
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