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Abstract—We consider fragmentation experiments as a set of experimental results for fiber break density as a function of
applied strain. This paper explores the potential for using fracture mechanics or energy methods in interpreting fragmentation
experiments. We found that energy does not control fiber fracture; instead, fiber fracture releases much more energy than
required to fracture the fiber. The excess released energy can lead to other damage mechanisms such as interfacial debonding.
By assuming that all the excess released energy causes interfacial debonding and balancing energy using the energy release rate
for debonding, we were able to determine interfacial toughness from fragmentation experiments. A reliable determination of
interfacial toughness requires prior knowledge of interphase stress-transfer properties, fiber failure properties, actual damage
mechanisms, and the coefficient of friction at the interface.
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1. INTRODUCTION

In the single-fiber fragmentation test [1–6], a single fiber is embedded in a large amount of matrix and the
specimen is loaded in tension until the fiber fragments. The loading is continued until the fragmentation
process ceases. The results of a fragmentation experiment are data for the fiber break or crack density as
a function of applied strain. The inverse of the saturation crack density is known as the critical fragment
length. The goal of the fragmentation test has primarily been to learn about interfacial properties. It is
difficult, however, to extract direct information about the interface from fragmentation results because the
fragmentation process involves multiple failure processes and is influenced by many component mechanical
properties. To learn about interfacial properties, we need to separate interface effects from the other effects
that influence the experimental results.

The most obvious failure process in the fragmentation test is fiber fracture. This fracture is determined
by fiber properties and has nothing to do with the interface. Once there are fiber breaks, however, the
interface may begin to play a role. There are at least two interface properties that can influence the results.
First, the interface plays a role in the ability of the matrix to transfer stress back into the broken fiber.
Stress transfer needs to occur before more fiber fractures take place. Second, the interface itself may fail.
A failed interface will further influence stress transfer and thus change the fragmentation process. Stress
transfer and interfacial failure are distinct properties of the interface. For example, consider a composite
system that has an interphase zone but has an infinitely strong interface. By influencing stress transfer, the
interphase zone will influence the fragmentation results, but the fragmentation results give no information
about interfacial failure because no failure is occurring. Real experiments will involve both stress transfer
effects and interfacial failure effects. Their separate roles must be well understood before fragmentation
results can be expected to give useful information about the interface.

This paper explores the use of fracture mechanics or energy methods for interpreting fragmentation
experiments. To implement energy methods we first need to calculate the strain energy in a fiber fragment
and the energy release rates for fiber fracture, interfacial debonding, or any other relevant failure mechanisms.
We derived some exact linear elasticity results for energy. We were able to express the relevant strain energies
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and energy release rates in terms of only the crack-opening displacement on the fiber, the interfacial shear
stress, and the magnitude of any interfacial slip in the axial direction. These exact results were combined
with a recent accurate stress analysis of the fragmentation test [7] to derive approximate expressions for the
energy release rates due to fiber fracture and to interfacial debonding. Finally, these energy expressions and
some strength models were used to predict fragmentation and fiber/matrix debonding experiments. The new
models include both the stress transfer and failure properties of the interface. The stress transfer properties
are included by using “interphase” parameters in the fragmentation stress analysis. The failure properties are
included by predicting debonding using an interfacial toughness and fracture mechanics methods. The best
models agree well with experimental results, but all models require further confirmation that the assumed
failure mechanisms accurately represent the real failure mechanisms.

2. EXACT THEORETICAL RESULTS

We begin by describing some exact linear-elasticity results about the fragmentation specimen. The boundary
conditions for finding the stresses and energy in a single fiber fragment in a fragmentation specimen are
illustrated in Fig. 1. Region R1 is an anisotropic fiber fragment. It has a circular cross section of radius r1

and a length of l. Region R2 is an infinite, isotropic matrix. The matrix extends from r = r1 to r =∞ and
has a length l. The end conditions on the fiber and matrix are

σzz,1(r, z = ±l/2) = τrz,1(r, z = ±l/2) = 0, (1)

τrz,2(r, z = ±l/2) = 0, (2)

W2(r, z = ±l/2) = ± l
2

(
σ0

Em
+ αmT

)
, (3)

where subscripts “1” and “2” refer to the fiber and matrix, respectively. The fiber axial and shear stresses,
σzz,1 and τrz,1, are zero at the fragment ends because the fiber is fragmented and the ends are the fracture
surface. The matrix shear stresses, τrz,2, are zero and the matrix axial displacement, W2, is constant or is
independent of r. These matrix boundary conditions are required to maintain compatibility of the stress
state in one fragment with that of the adjacent fragment in the specimen. The constant matrix displacement
is determined by the net strain on the infinite matrix. For the uniaxial loading used in fragmentation tests,
the net strain is simply calculated from the applied stress, σ0, the temperature differential, T = Ts − T0

where Ts is the specimen temperature and T0 is the stress-free temperature, and the modulus, Em, and
thermal expansion coefficient, αm, of the matrix.

During the fragmentation test, the interface may become damaged or may become partially or completely
debonded. We therefore consider some additional conditions to describe the state of the interface. We
introduce the square-bracket notation

[f ] = f2(r1, z)− f1(r1, z), (4)

to express the discontinuity in any function at the fiber/matrix interface. Regardless of the state of the
interface, equilibrium dictates continuity in tractions or

[σrr] = [τrz] = 0. (5)

If the interface is intact and perfectly bonded, both the radial (U) and axial (W ) displacements will also
be continuous. The perfect interface conditions are

Perfect Interface : [U ] = [W ] = 0. (6)

Here we will generalize the intact interface to include intact, but imperfectly bonded interfaces. Hashin [8, 9]
has proposed modeling imperfect interfaces in composites by allowing displacement discontinuities. He
further proposed a simple linear relation between displacement discontinuities and the interfacial stress in
the direction of the displacement. The Hashin imperfect interface conditions are

Hashin Imperfect Interface : [U ] =
σrr(r1, z)

Dn
and [W ] =

τrz(r1, z)
Ds

. (7)
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Figure 1. A cross section of a single fiber fragment of length l and radius r1 embedded in an infinite amount of matrix. The
boundary conditions are indicated on the figure and described in the text of the paper (Note that σ0 is the far-field matrix
axial stress; the matrix axial stress at ±l/2 is a function of r).

The constants Dn and Ds are known as interface parameters. Dn = Ds = ∞ corresponds to a perfect
interface; Dn = Ds = 0 corresponds to a debonded interface; intermediate values of Dn and Ds correspond
to an imperfect interface. In composites, Dn and Ds can viewed as modeling an interphase region between
the fiber and the matrix [8, 9]. We will treat Ds and Dn as mechanical properties of the interface that
describe its ability to transfer stress from the matrix to the fiber.

In the fragmentation test, both the tensile loading and the residual thermal stresses promote compressive
radial stresses along the interface except for an extremely small zone near the fiber break [7]. Under domi-
nantly compressive stress situations, [U ] should be zero to prevent penetration of the matrix into the fiber.
Physically, a negative [U ] is allowed and it corresponds to compression of the interphase region. The capacity
for this compression, however, is probably negligible. We claim an imperfect interface in the fragmentation
test can thus be analyzed using

Fragmentation Test Imperfect Interface : [U ] = 0 and [W ] =
τrz(r1, z)

Ds
. (8)

There is thus a single interface parameter — Ds. We are not ignoring the possibility of an imperfect interface
in the radial direction. We are simply exploiting the fact that the radial stresses in the fragmentation test
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are mostly compressive, and, that as a result, an imperfect radial bond has little effect on fragmentation
results.

Next, we consider a completely debonded interface. When the interface is debonded the displacement
discontinuities are no longer related to the interfacial stresses and the interfacial stresses may be zero or
nonzero depending on whether the debonded interface surfaces are separated or in contact. For a frictionless,
debonded interface we have

Frictionless Debonded Interface :


[U ] =

{
0 if σrr(r1, z) < 0,
≥ 0 if σrr(r1, z) = 0,

[W ] 6= 0,
τrz(r1, z) = 0.

(9)

If the debonded interface is in contact, the radial stress will be compressive (σrr(r1, z) < 0) and [U ] must
be zero. If the debonded interface is not in contact, the radial stresses will be zero and [U ] can be greater
than zero as the crack opens. The debonded interface also has zero shear stresses and [W ] may be anything
as the interface slips in the axial direction. For a debonded interface with friction we have

Debonded Interface with Friction :

[U ] =
{

0 if σrr(r1, z) < 0,
≥ 0 if σrr(r1, z) = 0,

[W ] =
{

0 if σrr(r1, z) < 0 and τ(r1, z) < µσrr(r1, z),
6= 0 otherwise,

τrz(r1, z) =
{
µσrr(r1, z) if in frictional slip zone,
≤ µσrr(r1, z) otherwise.

(10)

Regions where the debond surfaces are not in contact (σrr(r1, z) = 0) are identical to the frictionless debond.
Regions where there is contact are further subdivided into regions of frictional slip and regions of no slip. In
the frictional slip zones, τrz(r1, z) = µσrr(r1, z) and there can be slip ([W ] 6= 0). In regions where there is no
slip, the interface acts like a perfect interface ([U ] = [W ] = 0) and all that is known about the shear stress
is that it is less than µσrr(r1, z). The interfacial shear stress must be determined by the stress analysis. A
complicating feature of correctly modeling friction is that the sizes of the slip and contact zones are part of
the problem and cannot be specified in the boundary conditions. Numerous authors have modeled friction by
adding a constant “frictional” stress boundary condition to the interface. This approach may give qualitative
information about the effect of friction, but it is not a correct model for a debonded interface with friction.

For stress analysis of the fragmentation specimen, we introduce a dimensionless coordinate system by
normalizing positions and displacements to the fiber radius

ξ =
r

r1
, ζ =

z

r1
, wi =

Wi

r1
, and ui =

Ui
r1

(11)

In the dimensionless coordinates, the fiber extends from ζ = −ρ to +ρ where

ρ =
l

2r1
, (12)

is the aspect ratio of the fragment. Finally, when using Hashin’s imperfect interface model we use

[w] =
τrz(1, ζ)
ds

, (13)

where the new interface parameter, has units of stress and is given by ds = r1Ds.
We split the stress analysis problem with arbitrary interface conditions into far-field stresses and pertur-

bation stresses. By superposition, we write the exact solution to the fragmentation stress problem as

σij = σ
(∞)
ij + ψ∞σ

(p)
ij , εij = ε

(∞)
ij + ψ∞ε

(p)
ij ,

ui = u
(∞)
i + ψ∞u

(p)
i , wi = w

(∞)
i + ψ∞w

(p)
i .

(14)
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The superscript (∞) indicates solution to the far-field stresses or the stresses for an infinite, unbroken fiber
perfectly bonded to an infinite matrix. As shown in [7] the far-field stresses are:

σzz,1 = ψ∞, σrr,1 = σ∞, σθθ,1 = σ∞, τrz,1 = 0,

σzz,2 = σ0, σrr,2 =
σ∞
ξ2
, σθθ,2 = −σ∞

ξ2
, τrz,2 = 0,

(15)

where ψ∞ and σ∞ are

ψ∞ =
1

2ν2
A

EA
− 1− νT

ET
− 1 + νm

Em

×
[(

2νAνm
EA

− 1− νT
ET

− 1 + νm
Em

)
EAσ0

Em
(16)

+
(

2νA
EA

(αT − αm) +
(

1− νT
ET

+
1 + νm
Em

)
(αA − αm)

)
EAT

]
,

σ∞ =
−(νA − νm)

σ0

Em
+
(
νA(αA − αm) + (αT − αm)

)
T

2ν2
A

EA
− 1− νT

ET
− 1 + νm

Em

. (17)

The anisotropic fiber is assumed to be transversely isotropic with the axial direction of symmetry coinciding
with the axis of the fiber. The terms EA, ET , νA, νT , αA, and αT are the axial and transverse moduli,
Poisson’s ratios, and thermal expansion coefficients of the fiber. The matrix is assumed to be isotropic. The
terms Em, νm, and αm are the modulus, Poisson’s ratio, and thermal expansion coefficient of the matrix.

The superscript (p) indicates the perturbation stresses. The perturbation stresses have been scaled by
the far-field axial stress, ψ∞, in the fiber. The boundary conditions for the perturbation stresses are:

σ
(p)
zz,1(r, z = ±l/2) = −1, τ

(p)
rz,1(r, z = ±l/2) = τ

(p)
rz,2(r, z = ±l/2) = 0,

w
(p)
2 (r, z = ±l/2) = 0.

(18)

There is unit compression on the fiber ends and zero displacement on the matrix ends. Because the temper-
ature differential was already included in the far-field stresses, T = 0 for the perturbation stresses. Because
the far-field stresses are for a perfect interface, the interface conditions given above for an imperfect interface
or a debonded interface are the interface conditions for the perturbation stresses alone. The only exception
is when the interface conditions depend on the magnitude of the radial stresses. These conditions must use
the total radial stress.

By using virtual work and the divergence theorem, it is possible to show that the total strain energy in
the fiber and matrix for ζ between −ρ to +ρ is [7]:

U(ρ) = ρU0 + πr3
1ψ

2
∞

[∫ 1

0

2w(p)
1 (ξ, ρ)ξdξ

−
∫ ρ

−ρ

(
τ

(p)
rz,2(1, ζ)[w(p)] + σ

(p)
rr,2(1, ζ)[u(p)]

)
dζ

]
, (19)

where U0 is an infinite, but constant, term that includes the energy of the far-field stresses. In all interface
conditions, we find that σ(p)

rr,2(1, ζ)[u(p)] = 0. Thus the total energy reduces to

U(ρ) = ρU0 + πr3
1ψ

2
∞

[∫ 1

0

2w(p)
1 (ρ)ξdξ −

∫ ρ

−ρ
τ

(p)
rz,2(1, ζ)[w(p)]dζ

]
. (20)



246 J. A. Nairn and Y. C. Liu

This equation is an exact expression of strain energy in a fiber/matrix fragment. The first integral is a crack
closure integral over the fiber fracture surface. The crack-opening displacement (ψ∞r1w1(ρ)) is multiplied by
the crack-closure force (2πrψ∞dr) and integrated over the fracture surface. The second integral is a closure
integral for the imperfect or debonded interface. If the interface is perfect, this term is ignored. Because
an imperfect or debonded interface allows the system to slip the total energy is reduced by an imperfect or
debonded interface.

We next explicitly consider debond zones at each end of the fragment of dimensionless lengths δ1 and δ2.
Formally, equation (20) still applies, but we should account for the possibility of unequal debond zones and
the resulting asymmetry about ζ = 0. The total energy becomes

U(ρ, δ) = ρU0 + πr3
1ψ

2
∞

{∫ 1

0

[
w

(p)
1 (ξ, ρ)− w(p)

1 (ξ,−ρ)
]
ξdξ

−
∫ −(ρ−δ1)

−ρ
τ

(p)
rz,2(1, ζ)[w(p)]dζ

−
∫ (ρ−δ2)

−(ρ−δ1)

τ
(p)
rz,2

2
(1, ζ)
ds

dζ −
∫ ρ

ρ−δ2
τ

(p)
rz,2(1, ζ)[w(p)]dζ

}
, (21)

where δ = (δ1 + δ2)/2 is the average debond length (many results in this paper will depend only on δ and
not on the specific values of δ1 and δ2). We have accounted for unequal debond sizes by including fiber
displacements at both ends of the fragment. We have further split the interfacial shear stress term into
integrals over the two debond zones and the central intact zone. Finally, for the central intact zone we have
used Hashin’s imperfect interface model to eliminate [w(p)]. To find the strain energy we need to find the
fiber end displacements, the interfacial shear stress and displacement discontinuity in the debond zones, and
the interfacial shear stress in the central intact, albeit perhaps imperfectly bonded, central zone.

When the fiber fractures during a fragmentation test, energy is released. Assuming that the fiber fracture
occurs in the middle of a fragment of aspect ratio ρ with average debond length δ resulting in two fragments
of aspect ratio ρ/2 and average debond lengths δ/2, the fiber fracture energy release rate is

Gf (ρ, δ) =
U(ρ, δ)− 2U(ρ/2, δ/2)

πr2
1

. (22)

This energy release rate includes only the change in internal strain energy because the infinite matrix prevents
any contribution from external work. Energy is also released by debond growth. If the average debond size
increases by dδ, the total debond area increases by 4πr2

1dδ; thus the energy release rate for debond growth
is

Gd(ρ, δ) = − 1
4πr2

1

∂U(ρ, δ)
∂δ

. (23)

If the energy released by fiber fracture exceeds the energy required to fracture the fiber, the excess released
energy may cause further damage to the fragmentation specimen. Some observed damage mechanisms are
conical or straight cracks extending into the matrix [10, 11] and interfacial damage or debonding [12]. Here
we will consider only the case where the excess released energy leads to interfacial damage or debonding.
We begin with a fiber fragment of aspect ratio ρ and initial average debond length of δi. We assume the
fiber fragments in the middle, and therefore splits into two fragments of aspect ratio ρ/2 and average debond
lengths of δi/2. If the fiber fracture event is followed by a simultaneous increase in average debond length
to δf , the total energy released due to fiber fracture and debonding is

−∆U(ρ, δ∗) = U(ρ, δi)− 2U(ρ/2, δf )

= πr2
1Gf (ρ, δi) + 8πr2

1

∫ δf

δi/2

Gd

(ρ
2
, δ
)
dδ, (24)

where δ∗ = 2(2δf − δi) is the total amount of simultaneous debonding.
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3. APPROXIMATE THEORETICAL RESULTS

The results in the previous section are all exact provided we have an exact solution for the perturbation
stresses. Unfortunately, no exact solution exists and we must therefore resort to using an approximate
solution. We could use numerical solutions from finite element analyses, but the goal of this paper is to
get analytical results. The most accurate solution for a fragmentation specimen with an imperfect interface
is given in [7]. In brief, [7] presents a stress function solution based a Bessel-Fourier series. The solution
exactly satisfies equilibrium and compatibility. It further satisfies most boundary conditions exactly. The
single approximation is that the axial stress in the fiber at the fiber break is not exactly equal to zero, but
rather only equal to zero when averaged over the fiber break surface. All the information from [7] required
for the calculations in this paper are given in the Appendix.

First, consider a fragment with no debonds but possibly with an imperfect interface. From the Bessel-
Fourier analysis [7], the fiber end displacement is

w
(p)
1 (ξ, ρ) = ρ

B3(ρ)(1− νT )
2GT

(ξ2 − 1), (25)

where B3(ρ) is the B3 constant in the Bessel-Fourier analysis for a fragment of aspect ratio ρ. Making use of
the imperfect interface condition [w(p)] = τrz,2(1, ζ)/ds and doing the integrations in equation (20) we find

U(ρ, 0) = ρU0 − πr3
1ψ

2
∞F (ρ), (26)

where

F (x) =
xB3(x)(1− νT )

4GT

+
x

ds

∞∑
i=1

[
a2

0iK
2
1 (ki)− 2a0ia1i

(
2(1− νm)K2

1 (ki)− kiK0(ki)K1(ki)
)

+ a2
1i

(
2(1− νm)K1(ki)− kiK0(ki)

)2]
, (27)

and the constants in the summation term (a0i, a1i, and ki) are evaluated for a fragment of aspect ratio x.
We can immediately write the energy release rate for fiber fracture as

Gf (ρ, 0) = r1ψ
2
∞ [2F (ρ/2)− F (ρ)] . (28)

To evaluate Gf (ρ, 0) we must evaluate F (x) using the Bessel-Fourier series analysis given in the Appendix.
The Bessel-Fourier solution is given in terms of an infinite series. For numerical calculations this series is
truncated at some finite number of terms. To get convergence, we need to include terms with sufficiently
high frequency (ki) to be able to represent the stress state near the fiber break. Because ki = iπ/ρ, the
number of terms required for convergence is proportional to ρ. We found the proportionality constant to be
close to 1 and therefore convergence requires the use of roughly ρ terms. Figure 2 plots Gf as a function
of fiber break density or crack density for an isotropic glass fibers in a polymer matrix for various values
of ds (see Table 1 for a list of material properties used for the calculations in this paper). For all values
of ds, Gf (ρ, 0) is constant at low crack density and decreases at high crack density. The constant value
at low crack density is the long-fragment limit where there are no interactions between fiber breaks. For
this system, the long-fragment limit is for crack densities less than 0.5 mm−1. The decrease at high crack
densities is a consequence of interactions between fiber breaks. Gf (ρ, 0) is strongly influenced by ds. When
ds is low, the interface can slip after fiber fracture. At low crack density, this slip releases extra energy and
causes Gf (ρ, 0) to be higher than when the interface is perfect. But, at high crack density, Gf (ρ, 0) is lower
when ds is low because the available energy was already released by the slip at low crack density.

To analyze debond effects, we include debond zones on either end of the fragment of lengths δ1 and δ2
giving an average debond length of δ = (δ1 + δ2)/2. We thus split the fiber fragment into three zones. The
two debond zones emanate from the two fiber breaks; the central zone has aspect ratio ρ−δ. We assume that
the central zone has an intact interface, but it may have an imperfect interface characterized by interface
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Table 1.
Thermal and mechanical properties used for the fibers and matrices in the calculations in this paper. The epoxy properties are
for the epoxy used in [17]. The polymer properties are for the UV-curable polymer used in [12].

Property T50 Carbon Epoxy E Glass Polymer

Diameter (2r1) (µm) 7 15
Tensile Modulus (EA or Em) (GPa) 390 2.6 72 1.68
Transverse Modulus (ET ) (GPa) 14
Axial Shear Modulus (GA or Gm) (GPa) 20 0.97 30 0.62
Axial Poisson’s Ratio (νA or νm) 0.20 0.34 0.20 0.355
Transverse Poisson’s Ratio (νT ) 0.25
Axial CTE (αA or αm) (10−6/◦C) -0.36 40 5.4 40
Transverse CTE (αT ) (10−6/◦C) 18

parameter ds. The boundary conditions on the debond zones have the fragment end conditions on one end
and continuity of displacements and stresses with the central zone on the other end. The interface conditions
in the debond zone are the conditions for interfaces with or without friction. The interface conditions with
friction are difficult to do correctly. For the purpose of illustrating energy methods, we will ignore friction
effects. Some possible consequences of friction are covered in the discussion. We thus proceed with an
analysis of a frictionless debond zone.

Stresses in a frictionless debond zone can be recovered from the Bessel-Fourier analysis by taking the
limit as ds → 0. Because there is no shear stress at the interface, there is no stress transfer and the constants
cji and B3 become zero. We cannot find B2 from equation (A13) in the Appendix, because that expression
came from an axial displacement relation [7] that is no longer relevant during friction slip. Because there is
no stress transfer, however, the perturbation fiber axial stress remains constant at −1. From equation (A1)
in the Appendix we find B2 = −1. Equation (A14) in the Appendix can be used, because it was derived

0 1 3 4 5 6 82

Crack Density (mm-1)

7
0.0

0.5

1.0

1.5

2.0

2.5

G
f(ρ

,0
) 

(m
J/

m
2 )

ds = ∞

ds = 1000 MPa

ds = 300 MPa

Figure 2. Gf (ρ, 0) as a function of crack density for various values of ds using ψ∞ = 1. The plot is for isotropic glass fibers
in a polymer matrix.
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from radial conditions [7]; it gives

B1 = −

νA
EA

1 + νm
Em

+
1− νT
ET

, (29)

In summary, within frictionless debond zones the perturbation axial fiber stress is −1, there are no shear
stresses, and the perturbation axial strain in the fiber, ε(p)

d , is constant:

ε
(p)
d = − Q

EA
, where Q = 1−

2ν2
A

EA
1 + νm
Em

+
1− νT
ET

. (30)

This debond-zone result holds for both isotropic and anisotropic fibers.
For the central zone, we note that the shear stress and fiber axial stress end conditions are identical to

the end conditions used when analyzing a fragment with no debonds. We thus will approximate the stresses
in the central zone by the stresses in a fragment of axial ratio ρ− δ having no debonds. To find the the total
energy in a fragment with debonds, we use equation (21) and write the displacement difference between the
two fiber ends as the sum of the displacements across the debond zones and the central zone:

w
(p)
1 (ξ, ρ)− w(p)

1 (ξ,−ρ) = −2δQ
EA

+ 2w(p)
1 (ξ, ρ− δ) (31)

Combining this result with zero interfacial shear stress in the debond zones and the shear stress for a fragment
of axial ratio ρ− δ in the central zone, the total energy is

U(ρ, δ) = ρU0 − πr3
1ψ

2
∞

[
δQ

EA
+ F (ρ− δ)

]
. (32)

The energy release rate for fiber fracture in the presence of debonds without any additional debonding is

Gf (ρ, δ) = Gf (ρ− δ, 0). (33)
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Figure 3. Gd(ρ, δ) as a function of debond length for various values of ds using ψ∞ = 1. The plot is for isotropic glass fibers
of aspect ratio ρ = 50 in a polymer matrix.
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The energy release rate for debonding is

Gd(ρ, δ) =
r1ψ

2
∞

4

[
Q

EA
− F ′(ρ− δ)

]
. (34)

Figure 3 plots Gd(ρ, δ) as a function of average debond length for an isotropic glass fiber of aspect ratio
ρ = 50 in a polymer matrix for various values of ds. All curves approach the same asymptotic limit for short
debond lengths. As the debond grows, Gd(ρ, δ) drops, eventually reaching zero for complete debonding
(δ = ρ). Gd(ρ, δ) drops because the debond is encroaching on the neighboring fiber break and its debond.
The drop is faster as ds gets lower. The asymptotic limit at short debond length is the long-fragment limit
or the result when there are no interactions between neighboring fiber breaks. As stated previously, Gf (ρ, 0)
has a long-fragment limit which occurs because F (x) becomes constant for large x. We thus obtain a simple
long-fragment limit for Gd(ρ, δ) of

lim
(ρ−δ)→∞

Gd(ρ, δ) =
r1ψ

2
∞Q

4EA
. (35)

This limiting energy release rate is independent of both debond length and interface parameter ds.
There is a new assumption in the debond analysis that was not present in the analysis without debonding.

Although the shear stresses and fiber axial stresses are continuous at the junction between the debond
zones and the central zone, the matrix tensile stress and radial displacements will not be continuous. As a
consequence, this analysis ignores the details of the debond crack-tip stresses. For calculating energy release
rates, we should consider the amount of energy released by the crack-tip stress. We claim that provided
the debond crack tip is not too close to the fiber break that the crack tip stresses will remain unchanged as
the debond propagates and therefore will release no energy. Some finite element calculations show that the
debond crack-tip stresses are highly localized and release no energy for debond lengths greater than a few
fiber diameters. For very short debond lengths, they do release energy and cause G(ρ, δ) to increase [13]. In
summary, the Gd(ρ, δ) results here are accurate provided δ is greater than a few fiber diameters.

4. FRAGMENTATION WITH NO DEBONDING

The energy results derived in the previous section can be used as tools for analyzing fragmentation experi-
ments. We begin by assuming that no debonding occurs during fragmentation. The implication is that the
interface remains undamaged and that the fragmentation is purely a fiber failure test. The results, however,
may be influenced by the ability of the intact interface to transfer stress which is characterized here by the
interface parameter ds. Although ignoring debonding is not a realistic model, we claim that the discrepan-
cies between a zero-debonding analysis and experimental data are the information inherent in fragmentation
experiments that might give information about interfacial failure.

We first attempt a fiber fragmentation prediction based on energy release rate for fiber fracture. It is now
known that the density of microcracks in cross-ply laminates as a function of applied load can be predicted
by assuming the next microcrack forms when the energy release rate for matrix cracking equals the matrix
microcracking toughness [14–16]. For an analogous model of the fragmentation test, we assume the fiber
fractures when Gf (ρ, 0) = Gfc where Gfc is the fracture toughness of the fiber. Equating Gfc to Gf (ρ, 0)
and solving for ψ∞ gives

ψ∞ =

√
Gfc

r1 [2F (ρ/2)− F (ρ)]
. (36)

Given ψ∞ and a level of thermal stresses, T , we can calculate applied strain as a function of ρ or of crack
density. Reversing this plot we predict crack density as a function of applied strain.

To judge the usefulness of the fiber-fracture energy model we compared predictions to experiments for
T50 carbon fibers in an epoxy matrix [17]. From Raman experiments for stress transfer into similar carbon
fibers [18], we can estimate that ds for these fibers is about 300 MPa [7]. The best fit to the fragmentation
data using ds = 300 MPa is given in Fig. 4; this fit required using Gfc = 4600 J/m2. The prediction rises
much more sharply than the experimental results. Although, this discrepancy could be corrected by allowing
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the fiber toughness to depend on fragment length, there is a second problem which is more severe — the best
fit Gfc is unreasonably high. It is unlikely that T50 carbon fibers have a toughness in excess of 4000 J/m2.
In an attempt to improve the fit, we allowed ds to be an adjustable parameter. The resulting fit is better, but
the initial rise is still too steep. Furthermore, the best fit parameters of ds = 40 MPa and Gfc = 10000 J/m2

are unrealistic — ds is too low to be consistent with Raman experiments [7, 18] and Gfc is too high for
brittle carbon fibers.

We conclude that fiber fracture in the fragmentation test is not controlled by the energy release rate for
fiber fracture. We instead turn to the more conventional interpretation of fiber fragmentation whereby the
fiber fragments when the stress in the fiber reaches the length-dependent strength of the fiber. Assuming the
fiber fragments in the middle (the point of highest tensile stress), we need to solve 〈σzz,1(l : ζ = 0)〉 = σult(l)
where 〈σzz,1(l : ζ = 0)〉 is the average fiber stress in the middle of the fragment or length l (or aspect ratio
l/2r1) and σult(l) is the length-dependent strength of the fibers. Proceeding as before we can solve for ψ∞
as a function of fragment length to get

ψ∞ =
σult(l)

1 +
〈
σ

(p)
zz,1(l : ζ = 0)

〉 . (37)

Given ψ∞ and a level of thermal stresses, T , we can calculate applied strain as a function of l or of crack
density (1/l). Reversing this plot we get crack density as a function of applied strain. Any representation of
fiber strength may be implemented in this analysis. The most common strength model is the two-parameter
Weibull model, where the strength as a function of l is

σult(l) = σ0l
− 1
β Γ
(

1 +
1
β

)
. (38)

Here σ0 and β are the two Weibull parameters and Γ(x) is the Gamma function. An alternate empirical
approach is to fit experimental fiber strength results to a semi-log plot

σult(l) = β1 + β2 log l. (39)
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Figure 4. Predicted fragmentation results using a energy failure criterion for the fiber with no debonding compared to actual
experiments. The two fits use ds = 300 MPa and Gfc = 4600 J/m2 or ds = 40 MPa and Gfc = 10000 J/m2. The experimental
data are for T50 carbon fibers in an epoxy matrix.
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Comparisons of the fiber strength model for various values of ds to experimental results are given in
Fig. 5. For the fiber strength properties we used the experimental results given in [17]; they showed that
fiber strength follows a semi-log relation with β1 = 3750 MPa and β2 = 817 MPa. The fits at low crack
density are excellent and are independent of the interface parameter. The zero-debonding, fiber strength
model is thus valid for low crack density. At higher crack density the experimental results plateau at a
critical crack density. The perfect interface fit (ds = ∞) never reaches a critical length. As ds gets lower,
the prediction does bend over, but it never fits the experimental results.

5. FRAGMENTATION WITH DEBONDING

The fiber-strength model is a reasonable model for predicting fiber failures. Although fiber failure is not
controlled by energy, Gf (ρ, 0) is still a correct result for calculation of the amount of energy released when
the fiber does break. During fragmentation of T50 carbon fibers, the energy released is large — 4600 to
10 000 J/m2 depending on the value of ds. Some of this energy will go into to fracturing the fiber, but the
fracture of brittle carbon fibers probably requires very little energy. The remaining excess released energy
may cause other damage in the specimen. Here we are considering debonding damage and thus consider
modeling fragmentation when all the excess energy leads to growth of debonding

Consider an initial fragment of aspect ratio ρ with average debond length of δi. At some load this fragment
breaks in the middle of the intact zone creating two fragments. We assume that the excess energy released
by the fiber fracture causes debonding and therefore the average debond sizes in the two new fragments
increase from δi/2 to δf ; in other words there is a simultaneous average debond growth of δf − δi/2 in each
fragment or a total amount of simultaneous debond growth of δ∗ = 2(2δf − δi). The total energy released
due to fiber fracture and debonding is

−∆U(ρ, δ∗) = πr2
1Gf (ρ− δi, 0) + 8πr2

1

∫ δf

δi/2

Gd

(ρ
2
, δ
)
dδ. (40)
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Figure 5. Predicted fragmentation results using a fiber strength model with no debonding for various values of ds compared
to actual experiments. The experimental data are for T50 carbon fibers in an epoxy matrix.
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Integrating Gd(ρ/2, δ) we find

−∆U(ρ, δ∗) = πr2
1Gf (ρ− δi, 0)

+ πr3
1ψ

2
∞

[
δ∗Q

2EA
+ 2F

(
ρ− δi

2
− δ∗

4

)
− 2F

(
ρ− δi

2

)]
. (41)

Reference 12 proposed that the extent of simultaneous debonding can be predicted by equating the energy
released by fiber fracture and debonding to the energy absorbed by the fracture surfaces. Thus, to predict
δ∗, we equate −∆U(ρ, δ∗) to

Energy Absorbed = πr2
1Gfc + 2πr2

1Gdcδ
∗, (42)

where Gfc is the fiber toughness and Gdc is the interface toughness. The result, after partially solving for
δ∗, is

δ∗ =
2EA

{
Gf (ρ− δi, 0)−Gfc + 2r1ψ

2
∞

[
F
(
ρ− δi

2 − δ∗
4

)
− F

(
ρ− δi

2

)]}
4EAGdc − r1ψ2

∞Q
. (43)

When analyzing fragmentation data, this equation must be solved numerically. The numerical process will
only yield a solution if there is enough intact interface remaining to be able debond and absorb the energy
released by the fiber. The maximum amount of interface that can debond is δ∗ = 2(ρ− δi). For a possibility
of energy balance, we thus require

Gf (ρ− δi, 0)−Gfc < 4Gdc(ρ− δi)− r1ψ
2
∞

[
(ρ− δi)Q

EA
− 2F

(
ρ− δi

2

)]
, (44)

where we have used the fact that F (0) = 0. If this inequality does not hold, the equation for δ∗ cannot be
solved. This condition physically corresponds to complete debonding after fiber fracture.

Equation (43) must be solved numerically because δ∗ appears as an argument in F (x). The situation
simplifies in the long-fragment limit where F (x) becomes constant. In the long-fragment limit, the analytical
expression for δ∗ is

δ∗ =
2EA

(
limρ→∞Gf (ρ, 0)−Gfc

)
4EAGdc − r1ψ2

∞Q
. (45)

This result is very similar to the analogous long-fragment result in [12], but there are several differences.
First, equation (45) includes the effect of residual thermal stresses through terms in ψ∞. The result in [12]
ignored residual thermal stresses and has fiber stress, σf in place of ψ∞. The results in [12] can simply be
corrected for residual stresses by replacing σf by ψ∞. Second, the one-dimensional analysis in [12] had a
long-fragment limit for Gd(ρ, δ) of

lim
(ρ−δ)→∞

Gd(ρ, δ) =
r1ψ

2
∞

4
1
EA

, (46)

which implies that Q = 1. This discrepancy is small because Q ≈ 1 when the fiber modulus is much greater
than the matrix modulus. The results in [12] can simply be corrected by including Q in the debonding
energy release rate term.

The third, and most significant, difference between equation (45) and [12] is the method for finding
the long-fragment limit for Gf (ρ, 0). Here we used the Bessel-Fourier series analysis and accounted for the
possibility of an imperfect interface (using ds). Reference 12 used a one-dimensional, shear-lag analysis and
derived

lim
ρ−∞

Gf (ρ, 0) =
r1ψ

2
∞

Ef

(
1
βsl
− βslEf

16Gf

)
, (47)

where

βsl =

√√√√ 2Gm

Ef ln
(
R
r1

) (48)
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is a “shear-lag” parameter. The parameter βsl depends on the radius R of a fictitious stress concentration
cylinder around the fiber. Because this radius is unknown, the shear-lag analysis gives an uncertain result.
The new approach here has no unknown parameters and thus gives an explicit result for δ∗ for a given value
of ds.

Figure 6 plots the long-fragment results for δ∗ in equation (45) for various values of ds and for the shear
lag result in [12]. The shear-lag plot used the recommended value R/r1 = 4 [12]. The shear-lag result is
effectively equivalent to the Bessel-Fourier analysis in this paper, but is offset from any particular ds result
by the uncertainty in finding limρ−∞Gf (ρ, 0). This uncertainty is caused by the need to choose some value
for R/r1. The choice made in [12] was an excellent one for modeling a perfect interface. In principle, the
results in this paper could be used to “calibrate” the shear-lag analysis by calculating the value of R/r1

required to predict δ∗ for any given value of ds. An advantage of the new result in equation (45) is that no
calibration is required.

We next consider modeling a complete fragment test using equation (43) rather then the long-fragment
result in equation (45). The analysis begins by assuming an initial long fragment (such that all equations are
in the long-fragment limit). Then, using the fiber strength failure model and equation (45), we can find ψ∞
(or equivalently applied strain) for the first fiber break and δ∗ or the amount of debonding caused by the first
fiber break. After the first fiber break, the average debond size becomes δi = δ∗/4. Once δi is known, we use
the fiber strength model (equation (37)) to find ψ∞ for failure of a fragment of length l = 2r1(ρ − δi) and
equation (43) to find the amount of additional debonding. Finally, we use δ∗ to find δf after the fiber break.
This new value of δf becomes the input δi for finding the next fiber break. The end result is a calculation
of both crack density and δ∗ as a function of applied strain.

Comparisons of the fiber strength model with simultaneous debonding to experimental results are given
in Fig. 5. The fit assumed a perfect interface (ds =∞) and assumed Gfc = 10 J/m2 and Gdc = 30.5 J/m2.
The value of Gfc is irrelevant as long as it is much less then the approximately 4000 J/m2 released by fiber
fracture events. The value of Gdc has a much larger effect and can be varied to fit the high strain results.
Gdc is the only parameter in the analysis; thus by fitting fragmentation data we obtain an experimental
result for interface toughness. The result for Gdc, however, depends on the value of ds. As ds gets lower the
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Figure 6. Long-fragment result for δ∗ as a function of applied strain. The curves are for various values of ds and for the the
analogous shear-lag predictions. This plot is for isotropic glass fibers in a polymer matrix and assumed that Gdc = 200 J/m2.
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value of Gdc gets higher. Thus, to correctly determine Gdc, it is desirable to have a separate measurement
of ds perhaps obtained by analysis of Raman experiments on stress transfer [7, 18].

The fact that we can fit fragmentation data is insufficient justification for the validity of the model. The
model assumes a specific failure mechanism — that all the excess energy released by fiber fracture goes into
causing debonding. If this failure mechanism is wrong, the model should not be used or should be modified
to include a realistic failure mechanism. Thus all fragmentation models should be verified by experimental
observations of interfacial failure mechanisms. For example, Fig. 7 also plots δ∗ as a function of applied
strain. The debonding predictions should be checked by comparing to debond observations; unfortunately,
[17] did not report debonding results. Note that δ∗ is the amount of debond growth occurring immediately
after fiber fracture. If experimental observations of debonding measure average debond size over the entire
specimen, then experiments should be compared to δi instead of δ∗; δi can simply be calculated from δ∗.

There are very few reports of measured debond lengths during fragmentation that can be used to test the
debonding model. Wagner et al. [12] gives some partial results; they measured debond length as a function of
applied strain at low crack density or in the long-fragment limit. We can compare their results to predictions
using the long-fragment result in equation (45); a fit of Wagner’s data [12] to equation (45) is given in Fig. 8.
This fit used ds =∞ and Gdc = 200 J/m2. Their is significant scatter in the data, but the fit can be used to
derive an estimate for interfacial toughness. The Gdc value here is slightly lower than the Gdc = 264 J/m2

result in [12]. This discrepancy is caused by the different expressions used to find δ∗. Both of these values
are reasonable toughness values for an interface between glass fibers and a polymer matrix.

6. DISCUSSION

The goal of this paper was to investigate the use of fracture mechanics or energy methods for analyzing
fragmentation experiments. All energy methods rely first on deriving an accurate stresses analysis for the
fragmentation specimen and second on using that stress analysis to evaluate energy release rates for all
relevant failure mechanisms. Here we considered only fiber fracture and debonding. We needed to calculate
the axial stress in the fiber, the energy release rate for fiber fracture, and the energy release rate for interfacial
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Figure 7. Predicted fragmentation and debond growth results using the fiber strength model with simultaneous debonding
compared to actual experiments. The prediction assumed a perfect interface (ds = ∞), a fiber toughness of Gfc = 10 J/m2,
and a debonding toughness of Gdc = 30.5 J/m2. The experimental data is for T50 carbon fibers in an epoxy matrix.
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Figure 8. Long-fragment δ∗ as a function of applied strain compared to experimental data. The fit curve used ds = ∞ and
Gdc = 200 J/m2. The data is for E-glass fibers (with diameter 2r1 = 18.4 µm) in a polymer matrix.

debonding. All calculations were done using the Bessel-Fourier series analysis in [7]. In this section, we
consider the accuracy of the required calculations.

First, fiber fracture is predicted to occur when the stress in the middle of a fragment of aspect ratio ρ−δi
(the point of highest tensile stress) becomes equal to the strength of the fiber for that length or when

ψ∞
(

1 +
〈
σ

(p)
zz,1(ρ− δi : ζ = 0)

〉)
= σult(ρ− δi). (49)

Thus, predicting fiber fracture involves accurately determining the average perturbation axial stress in the
middle of the fiber fragment. Now, recall that the Bessel-Fourier series method is an exact elasticity solution
except for the axial stress end condition on the fiber. By Saint-Venant’s principle, the stress solution is
expected to be exact except for regions near the fiber break. Because 〈σ(p)

zz,1(ρ− δi : ζ = 0)〉 is evaluated as
far away from the break as possible, it is expected to be very accurate.

Calculating the amount of energy released by a fracturing fiber, Gf (ρ − δi, 0), is a much harder prob-
lem. The solution is equivalent to solving the fracture mechanics problem for a penny-shaped crack in a
heterogeneous structure — a problem which has not yet been solved. In an attempt to judge the accuracy
for Gf (ρ − δi, 0), we compared it to finite element analysis (FEA) calculations. The comparison, shown in
Fig. 9, shows that the Bessel-Fourier result agrees with FEA results at high crack density, but is a factor of
two higher than the FEA results at low crack density. The low crack density results are important because
they include the long-fragment limit result for Gf (ρ, 0). Unfortunately, it is not certain whether or not the
FEA results are correct. The FEA calculation involves selecting a mesh around a crack tip at a bimaterial
interface with two materials that differ significantly in their mechanical problems. The FEA results are mesh
dependent; i.e., they are not converged. As we continued to refine the mesh within the limits of computer
memory and implemented crack-tip elements, the FEA result for Gf (ρ, 0) continued to increase. We suggest
that the correct result for Gf (ρ, 0) lies between the Bessel-Fourier analysis and the FEA calculations.

Accurately calculating Gf (ρ, δi) remains an important problem for using energy methods to analyze
fragmentation experiments. We have recently tried to refine the Bessel-Fourier series analysis [19]. In brief,
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Bessel-Fourier analysis. The plot is for isotropic glass fibers in a polymer matrix with a perfect interface (ds = ∞) using
ψ∞ = 1.

we can add more terms to the fiber stress function that are consistent with all boundary conditions, but
contribute non-zero axial stress on the fiber break surface. These extra terms allow us to compensate for the
errors in the fiber end stress inherent in the initial Bessel-Fourier series [7]. With enough extra terms, the
axial stress on the fiber break can be made arbitrarily close to zero (or −1 in the perturbation stresses). In
theory, the refined calculation can therefore be made arbitrary close to the exact result. Figure 9 includes
a plot of Gf (ρ, 0) calculated using the refined Bessel-Fourier series analysis [19]. The results fall between
the initial Bessel-Fourier analysis and the FEA results, but are still 50% higher than the FEA results at
low crack density. We are currently exploring alternative techniques that can resolve the question about the
correct result for fiber fracture energy release rate.

We used an very simple analysis to find the energy release rate for debonding, Gd(ρ, δ), for the case of
a frictionless interface. Despite its simplicity, Gd(ρ, δ) is expected to very accurate except for very short
debond lengths (δ less than a few fiber diameters). The concern about Gd(ρ, δ) is not its accuracy, but the
effect of friction which is expected to present in real experiments. In the presence of friction, the interface
will slip less than when it is frictionless. The consequence of less slippage is that Gd(ρ, δ) will be lower. The
lowering effect will depend on the coefficient of friction.

When analyzing fragmentation experiments with simultaneous debonding, the extent of debonding can be
estimated without any knowledge of Gd(ρ, δ). Revising the fiber-strength failure model to include a debond
zone we can write

ψ∞ =
σult(ρ− δi)

1 +
〈
σ

(p)
zz,1(ρ− δi : ζ = 0)

〉 . (50)

Given experimental data for ψ∞ (calculated from applied strain and thermal load, T ) and ρ (calculated
from crack density), we can solve equation (50) for debond size or δi. In brief, the debond size can be back
calculated from experimental data by looking at the difference between a zero-debonding analysis and the
experimental results. This calculation will be inaccurate at low crack density, where the difference between
experiments and zero-debonding predictions are small (see Fig. 5), but it will give a good estimate of δi at
high crack density. The need for Gd(ρ, δ) arises when the goal is to deduce an interfacial toughness from
experimental debond lengths. The results in Fig. 7 show that a frictionless analysis fits the results well
and gives us one estimate of Gdc. Because there is no room for improvement, adding the effect of friction
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cannot improve the model. What adding friction will do, however, is change the value of Gdc required to
fit experimental results. As the coefficient of friction increases, the apparent value of Gdc will also increase.
In summary, it will be a useful exercise to include friction in the analysis for Gd(ρ, δ). An accurate friction
analysis, however, will provide no benefit in interpreting fragmentation results unless there are independent
experimental results that provide the coefficient of friction.

A complete set of fragmentation experiments includes the fiber break or crack density as a function of
applied strain. Modeling such experiments using energy methods requires input of fiber strength properties,
the stress-transfer properties of the intact interface, ds, the fiber toughness, the interfacial toughness, and
the coefficient of friction for the interface. It appears impossible to deduce all require input properties by
analysis of fragmentation results alone. Thus, fragmentation experiments should always be supplemented
by other experiments. Fiber strength properties can be measured by experiments on isolated fibers. The
interfacial stress-transfer properties can be measured using Raman spectroscopy [7, 18]. We need to develop
methods for measuring the coefficient of friction. Given these input material properties, the fragmentation
test provides the potential for measuring interfacial toughness, Gdc. Before a deduced Gdc can be claimed
to be an interfacial toughness, the model predictions must be compared to observations of debond sizes. If
this comparison reveals errors, then the analysis will need to be modified to account for the actual failure
mechanisms. Many other possible failure mechanisms will be amenable to the energy methods outlined in
this paper.
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APPENDIX

In a recent paper [7], the stresses in a fiber fragment in a fragmentation specimen were analyzed using a Bessel-Fourier series
stress function. The stress analysis satisfies equilibrium and compatibility exactly. It further satisfies all boundary conditions
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exactly except for the perturbation axial stress on the fiber end. Instead of the perturbation fiber end stress being exactly -1,
only the average perturbation fiber end stress is equal to -1. Substituting the stress function in [7] into the equations in [20] it
is possible to find any component of stress, strain, or displacement. Here we quote only those results from [7] that are necessary
for the calculations in this paper. The required results for a transversely isotropic fiber are〈

σ
(p)
zz,1

〉
= B2 +

B3d

2
+B3

∞∑
i=1
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[
c1i

(
c
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− d
)
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]
, (A1)
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)
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[
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+B3
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i
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− d+ 2νAa

EA

)
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,
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,

where

〈
σ

(p)
zz,1

〉
is the average fiber stress. The shear stress in the isotropic matrix is

τ
(p)
rz,2 = B3

∞∑
i=1

sin kiζ
[
c3i (−K1(kiξ)) + c4i

(
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)]
(A4)

Unfortunately, the stresses for an isotropic fiber are not a special case of the anisotropic fiber. The required results for an
isotropic fiber are〈
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where Ef , Gf , and νf are the Young’s and shear moduli and Poisson’s ratio of the fiber. In the above equations, I0(x) and
I1(x) are modified Bessel functions of the first kind, K0(x) and K1(x) are modified Bessel functions of the second kind,

ki =
2r1iπ

l
=
iπ

ρ
, and βji =

ki

sj
(A8)

where
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(A9)
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and

a =
−νA(1 + νT )

1− ν2
A
ET
EA

, b =
νT − νAET

EA

(
EA
GA
− νA

)
1− ν2

A
ET
EA

,

c =

EA
GA
− νA(1 + νT )

1− ν2
A
ET
EA

, d =

EA
2GT

(1− νT )

1− ν2
A
ET
EA

.

(A10)

The remaining terms (B1, B2, B3 and cji) are unknowns that must be determined from the boundary and interface
conditions. For an anisotropic fiber imperfectly bonded to a matrix with an interface parameter, ds, the cji constants are found
by solving a 4× 4 linear system for each term in the Bessel-Fourier series. In matrix form, the linear systems are
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Once the cji are known, the remaining constants can be found using
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When the fibers are isotropic, the equations for cji are
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and the remaining constants are given by
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