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Article

Multilevel modeling is a common statistical technique for 

analyzing longitudinal data. When estimating a multilevel 

model, researchers typically distinguish between two types 

of effects: the fixed effects, which represent the average 

effects at the population level; and the random effects, 

which represent individuals’ deviations from the fixed 

effects. Whereas sometimes researchers are interested in 

estimating and testing for the fixed effects parameters and 

the variances and covariances of the random effects, often 

such models are used to obtain the individual-specific ran-

dom effects estimates when modeling as measures of indi-

vidual traits (Asendorpf, 2006; Bai & Repetti, 2018; 

Bringmann et al., 2016; Mohr et al., 2013; van Eck, Berkhof, 

Nicolson, & Sulon, 1996). Random intercepts are used as 

indicators of individual differences in how people feel, 

think, and behave on average, and random slopes as indica-

tors of individual differences in the dynamic processes 

underlying the psychological phenomenon of interest.

Also known as empirical Bayes (EB) estimates, these 

individual-specific random effects estimates have been 

used mainly for two purposes. One is to detect outliers. For 

example, Morrell and Brant (1991) fit a multilevel model to 

longitudinal data and used the EB estimates to detect outli-

ers among older adults in the change of hearing perception. 

Cummings, Stoolmiller, Baker, Fien, and Kame’enui (2015) 

analyzed student achievement data from a sample of schools 

and used the EB estimates to evaluate whether a specific 

school lags behind other schools. The other common use is 

to extract the EB estimates and treat them as variables in 

other analyses such as predictors of an outcome variable in 

follow-up analyses. For example, health psychologists have 

used EB estimates to quantify individuals’ emotional reac-

tivity to stress and found consistent patterns linking stron-

ger stress reactivity to negative health outcomes (Cohen, 

Gunthert, Butler, O’Neill, & Tolpin, 2005; Mroczek et al., 

2015; Ong et al., 2013; Sin, Graham-Engeland, Ong, & 

Almeida, 2015). Similarly, personality and clinical psychol-

ogists have examined emotional inertia using multilevel 

autoregressive models and found that individual emotional 

inertia, as represented by the EB estimates of the autore-

gressive parameters, significantly predict mental health 

problems such as depression (Brose, Schmiedek, Koval, & 

Kuppens, 2015; Hamaker & Grasman, 2015; Koval, 

Kuppens, Allen, & Sheeber, 2012; Kuppens et al., 2012).

Despite the popularity of these approaches, little research 

has examined whether EB estimates are indeed reliable and 

valid measures of individual traits. Liu (2017, 2018) com-

pared EB estimates to regression estimates from person-

specific autoregressive models with time series data and 
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found that EB estimates generally have better accuracy, and 

similar reliability, when all individuals in the sample have 

homogeneous dynamic patterns, and when the model used 

to analyze the data is correctly specified. In addition, accu-

racy and reliability are affected by the number of within-

person observations and the random effects variance, but 

not by sample size or distribution of the random effects. Du 

and Wang (2018) compared the reliability of various intra-

individual variability indicators based on time series data 

and found that EB estimates of the autoregressive parame-

ters generally have lower reliability than other indicators, 

such as the intraindividual standard deviation. In terms of 

factors affecting reliability, they found similar results as Liu 

(2018). In addition, they also found substantial influences 

of the measurement scale reliability and a number of other 

factors, such as the intraindividual variance of the autore-

gressive process. Although these studies provide important 

insights to the properties of EB estimates, all are simulation 

studies that focus on a limited set of factors. As such, it is 

unclear whether additional factors not considered in the 

simulations may affect the results. In addition, these studies 

are based on a very specific model, the autoregressive 

model, where one variable serves as both the predictor and 

the outcome. It is thus not clear how well these results gen-

eralize to other multilevel models. In the current study, we 

aim to provide a more thorough discussion of these issues. 

First, based on statistical theory, we will provide an over-

view of the factors influencing EB estimates. Next, we will 

demonstrate our findings using simulated data and an 

empirical data set on emotional inertia. Throughout the arti-

cle, we will use multilevel models for longitudinal data as 

examples. However, the issues discussed and the findings 

apply generally to all multilevel models, including those 

used to model other types of nested data, such as students 

nested within schools.

Empirical Bayes Estimates in 

Multilevel Models

In the multilevel modeling framework, longitudinal data 

from an independent sample of individuals can be repre-

sented by a two-level model:

Level 1:

Level 2:

y x

w

it ji jit it

j

J

ji jk ki ji

k

K

= +

= +

=

=

∑

∑

β ε

β γ θ

0

0

 (1)

Level 1 is the within-person level, where yit  is the value of 

the outcome variable from individual i at time t, which is 

predicted by an intercept β
0i

 and J time-varying predictors 

x jit  with individual-specific coefficients β ji j J,  =1, , . 

The residuals ε
it

 is typically assumed to be independent 

and normally distributed with mean zero and variance σ
ε

2. 

Level 2 is the between-person level, where the Level-1 

intercept and coefficients are predicted by intercepts γ j0  

and K time-invariant predictors w
ki

 with regression coeffi-

cients γ jk k K, =1, , . The Level-2 intercepts and regres-

sion coefficients are referred to as fixed effects because they 

are identical for all individuals and represent the average 

effects in the population. The Level-2 “residuals” θ ji  are 

referred to as random effects because they vary across indi-

viduals and represent how individual i deviates from his/her 

expected values based on the fixed effects. Random effects 

are typically assumed to follow a multivariate normal distri-

bution with mean zero and covariance matrix Σ
θ
. The 

parameters of the model thus consist of the fixed effects 

parameters γ jk, the variance and covariance components in 

Σ
θ

, and the pooled within-person residual variance σ
ε

2 . 

These parameters are typically estimated using maximum 

likelihood or Bayesian methods (Hox, 2002).

Given the estimated parameters in the model, the random 

effects θ ji  can be predicted based on the Bayes theorem:

f y
f y f

f y
i i

i i i

i

θ
θ θ

( ) =
( ) ( )

( )
 (2)

Here, f iθ( )  is the prior distribution of the random effects, 

f yi iθ( )  is the conditional distribution, that is, the distri-

bution of the data conditional on the random effects, f yi( )  

is the marginal distribution of the data, and f yi iθ( )  is the 

posterior distribution, that is, the distribution of the random 

effects conditional on the data. An estimate of θ
i
 can then 

be obtained by calculating the mean of the posterior distri-

bution. In practice, this process utilizes parameters that are 

unknown and thus need to be estimated from the data, such 

as the fixed effects parameters and the variances and 

covariances of the random effects. Hence, the estimate of 

θ
i
 is an EB estimate (Candel & Winkens, 2003). As can be 

seen in Equation 2, the EB estimates are obtained utilizing 

information from both the data and the prior distribution. 

Because the prior distribution is usually a normal distribu-

tion with mean zero, EB estimates are biased toward zero, 

a phenomenon well known in the multilevel modeling lit-

erature as the “shrinkage effect” (Raudenbush & Bryk, 

2002; Snijders & Bosker, 1999). In other words, the EB 

estimates obtained from a multilevel model will show a 

slightly narrower distribution compared to the intercept or 

slope values obtained from when one would fit a regression 

model per person, because they are fitted to follow a nor-

mal distribution.

Below we illustrate the “shrinkage effect” using a multi-

level random intercept only model:

Level 1:

Level 2:

yit i it

i i

= +

= +

β ε

β γ θ

0

0 00 0

 (3)
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Because there is no predictor in this model, the EB esti-

mates are simply weighted averages of the individual 

mean yi  and zero. For any individual in the sample, it can 

be shown that the weight given to the individual mean is

λ
σ

σ
σ

θ

θ

ε

i

i
t

=

+

0

0

2

2

2  (4)

where σ
θ
0

2  is the Level-2 random effects variance, σ
ε

2  is 

the Level-1 residual variance, and t
i
 is the number of 

observations from individual i (see McCulloch & Neuhaus, 

2011, for derivation of this equation). λ
i
 is a ratio that 

ranges from zero to one. It is also known as the “shrinkage 

factor” because the EB estimates would be expected to be 

λ
i
 times the individual mean. For example, if we estimate 

a random intercept only model based on a longitudinal data 

set where all individuals are measured at 6 time points with 

σ
θ
0

2
1=  and σε

2
3= , all individuals will have a shrinkage 

factor of 2/3. This is shown in Figure 1a, which is a scatter 

plot of the true values and the EB estimates from a simu-

lated data set with N = 500 individuals. In this plot, the 

black line represents the regression line when the EB esti-

mates (y-axis) are regressed on the true values (x-axis). The 

red line represents y = x. Therefore, if the EB estimates are 

unbiased, the black line and red line would overlap. As 

shown in the figure, however, the intercept of the black line 

is close to zero, and the slope is close to 2/3, indicating that 

the EB estimates are expected to be 2/3 of the true values. 

On the other hand, simply taking the mean of each indi-

vidual’s repeated measures does not yield biased estimates, 

as shown in Figure 1b.

Factors Influencing the Empirical 

Bayes Estimates

In a more general multilevel model with predictors, EB esti-

mates can be obtained in a similar fashion by weighting the 

information from the data and the information from the 

prior distribution. Information from the data can be repre-

sented by estimates obtained using ordinary least square 

(OLS) methods, that is, by fitting a regression model to 

each individual’s data separately. Specifically, suppose we 

now represent the individual-level regression equation in 

matrix form:

Y X E
i i i i
= +ββ  (5)

where Y
i
 is a t

i
×1  vector of the outcome variable, X

i
 is a 

t J
i
× +( )1  matrix of predictors (including a column of 1 to 

estimate the intercept), ββ
i
 is a ( )J + ×1 1  vector of regres-

sion coefficients, and E
i
 is a t

i
×1  vector of residuals. The 

OLS estimates are

ββ i i
T

i
1

i
T

i(X X ) X Y= −  (6)

Importantly, in multilevel models, the weight assigned to 

the OLS estimates is associated with the uncertainty in esti-

mating ββ
i
, that is, the standard errors of ββ

i
. Intuitively,  

with lower uncertainty (i.e., a smaller standard error), more 

weight is assigned to the OLS estimates and less weight is 

assigned to the prior distribution, and vice versa. Hence, to 

calculate the weight, we will need to first estimate the stan-

dard error of ββ
i
. This can be done by taking the square root 

of the diagonal components of the parameter dispersion 

matrix:

Figure 1. Scatter plots of the true random intercepts and (a) the EB estimates; (b) the person means. Red line represents y = x. 
Black line is the regression line of the data. Data are simulated based on a random intercept only model with σ

θ
0

2
1= , σ

ε

2
3= , and t

i
 = 6 

for all i from 1 to N = 500.
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V (X X )i i
T

i
1

=
−

σ
ei

2
 (7)

where σ
ei

2  is the variance of E
i
 and can be estimated as

σ 
ei

i

mi mi

m

t

t J
y y

i
2

2

1

1

1
=

− −
−

=

∑ ( )  (8)

The t J
i
− −1  rather than t

i
 in the denominator makes σ ei

2

 

an unbiased estimate of σ
ei

2 .

Next, the EB estimates of ββ
i
 for individual i in a multi-

level model can be obtained with the following equation:

ββ ΛΛ ββ ΛΛ γγ  
i

EB

i i i i(I )W= + −  (9)

where I  is an identity matrix, W
i
 is a matrix containing the 

Level-2 predictors, γγ
i  is the fixed effects parameter esti-

mates, and

ΛΛ ΣΣ ΣΣ
θθ θθi i

1
( V )= +

−  (10)

(Raudenbush & Bryk, 2002). In other words, the EB esti-

mates are weighted averages of the OLS estimates and the 

fixed effects estimates, with ΛΛ
i
 being the weighting matrix 

for the OLS estimates ββ
i
, and ( )I

i
−ΛΛ  being the weighting 

matrix for the fixed effects estimates. The degree to which 

the EB estimates are shrunk toward the fixed effects is thus 

determined by ΛΛ
i
. By examining ΛΛ

i
, we can identify fac-

tors that affect the degree of shrinkage.

According to Equation 10, more weight is assigned to 

the OLS estimates (and hence less shrinkage) when there 

is a larger Level-2 variance and a lower degree of uncer-

tainty in the OLS estimates. By expanding Equation 7, we 

see that the uncertainty in the OLS estimates is in turn 

affected by the within-person residual variance σ
ei

2 , the 

within-person variance of the predictors, and the number 

of observations per person. For example, consider the sce-

nario where there is only one time-varying predictor x
it

, 

and hence X
i
 is an t

i
×2  matrix with 1s on the first col-

umn to represent the intercept and x
it

 on the second col-

umn. In this case,

V (X X )i i
T

i
1= =



− =

=

=

=

=

=

∑

∑ ∑
σ σ
ei ei

i it

t

t t

it

t

t t

it

t

t t

t x

x x

i

i i

2 2 1

1

2

1
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The standard error of the regression coefficient associated 

with x
it

 is the square root of the second diagonal compo-

nent in this matrix, which is a function of σ
ei

2  and the 

within-person sum of square of x
it
. The latter is in turn a 

function of the within-person variance of x
it

, and t
i
 when 

x
it

 is centered within person (i.e., has a mean of zero):

x x t
it

t

t t

it i xi

t

t t
i i

2

1

2 2

1

0 1

=

=

=

=

∑ ∑= − = −( ) ( )σ  (12)

Combining Equations 11 and 12, it can be seen that larger 

within-person residual variance is associated with higher 

uncertainty in the OLS estimates, and hence lower weights 

assigned to the OLS estimates. In contrast, larger within-

person variance in Level-1 predictors and more observa-

tions per person are associated with lower uncertainty, and 

hence higher weights assigned to the OLS estimates.

To further illustrate the different factors affecting EB 

estimates, we simulated data based on a hypothetical daily 

diary study on emotional reactivity to stress, where indi-

viduals report on positive affect (PA) and stress daily for T 

days. The multilevel model below describes the relation 

between the two variables:

Level 1:

Level 2:

PA Stress
it i i it it

i i

i

= + +

= +

=

β β ε

β γ θ

β γ

0 1

0 00 0

1 10
++ θ

1i

 (13)

In this model, an individual’s emotional reactivity to stress is 

represented by β
1i

, which has been shown to predict long-

term health outcomes in previous research (Mroczek et al., 

2015; Sin et al., 2015). Therefore, we focus on examining 

factors affecting the shrinkage of this parameter. Specifically, 

we first simulated data for N = 500 individuals based on a 

set of parameter values: γ
00  = 5, γ

10
 = 0.2, σ

ε

2  = 1, σ
Stress

2  

= 1, σ
θ
0

2  = 1, σ
θ
1

2 = 1, σ
θ θ
0 1

 = 0, and T = 8.1 Because all 

individuals shared the same simulated values, they would 

have the same shrinkage factor. Figure 2a shows the scatter 

plot of the true values versus the EB estimates of stress reac-

tivity, which can be interpreted in the same way as Figure 1. 

The empirical shrinkage factor, as represented by the slope 

of the regression line, was λ = 0.83.

Next, we simulated four other data sets doubling the size 

of σ
ε

2, σ
Stress

2 , σ
θ
1

2 , or T, respectively, while keeping all other 

values unchanged. The corresponding scatter plots are 

shown in Figure 2b to e. For these four conditions, we 

obtained an empirical shrinkage factor of λ = 0.79, 0.92, 

0.85, 0.94, respectively. These values changed in the direc-

tion we expect. More severe shrinkage (i.e., a smaller 

shrinkage factor) was associated with a larger σε
2

, whereas 

less severe shrinkage was associated with a larger σ
Stress

2 , a 

larger variance of θ
1i

, and a larger value of T.

Because the reliability of the EB estimates is simply the 

square of the correlation between themselves and the true 

values, and that correlation is the same as the standardized 

slope of the regression line, EB reliability is influenced by 

the same factors, namely, σ
ε

2 , σ
Stress

2 , σ
θ
1

2 , and T. The empir-

ical reliability in the five simulated data sets above was 0.85, 

0.77, 0.92, 0.86, and 0.94, respectively. This indicated that 

high reliability (≥0.80) could be achieved with large enough 
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Level-1 predictor variance, random effects variance, number 

of within-person observations, and a small enough Level-1 

residual variance. However, whether or not a specific data 

set would yield high enough reliability in the EB estimates 

can be difficult to determine, because in reality, some of 

these values are likely to vary across individuals. For 

instance, some individuals experience large day-to-day vari-

ability in their stress levels while others hardly fluctuate, 

leading to different levels of σ
Stress

2 . Similarly, even if 

researchers aim to have a balanced data set, participants in 

the study often have vastly different amount of missing val-

ues, leading to different levels of T. As a result, not all indi-

viduals in the sample have the same shrinkage factor. The 

EB estimates for those with more missing data and/or little 

variation in the predictors would be pulled toward the fixed 

effects estimates more strongly. This introduces additional 

noise to the rank ordering of EB estimates.

Nevertheless, because EB estimates are closely related to 

the OLS estimates, their reliability can be approximated by 

reliability of the OLS estimates, which is easy to obtain. In  

a recent simulation study, Neubauer, Voelkle, Voss, and 

Mertens (2019) showed that the two reliability coefficients 

are highly correlated (r > 0.95) and similar in size, especially 

when they are large. Therefore, one may calculate the OLS 

reliability to approximate the EB reliability. The OLS reli-

ability is

reliability
N

vq qq qq qqi

i

N

( ) / ( )β σ σ = +
=

∑
1

1

 (14)

where σqq  and νqqi  are the qth diagonal elements of ΣΣ
θθ

 

and V
i
, respectively (Raudenbush & Bryk, 2002). For 

example, the OLS reliability for the stress reactivity coeffi-

cients in the first simulated data set was

reliability
N

t

i

xi i

i

N

( )

*( )

*(

β
σ

σ
σ

σ

ε


1

22

22

2

2
1

1

1

1

500

1

1
1

1

=

+
−

=

+

=

∑

88 1

0 875

1

500

−

=
=

∑
)

.

i

 (15)

The empirical EB reliability, 0.85, was very similar to this 

value. For the other four simulated data sets, the OLS reli-

ability was 0.78, 0.93, 0.93, and 0.94, respectively. These 

values, again, were similar to the empirical EB reliability 

obtained earlier.

Figure 2. Scatter plots of the true values and the EB estimates of stress reactivity based on (a) the original set up; (b) doubled σ
ε

2;  
(c) doubled σ

Stress

2 ; (d) doubled σ
θ
1

2 ; and (e) doubled T. Red line represents y = x. Black line is the regression line of the data with slope 
equal to λ.
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To summarize, EB estimates are not perfect measures of 

individual traits. Their accuracy and reliability depend on a 

variety of factors, including Level-1 residual variance, 

Level-1 within-person predictor variance, Level-2 random 

effects variance, and number of within-person observations. 

Specifically, accuracy and reliability increases with a larger 

Level-1 predictor variance, Level-2 random effects vari-

ance, and/or more observations per person, and decreases if 

the Level-1 residuals variance becomes large. In addition, 

some of these characteristics may vary across individuals, 

resulting in different levels of shrinkage and introducing 

additional noise to the rank ordering of individuals. For 

instance, the EB estimate of an individual with an extremely 

high OLS value (i.e., an outlier) may be shrunk strongly 

toward the fixed effects because there are many missing 

data from this person. As a result, EB estimates may not be 

ideal for identifying outliers. Moreover, it is well known 

that measurement errors in a predictor variable will lead to 

a downward bias in the regression coefficient in regression 

models (Hutcheon, Chiolero, & Hanley, 2010). Hence, low 

reliability in the EB estimates may be a concern when they 

are used as predictors in follow-up analyses.

To further examine these issues, in particular issues asso-

ciated with using EB estimates as predictors, below we 

present a simulation study in which we compared this two-

step approach (i.e., first extract the EB estimates, then pre-

dict another person-level variable) to an alternative one-step 

approach (i.e., multilevel structural equation modeling), 

where the random effects are treated as latent variables in a 

general latent variable modeling framework (B. O. Muthen, 

2002). Specifically, we aim to use simulated data to exam-

ine (1) whether OLS reliability calculated based on Equation 

14 is a good approximation of EB reliability; (2) bias in the 

two-step approach when EB reliability is low; and (3) 

whether the one-step approach produces unbiased results. 

We expect this to be the case because the one-step approach 

takes into account reliability in the random effects when 

evaluating its relation with a distal outcome.

Method

Previous studies on EB reliability (Du & Wang, 2018; Liu, 

2018) have mostly focused on multilevel autoregressive 

models. We chose here to simulate data based on the stress 

reactivity model represented in Equation 13. This model is 

more general than autoregressive models in that the predic-

tor and outcome variables are different. Hence, results in 

our simulation study can more readily be generalized to 

other settings involving multilevel models. In the literature, 

the study by Mroczek et al. (2015) reported all four param-

eters necessary for estimating OLS reliability. In that study, 

181 older adults reported negative affect, positive affect, 

and stress for 8 consecutive days. Greater reactivity in 

positive affect (but not negative affect) to stress was found 

to increase mortality risk. The authors reported a Level-1 

residual variance of 18.60 and a Level-2 random effects 

variance of 1.32. Although the Level-1 predictor variance 

was not reported, the predictor (stress) was a dichotomous 

variable (yes or no) whose variance was bound between 0 

and 0.25. Therefore, we simulated data following a factorial 

design that involved the following four factors which were 

fixed across individuals within each replication: (1) Level-1 

residual variance σε
2

 = 18.60 or 37.20; (2) Level-1 predic-

tor variance σ
Stress

2

 = .25 or .50; (3) Level-2 random effects 

variance σθ
1

2

 = 1.32 or 2.64; and (4) Number of within-

person observations T = 8, 40, or 80. To focus on the ran-

dom slope, the intercept was fixed to zero for all individuals. 

A distal outcome variable was generated to have a correla-

tion of .50 with θ
1 . We replicated each condition 1,000 

times and sample size was set to 181 across all conditions.

Each data set was analyzed using both the two-step 

approach (where EB estimates are obtained) and the one-

step approach (multilevel structural equation modeling). 

The two-step analyses were conducted in R with restricted 

maximum likelihood estimation using the nlme package 

(Pinheiro, Bates, DebRoy, Sarkar, & R Core Team, 2016). 

The one-step approach was carried out in R with Bayesian 

estimation method using the MplusAutomation package 

(Hallquist & Wiley, 2018) which utilizes Mplus 8.1 (L. K. 

Muthen & Muthen, 1998-2017). The Bayesian method is 

the only estimation method in Mplus that produces a stan-

dardized coefficient estimate for predicting a distal outcome 

variable.

Results

Comparing Estimated Reliability to Empirical 

Reliability

With the two-step approach, there were convergence prob-

lems in a small number of replications (0% when T = 8; < 

0.1% when T = 40; 0.71% when T = 80). For models that 

successfully converged, we calculated empirical EB reli-

ability by taking the square of the correlation between the 

EB estimates and the true values. We compared this to the 

reliability calculated using Equation 14 based on estimates 

of σε
2

 and σθ
1

2

 from the multilevel models (hereinafter 

referred to as estimated reliability).2 As shown in Table 1, 

our simulation yielded a wide range of empirical reliability 

values (Mean = .18 when T = 8; Mean = .49 when T = 

40; Mean = .65 when T = 80). Within each simulation 

condition, the average empirical reliability tended to be 

slightly larger than the average estimated reliability. 

Overall, however, the two indices were highly correlated  

(r = .97) and similar in size, especially when the values 

were high (Figure 3). This pattern was consistent with 
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findings in Neubauer et al. (2019). As pointed out in 

Neubauer et al. (2019), the larger inconsistency at the 

lower end of the spectrum is less a problem because 

researchers are typically interested in evaluating whether 

or not there is sufficient reliability (≥.80), rather than the 

exact reliability coefficient. For instance, in practice it does 

not matter whether reliability is .20 or .40, because both 

scenarios suggest reliability is too low for the measure to 

be used. Hence, consistency at the higher end of the spec-

trum is more important.

Bias in Regression Coefficients in the Two-Step 

and One-Step Approaches

Table 1 also shows the means and standard deviations of the 

standardized regression coefficient from the two-step and 

one-step approaches under various simulation conditions. 

Shaded cells represent conditions where relative bias (i.e., 

proportion of bias to the true value) is larger than 10%, 

which is often considered the threshold of acceptable bias. 

Consistent with our conjecture, the one-step approach gen-

erally yielded estimates that were very close to the true 

value (.50), whereas the two-step approach yielded esti-

mates that were negatively biased. Not surprisingly, the 

Table 1. Means and Standard Deviations (in Parentheses) of Estimated Reliability, Empirical Reliability, and Standardized Regression 
Coefficients From the Two-Step and One-Step Approaches Across 1,000 Replications Under Various Simulation Conditions.

Estimated 
reliability

Empirical 
reliability

Two-step 
coefficient

One-step 
coefficient

T = 8  

σ
ε

2  = 18.60 σ
Stress

2  = .25 σ
θ
1

2  = 1.32 .10 (.07) .12 (.04) .17 (.07) .52 (.19)

 σ
θ
1

2  = 2.64 .20 (.08) .22 (.05) .23 (.07) .55 (.16)

 σ
Stress

2  = .50 σ
θ
1

2  = 1.32 .19 (.08) .21 (.05) .23 (.07) .55 (.17)

 σ
θ
1

2  = 2.64 .33 (.07) .35 (.06) .29 (.07) .52 (.12)

σ
ε

2  = 37.20 σ
Stress

2  = .25 σ
θ
1

2  = 1.32 .07 (.06) .07 (.04) .12 (.07) .43 (.25)

 σ
θ
1

2  = 2.64 .11 (.08) .12 (.05) .17 (.07) .53 (.19)

 σ
Stress

2  = .50 σ
θ
1

2  = 1.32 .11 (.07) .12 (.05) .17 (.07) .52 (.19)

 σ
θ
1

2  = 2.64 .19 (.08) .21 (.05) .22 (.07) .54 (.16)

T = 40  

σ
ε

2  = 18.60 σ
Stress

2  = .25 σ
θ
1

2  = 1.32 .40 (.07) .40 (.06) .32 (.07) .51 (.11)

 σ
θ
1

2  = 2.64 .58 (.04) .58 (.05) .38 (.06) .50 (.08)

 σ
Stress

2  = .50 σ
θ
1

2  = 1.32 .57 (.04) .58 (.05) .38 (.06) .51 (.08)

 σ
θ
1

2  = 2.64 .73 (.03) .73 (.04) .43 (.06) .50 (.07)

σ
ε

2  = 37.20 σ
Stress

2  = .25 σ
θ
1

2  = 1.32 .25 (.08) .26 (.06) .25 (.07) .53 (.16)

 σ
θ
1

2  = 2.64 .40 (.06) .41 (.05) .32 (.06) .51 (.10)

 σ
Stress

2  = .50 σ
θ
1

2  = 1.32 .40 (.06) .41 (.06) .32 (.06) .51 (.11)

 σ
θ
1

2  = 2.64 .57 (.05) .58 (.05) .38 (.06) .50 (.08)

T = 80  

σ
ε

2  = 18.60 σ
Stress

2  = .25 σ
θ
1

2  = 1.32 .58 (.05) .58 (.05) .38 (.06) .50 (.08)

 σ
θ
1

2  = 2.64 .74 (.03) .74 (.03) .43 (.06) .50 (.07)

 σ
Stress

2  = .50 σ
θ
1

2  = 1.32 .73 (.03) .73 (.03) .43 (.06) .50 (.07)

 σ
θ
1

2  = 2.64 .85 (.02) .85 (.02) .46 (.05) .50 (.06)

σ
ε

2  = 37.20 σ
Stress

2
 = .25 σ

θ
1

2  = 1.32 .40 (.06) .41 (.06) .32 (.06) .50 (.10)

 σ
θ
1

2  = 2.64 .58 (.05) .58 (.05) .38 (.06) .50 (.08)

 σ
Stress

2  = .50 σ
θ
1

2  = 1.32 .58 (.04) .58 (.05) .38 (.06) .50 (.08)

 σ
θ
1

2  = 2.64 .73 (.03) .73 (.03) .43 (.05) .49 (.07)

Note. Shaded cells represent conditions where relative bias is larger than 10%.

Figure 3. Scatter plot of estimated and empirical reliability of 
EB estimates across all simulation conditions.



852 Assessment 28(3)

amount of bias was related to empirical reliability, with 

lower reliability yielding more bias. This can be seen in 

Figure 4, where the grey line represents a smooth curve fit-

ted to the scatter plot of the two using the loess method. 

Ignoring the nonlinearity in the relation, we obtained a cor-

relation of .85 between the two.

We also examined how often the 95% confidence inter-

vals were able to cover the true value using the two 

approaches. Averaging across simulation conditions, the 

coverage rate of the one-step approach was 95% (Range = 

[92%, 97%] across conditions; not shown in Table 1). In 

contrast, the two-step approach yielded an average cover-

age rate of 2% when T = 8, 35% when T = 40, and 49% 

when T = 80 (Range = [0%, 89%] across conditions; not 

shown in Table 1). Clearly, the one-step approach is prefer-

able to the two-step approach when a distal outcome vari-

able is involved, especially when reliability is low.

In sum, results from our simulation study with simula-

tion parameters similar to those obtained from Mroczek 

et al. (2015), suggest that (1) OLS reliability calculated 

based on Equation 14 is indeed a good approximation of EB 

reliability, especially when reliability is high; (2) the two-

step approach yields biased estimates and the degree of bias 

is negatively associated with EB reliability; and (3) the one-

step approach produces unbiased regression coefficients.

Empirical Example

In the following, we will use an empirical example on 

emotional inertia to illustrate issues with using EB esti-

mates as measures of individual traits. The data we use has 

been published elsewhere (Bringmann et al., 2013; 

Bringmann et al., 2016; Koval et al., 2012; Pe, Koval, & 

Kuppens, 2013; Pe, Raes, & Kuppens, 2013). Ninety-five 

undergraduate students from KU Leuven in Belgium (age: 

Mean = 19 years, SD = 1; 62% female) participated in an 

experience sampling methods (ESM) study. Over the 

course of 7 days, participants carried a palmtop computer 

on which they were asked to fill out questions about mood 

and social context in their daily lives 10 times a day. 

Participants were beeped to fill out the ESM question-

naires at random times within 90-minute windows. They 

were asked to rate, among other things, their current feel-

ings of negative and positive emotions on a continuous 

slider scale, ranging from 1 (not at all, e.g., angry) to 100 

(very, e.g., angry). For the current analyses, we focus on 

one emotion variable, sad. On average, the response rate is 

78% (SD = 7%) on this item. However, there is substan-

tial variability in response rate across individuals. Figure 5 

shows how the number of within-person observations is 

distributed in the sample. Whereas many participants 

responded to more than 50 beeps, some provided fewer 

than 40 observations. This type of skewed distribution is 

typical in ESM studies.

Following the literature (Hamaker & Grasman, 2015; 

Kuppens et al., 2012), we estimate a multilevel first-order 

autoregressive (AR[1]) model to investigate emotional iner-

tia in sadness:

Level 1:

Level 2:

Sad Sad
it i i i t it

i i

i

= + +

= +

=

−β β ε

β γ θ

β γ

0 1 1

0 00 0

1

( )

110 1+ θ
i

 (16)

In this model, Sadit  is the score of sadness for individual i 

at time t, Sadi t( )−1  is the same variable measured at the pre-

vious time point, centered within person. β
0i  is the  

intercept that represents the average level of sadness for 

Figure 4. Scatter plot of empirical reliability and standardized 
regression coefficient (True value = .50) in the two-step 
approach. Grey line is a smooth curve computed by the loess 
method.

Figure 5. Distribution of number of within-person 
observations on the variable sad.



Liu et al. 853

individual i at average levels of sadness at the previous time 

point, and β
1i  is the AR(1) coefficient that typically ranges 

from −1 to 1. A large, positive β
1i  (e.g., 0.6) suggests that 

sadness at a previous time point strongly predicts sadness at 

the current time point, which indicates a high level of emo-

tional inertia. Previous research has showed that this indi-

vidual trait is associated with personality and mental health 

measures such as neuroticism and depression (Kuppens 

et al., 2012; Suls, Green, & Hillis, 1998).

We will evaluate two different usages of the EB esti-

mates. One is to detect individuals with exceptionally 

strong emotional inertia as this may indicate potential men-

tal health problems. Since the true values of emotional 

inertia are unknown, we will compare the EB estimates to 

the OLS estimates. In an AR(1) model, the latter has a 

downward but negligible bias with at least 20 observations 

(Hamaker & Grasman, 2015; Liu, 2017). Therefore, it pro-

vides a good representation of the true values assuming 

data are missing at random. Next, we will compare the 

two-step approach and one-step approach when emotional 

inertia is used to predict neuroticism. Neuroticism was 

assessed during the introductory session before ESM with 

the Dutch version of the Ten Item Personality Inventory 

(Gosling, Rentfrow, & Swann, 2003; Hofmans, Kuppens, 

& Allik, 2008), resulting in a score ranging from 1 to 7 (M 

= 3.4; SD = 1.5). The code for the one-step approach is 

included in the appendix.

Estimates of Fixed Effects and Variances/

Covariances of Random Effects

Table 2 shows estimates of the fixed effects and variance 

components associated with the random effects from the 

multilevel and OLS AR(1) models. Although these statistics 

are not the focus of the current study, we present them here 

because they are typically of interest to empirical research-

ers. For the OLS approach, the fixed effects are computed 

by averaging the individual OLS estimates, and their stan-

dard errors are computed by dividing the standard devia-

tions of the OLS estimates by the square root of N. 

Furthermore, the residuals variance represents the average 

residuals variance across all individuals.

Comparing the two approaches, the fixed effects esti-

mates and their standard errors are almost identical. The 

average intercept is 18.05, and the average AR(1) coeffi-

cient is about 0.26. Hence, the level of sadness is generally 

low in this sample and emotional inertia is weak, but sig-

nificantly different from zero. The random effects variances 

are also similar, but they are smaller for the multilevel mod-

eling approach due to shrinkage. The correlation between 

the intercepts and AR(1) coefficients is positive and strong 

in both approaches, indicating that individuals with higher 

levels of sadness tend to show stronger emotional inertia. 

Finally, the residual variance is similar but slightly smaller 

in the OLS approach.

Identifying Individuals With High Emotional 

Inertia

Figure 6 shows a scatter plot of the EB estimates (y-axis) 

and the OLS estimates (x-axis) of the AR(1) parameters. As 

expected, the EB estimates have a narrower spread than the 

OLS estimates due to the shrinkage effect. Although the 

correlation between the two types of estimates is very high 

(r = 0.90), there is also substantial discrepancy, especially 

at the two ends of the spectrum. A particularly problematic 

Table 2. Results of the Autoregressive Model Using Multilevel Modeling and Ordinary Least Square (OLS) Methods.

Fixed effects Random effects

Residuals variance Intercept AR(1) Intercept variance AR(1) variance
Intercept-AR(1) 

correlation

Multilevel 18.05* (1.30) 0.26* (0.02) 154.50 0.03 0.60 224.10

OLS 18.05* (1.30) 0.25* (0.02) 158.26 0.05 0.51 185.78

*p < .05.
Note. Standard errors are in parentheses.

Figure 6. Scatter plot of OLS and EB estimates of the AR(1) 
parameters. Red line represents y = x.
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case is circled in red. Specifically, this individual has the 

highest OLS estimate of the sample, with β̆
1i  = 0.68. The 

EB estimate, however, is only 0.33, which is at the 73rd 

percentile of the sample. In other words, the EB estimate for 

this individual is severely shrunk toward the sample mean. 

This is likely due to missing data, as this individual only 

provided 38 observations, a number much lower than the 

sample average. As a result, even though this individual 

appears to have the strongest emotional inertia, he/she could 

not be identified using the EB estimates.

Using Emotional Inertia to Predict Neuroticism

The estimated reliability of the AR(1) coefficients is 0.56, 

which is not acceptable. In practice, this suggests that the 

two-step approach should not be used. However, we con-

duct both the two-step and one-step approaches here for the 

purpose of comparison. Results show that both approaches 

produce standardized regression coefficients that are posi-

tive and significant. Specifically, using the EB estimates to 

predict neuroticism, we obtain a standardized regression 

coefficient of 0.44 (t = 4.70, p < .001). In comparison, the 

one-step approach yields a standardized coefficient of 0.53 

(t = 5.25, p < .001). Therefore, results from both approaches 

suggest that higher emotional inertia is associated with 

higher levels of neuroticism, which is consistent with the 

literature. However, the two-step approach produces a 

slightly smaller standardized coefficient, potentially due to 

low reliability of the EB estimates.

Discussion

In this article, we examine whether the EB estimates from 

multilevel models are reliable and valid measures of individ-

ual traits. Based on statistical theory and simulated data, we 

show that the accuracy and reliability of EB estimates depend 

on a number of factors, including Level-1 residual variance, 

Level-1 within-person predictor variance, Level-2 random 

effects variance, and number of within-person observations.

In general, we find that EB estimates are not appropriate 

for detecting outliers because they are known to shrink 

toward the sample mean and the degree of shrinkage may 

vary across individuals. This variability in degree of shrink-

age may be due to different factors, such as variability in the 

Level-1 predictor variance and number of within-person 

observations (or reversely, number of missing value) across 

individuals. For instance, if we assume missing at random, 

we could see in our empirical example that using the EB 

estimates results in failure in identifying at least one indi-

vidual with exceptionally high emotional inertia due to a 

large amount of missing data from that individual. On the 

other hand, OLS estimates provide less biased results and 

are more appropriate. However, the OLS estimates are 

obtained by fitting person-specific regression models to 

each individual’s data. Therefore, researchers should be 

cautious of using them if the number of within-person 

observations is small. In the person-specific modeling lit-

erature, a minimum of 50 is generally recommended (Liu, 

2017). It is also important to note that data could be missing 

not at random. For example, in a daily diary study on stress 

reactivity, a participant may only complete surveys on days 

when he/she is most reactive to stress. In this case, outliers 

identified by OLS methods may be “false alarms” whereas 

EB estimates are somewhat protected because missing data 

are compensated by group-level information. Therefore, 

missing data mechanisms should also be considered in out-

lier detection.

Because EB estimates are not perfect measures of the 

true individual traits, they tend to produce biased regression 

coefficients when used as predictors. In general, this makes 

the two-step approach that involves the extraction of EB 

estimates less preferable than the one-step approach where 

they are treated as latent scores. The one-step approach, 

however, may be difficult to carry out in empirical research 

because of model convergence problems (e.g., Mroczek 

et al., 2015). If researchers are restricted to use the two-step 

approach, we recommend them to first evaluate reliability 

of the EB estimates. This could be done by calculating OLS 

reliability using Equation 14, which provides a good 

approximation especially when reliability is high. A set of R 

code for doing this is available in Neubauer et al. (2019). 

Alternatively, a third approach may be used if researchers 

simply aim to evaluate whether the random effects are asso-

ciated with a covariate, without strong theoretical reasons to 

denote the random effects as predictor. This third approach 

involves using the covariate to predict the random effects, 

which can be easily implemented in the multilevel model-

ing framework. For instance, if researchers simply want to 

examine whether emotional inertia is related to neuroti-

cism, neuroticism can be added as a Level-2 predictor of the 

AR(1) random effects (e.g., Kuppens, Allen, & Sheeber, 

2010). Statistically, this approach would yield similar 

results as the one-step approach if there is no other variable 

in the model.

We now mention the limitations of the current study and 

provide notes of caution in interpreting the results. First, 

the finding that EB estimates shrink toward zero does not 

indicate that all Bayesian estimates tend to be biased. 

Rather, the shrinkage effect shown here is a result of hav-

ing prior distributions with zero means, which is a logical 

choice given that random effects by definition are devia-

tions from the fixed effects and hence always have means 

of zero. Non-Bayesian methods for estimating random 

effects in multilevel models, such as those described by 

Henderson (1984, 1990), would produce equivalent results 

and lead to the same shrinkage effects (Robinson, 1991). 

From a machine learning perspective, such shrinkage 

effects exist for a reason—trading non-biasedness for less 
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variance makes the estimator less sensitive to outliers and 

would lead to better predictions in the long run (Yarkoni & 

Westfall, 2017).

Second, this study is based on the assumption that the 

variables used in the multilevel model are without measure-

ment errors, which is unlikely to be true in reality. Du and 

Wang (2018) examined the influence of measurement scale 

reliability and found that measurement error in an autore-

gressive process could significantly hamper the reliability 

of the EB estimates of AR(1) parameters. For example, 

when measurement scale reliability was .50, the EB reli-

ability was generally lower than .20 across the simulation 

conditions they examined. However, with a perfect mea-

surement scale the EB reliability was higher than .80 with at 

least 100 observations. Hence, when evaluating EB reliabil-

ity, measurement scale reliability should be taken into 

account. Importantly, a new method has recently been 

developed that includes measurement error in multilevel 

autoregressive modeling (Schuurman & Hamaker, 2019). 

This method, termed multilevel measurement error vector 

autoregressive model (MEVAR), performs particularly well 

when the autoregressive effects are large, and hence could 

be considered when strong inertia is expected.

Third, in this study we examine shrinkage based on the 

standard assumptions of multilevel models, which may not 

be true. For example, we assume that the random effects 

follow a (multivariate) normal distribution. In practice, this 

assumption can be relaxed, although it is rarely done. 

McCulloch and Neuhaus (2011) found that specifying dif-

ferent prior distributions for the random effects would 

change the distributions of the EB estimates, but their aver-

age accuracy, as measured by mean square error, is little 

affected. In our simulation and empirical example, we also 

assume that the Level-1 residual variance is constant across 

individuals. This again can be relaxed. Jongerling, 

Laurenceau, and Hamaker (2015) found that failing to allow 

for individual differences in the Level-1 residual variance 

would lead to biased estimates in the multilevel AR(1) 

model. However, it is unknown how these factors (i.e., 

assuming different prior distributions, allowing individual 

differences in Level-1 residual variance) may influence 

reliability of the EB estimates, which will need to be exam-

ined in future research.

Finally, the validity of using EB estimates also relies on 

the correct specification of the multilevel model from which 

they are obtained. In studies involving intensive longitudinal 

data (e.g., ESM data), it is often challenging to specify one 

single model to sufficiently describe the data from all indi-

viduals due to the large amount of between-person heteroge-

neity in their dynamic processes (e.g., Wright, Beltz, Gates, 

Molenaar, & Simms, 2015). In this case, multilevel model-

ing and the corresponding EB estimates may no longer be 

appropriate. For instance, Liu (2017) found that when indi-

viduals in the sample are characterized by heterogeneous 

dynamic processes, multilevel models produce biased results 

at the population level and larger prediction errors at the 

individual level than OLS methods when T ≥ 50. Hence, 

individual-level processes may be better captured by person-

specific analysis or clustering methods specifically devel-

oped to model heterogeneous processes (e.g., Lane, Gates, 

Pike, Beltz, & Wright, 2019).

To summarize, this study demonstrates that EB estimates 

are not ideal measures of individual traits because they are 

biased toward zero and do not always reliably represent 

individual differences. Given sufficient within-person mea-

surements, we recommend researchers to at least consider 

alternative approaches such as OLS methods for detecting 

outliers. For predicting a person-level outcome variable, we 

generally recommend the one-step approach, which could 

be conveniently carried out in Mplus (L. K. Muthen & 

Muthen, 1998-2017). If the one-step approach leads to con-

vergence problems and the two-step approach has to be 

used, researchers should evaluate EB reliability to deter-

mine the potential bias in the target regression coefficient. 

With large enough Level-1 predictor variance, random 

effects variance, number of within-person observations, and 

a small enough Level-1 residual variance, sufficient EB 

reliability may be achieved.

Appendix

Mplus Code for the One-Step Approach

TITLE:  Random slope predicting neuro

DATA: FILE = Data95_mplus.dat;

VARIABLE: NAMES = ID sad sad1 neuro;

 WITHIN = sad1;

   BETWEEN = neuro;

   CLUSTER = ID;

 MISSING = ALL (9999 9998);

DEFINE: CENTER sad1 (GROUPMEAN);

ANALYSIS: TYPE = TWOLEVEL RANDOM;

    ESTIMATOR = BAYES

MODEL:

    %WITHIN%

    ar | sad ON sad1;

    %BETWEEN%

    sad WITH ar;

    neuro ON ar;

OUTPUT: STANDARDIZED;

Declaration of Conflicting Interests

The author(s) declared no potential conflicts of interest with respect 

to the research, authorship, and/or publication of this article.

Funding

The author(s) received no financial support for the research, 

authorship, and/or publication of this article.



856 Assessment 28(3)

ORCID iD

Siwei Liu  https://orcid.org/0000-0002-2972-426X

Notes

1. These values are selected for convenience of calculation. 

In the more comprehensive simulation study below, we use 

more realistic values that are obtained from real data.

2. We also estimated reliability based on results from OLS 

regressions. We found that this method tended to yield posi-

tively biased values due to a positively biased individual slope 

variance and overfitting (i.e., the estimated residual variance 

tended to be smaller than the true residual variance). Therefore, 

we decided to use estimates from the multilevel models. This 

approach was also adopted in Neubauer et al. (2019).
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