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Abstract— The use of Fourier descriptors (FD) for the 
assessment of frequency coupling matrices (FCM) of power 
electronic devices is considered. After some recalls on FDs, FCM 
approach is discussed showing how the matrices elements can be 
built basing on the use of maximum two FDs under linearity 
hypothesis. Then, a non-linearity index that allows to check the 
validity of the assumed "linearity hypothesis" and to quantify 
the obtainable accuracy is introduced. Numerical simulations on 
two very simple non linear circuits are performed to show the 
sensitivity of the FCM elements to magnitude and phase angle 
variation of the background harmonic distortion using FDs and 
the usefulness and the behavior of the non linearity index.

Index Terms-- Frequency Coupling Matrices, Fourier 
Descriptors, Harmonics, Non-linear equipment, Power Quality. 

I. INTRODUCTION

OURIER descriptors (FD) are commonly used in image 
recognition for the classification of closed looped objects 
[1], [2].  

Frequency domain modeling of Power Electronic (PE) 
devices is a very commonly used approach to model the 
harmonic emission of modern power electronic devices in 
distribution networks [3], [4]. 

Frequency Coupling Matrices (FCM) are tools able to model 
the sensitivity of the current harmonic emission of PE devices to 
small deviations of the background voltage harmonics. They can 
be evaluated based on the assumption that power electronic 
device behavior around a suitable reference working point (e.g. 
ideal sinusoidal conditions) is linear for small variations from
reference conditions (linearity hypothesis) [3], [5]. In [6], Smith 
et al. demonstrate the phase angle dependency of the FCM 
elements in HVDC converters. A similar behavior has been 
observed in single-phase power electronic devices [7], [8], such 
as Compact Fluorescent Lamps [9], [10] and LED lamps [11]. 

In [6], Smith et al. proposed a second rank tensor as a means 
of performing the nodal analysis of networks incorporating 
phase dependent impedance of a HVdc converter on the ac side. 
In order to minimize the sensitivity of the tensor parametrization 
to experimental errors and higher order complex non-linearities, 
in [8] the use of FDs to find the best tensor approximation to 
match the measured data was proposed. This intuition comes 

from the consideration that if the linearity hypothesis is verified 
the elements of the FCM describe a double circle locus on a 
complex plane as a function of the applied distortion angle. 

In this paper, after some recalls on FDs, FCM approach is 
discussed and it is shown how the matrices elements can be built 
basing on the use of maximum two FDs under linearity 
hypothesis. Then, a non-linearity index (NLI) that allows to 
check the validity of the assumed "linearity hypothesis" and to 
quantify the obtainable accuracy is introduced. Numerical 
simulations on two very simple non linear circuits are performed 
to show the sensitivity of the FCM elements to magnitude and 
phase angle variation of the background harmonic distortion 
using FDs and the usefulness and the behavior of the non 
linearity index. 
In a companion paper [12] the impact of reference working point 
on the frequency coupling matrix of a plug-in electric vehicle 
charger is analyzed using the NLI introduced in this paper. 

II. FOURIER DESCRIPTORS 

First some recalls about definition of FDs are given, then 
simple geometric patterns are described in terms of FDs. 
A. Recalls 

A closed looped oriented object in the complex plane can 
be represented by a sequence of complex numbers, y(mp),
represented by means of Mp evenly spaced vectors as 
depicted in Figure 4.  (a).  
The Fourier descriptor is the discrete Fourier transform of the 
complex sequence, y, and is described by: 

p

p
p

p

M
m

jnM

m
p

p
fd emy

M
nY

2
1

0

1

where Yfd[n] is the Fourier descriptor of order n. Each FD 
rotates at a rate which is proportional to its order multiplied 
by the unitary rate of change Θ = 2 mp/Mp. 
Conversely, given the Fourier descriptors, the sequence can 
be reconstructed by the following equation: 
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Figure 4.  (b) shows the magnitudes and phase angles of the 
FD of the object shown in Figure 4.  (a). versus the 
normalized frequency. Fig. 1 (c) depicts the reconstruction of 
the closed looped curve of Fig. 1 (a), based on the FDs.  
The sum of the FDs, when Θ = 0, i.e. y(0), and the rate and 
direction of rotation of each vector, are represented. Each point 
of the curve is obtained by the sum of the rotating vectors. 
Note that, except Yfd[0], all the FDs rotate. Yfd[1], Yfd[2], Yfd[3] 
rotate at a rate of Θ, 2Θ, and 3Θ, respectively, in 
counterclockwise direction, whereas Yfd[-3], and Yfd[-2] rotate 
at a rate of 3Θ, and 2Θ, respectively, in the clockwise direction.  

Figure 1. Closed looped object in the complex plane: (a) Polar 
representation; (b) FDs magnitude and phase angle vs. norm. freq.; (c) 
Description of FDs rotation to construct the closed looped object. 

B. Simple Geometric Patterns 
TABLE I. reports the parameters of the FDs for four very 

simple geometric patterns shown in Fig. 2. 
TABLE I. SIMPLE CASES OF GEOMETRIC SHAPES PARAMETERS

Case n Yfd Description
(a) 1 Circle centered in the origin

(b)
1 0.4 0° Circle centered at a specified 

distance0 1.0 45°

(c) -1 0.3 -45° Ellipse centered in the origin1 0.5 0°

(d)
-3 0.1 0°

Double circle with different radius-2 0.3 0°
0 1.0 45°

Figure 2. Simple geometric patterns representation (see Tab. I).

III. FCM APPROACH AND FDS

In steady state, the harmonic currents injected by a 
nonlinear load can be linearized around a reference operating 
point. This is represented in frequency-domain as a Norton 
equivalent coupled model, with the following expression: 
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where the vector I = [I1,I2,…,IH]T represents the complex 
harmonic currents injected by the nonlinear load. The FCM
comprises the linear gradients Yh,k that relate the hth harmonic 
current to the kth harmonic voltage. The vector ΔVk =
[ΔV1,ΔV2,…,ΔVK]T is the complex harmonic voltage 
deviation from the reference supply voltage (reference point 
of linearization). The vector Iref = [Iref-1,Iref-2,…,Iref-H]T is the 
reference harmonic current (measured for reference supply 
voltage). H and K are the highest harmonic orders in current 
and voltage to be considered. 

In general, the element Yh,k are complex functions of both 
magnitude and phase angle of ΔVk. For a specific condition 
when only one voltage harmonic variation is applied at a time 
and for a given phase angle, the following simple expression 
can be directly used: 
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A systematic test and measurement procedure or set of 
numerical simulations can be defined to obtain the 
admittances Yh,k for a given magnitude and for Mp evenly 
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spaced phase angles of the harmonic voltages ΔVk obtaining a 
sequence of complex determinations of Yh,k(mp) when the 
whole rotation is achieved, [9]-[15]. 

If the "linearity hypothesis" is fulfilled (or is assumed to 
be), the admittance Yh,k rotates on the complex plane at twice 
the rate of the harmonic voltage phase angle in the clockwise 
direction drawing a double circle as depicted in the Fig. 3. 
This means that the admittance Yh,k(0) can be represented as 
the sum of Y_fd[0] and Y_fd[-2], that are the only FDs different 
from zero while Y_fd[n] are null (or are assumed null) for all n 
different from 0 and -2. Yh,k elements are complex numbers 
which R-part and I-part vary with the voltage phase angle. 
Representing ΔVk by its Cartesian form, the phase 
dependency of Yh,k can be modeled by means of a concise 
real-valued matrix which is a rank-2 tensor whose elements 
can be determined only using Yfd[0] and Yfd[-2] calculated by 
(1), as follows: 
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Moreover, if the "linearity hypothesis" is still fulfilled (or is 
assumed to be) but the phase dependency of the non-linear 
load can be negligible, the double circle vanish and Yh,k will 
be equal to only Y_fd[0] which is in turns the well known 
"average" admittance used in classical simplified Norton 
Coupled Models. 

Figure 3. Phase angle dependency of the admittances Yh,k-

IV. FDS BASED INDEXES 

Once a representation of Yh,k elements based on FDs 0 and 
-2 is assumed, it is important to have a measure of the 
expected accuracy of this representation with reference to a 
given real specific case.  

The authors here propose a "sort" of non linearity index, 
NLI, which measures the spectral content other than the 
components 0 and -2 for admittances and -1 and +1 for 
currents variations. 
As for the admittances, NLIY,h,k, that can be seen as an index 
of how far the shape is different from a double circle locus, 

can be written as: 

100
20 22

02

2

fdfd

,n
fd

h,k,Y YY

nY
NLI

Concerning the current, NLI I,h,k, that can be seen as an index 
of how far the shape is different from an ellipse, can be 
written as: 
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A similar index can be introduced also to verify the 
accuracy of the applied BG voltages, where only the FD 
component +1 should exist. In this case, the information 
about the phase angles of FD(+1) should be also taken into 
account,  which should be exactly zero. 

Finally, it is worth to introduce another index, Phase 
Dependency Index (PHDIY,h,k) that, under linearity hypothesis 
can quantify the dependence of the device from the 
background phase angle: 
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When PHDIY,h,k is small enough or close to zero it means that 
the phase angle dependency can be negligible and “average” 
admittances, as commonly used in classical simplified Norton 
Coupled Models, can be adopted with good accuracy. 

V. NUMERICAL SIMULATIONS 

Two very simple circuits have been considered: a) RL 
Diode Rectifier, that is a circuit that reflects the circuits on 
which the theory of tensors was developed and b) RC Diode 
Rectifier that is a circuit that reflects many modern low-
power devices like compact fluorescent lamps or notebook 
chargers. For the sake of brevity, only the effect of the 
background third voltage harmonic, V3, on the third 
harmonic current, I3, are considered in Subsection A and B 
for the sake of brevity while also the effects on I5,and I7 are 
analyzed in Subsection C  It was observed that interactions 
among higher harmonic orders and among lower and higher 
harmonic orders are much more non-linear but the 
considerations done in this Section are still valid.  

A. Single-phase RL diode rectifier 

Fig. 4 shows the simulated circuit in time domain. 
Parameters of the simulation are: V1=230 V; V3= [0.5%, 1-
5%]*V1 (represents up to 100% of the EN50160 limit for the 
third voltage harmonic, V3L=5% of V1, [16]) and NΔϴ=48 
values of the phase angle; R=50 Ώ and L=100 mH. The 
supply network is assumed to be stiff so the supplying 
voltage of the converter corresponds to the background 
voltage of the network. 
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Figure 4. RL Diode Rectifier.  

Fig. 5 and Fig. 6 show the polar plot (a) and the magnitude 
of Fourier Descriptors of I3 and of Y3,3, respectively. 
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Figure 5. RL Diode Rectifier. a) Polar plot of I3, b) FDs of  I3. 

It is possible to observe that: 
the third harmonic current variation shows an almost 
elliptic shape up to background harmonic voltages 
value of 3% (Fig. 5 (a)) that is to say it reflects a 
"linear" behavior up to that value; 
the "linear" behavior is also confirmed by the FDs 
(Fig. 5 (b)) being the components at -1 and +1 the 

only frequency components different from zero up to 
V3=3% (yellow bars). 

when V3 becomes higher than 3% other frequency 
components of the FD start assuming values 
different from 0 that is to say that the shape is no 
longer a perfect ellipse even it is not visible from 
Fig. 5(a); 
the locus of Y33 is a perfect double circle Fig. 6(a) 
for amplitudes of V3 lower than 3% starting to 
show a separation between the two circles (see also 
Fig. 2 (d)); 
this is confirmed looking at FD in Fig. 6(b). 
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Figure 6. RL Diode Rectifier. a) Polar plot of Y3,3, b) FDs of  Y3,3. 

B. Single-phase RC diode rectifier 
Fig. 7 shows the simulated circuit in time domain. 

Parameters of the simulation are: V1=230 V; V3= [0.5%, 1-
5%]*V1 (represents up to 100% of the EN50160 limit for the 
third voltage harmonic, V3L=5% of V1), and NΔϴ=48 values 
of the phase angle have been chosen; R=100 Ώ and C=1 mF. 
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Figure 7. RC Diode Rectifier. 
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Figure 8. RC Diode Rectifier. a) Polar plot of I3, b) FDs of  I3. 

Figs. 8 and 9 are equivalent to Figs. 5 and 6, respectively 
and the following considerations can be done: 

the third harmonic current looses the elliptic shape 
starting from values of the background harmonic 
voltage higher than 1% (Fig. 8 (a)); 
this can be observed mainly from Fig. 8(b) where 
the DC component of the FD starts to be visibly 
different from zero from the second group of bars 
(sky blue); 
the distance from the origin (that is to say the DC 
component of the FD in Fig. 9) seems to be 
independent from the BG voltage distortion 

magnitude, as for the RL rectifier; 
on the contrary, the -2 component starts decreasing 
when the "lost" of linearity starts to show; 
the RC rectifier shows a more significant non linear 
behavior than the RL rectifier. 
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Figure 9. RC Diode Rectifier. a) Polar plot of Y3,3, b) FDs of  Y3,3. 

C. FDs based indexes calculation and analyses 
During the numerical experiments, it was observed that 

NLI I,h,k and NLIY,k,h have the same numerical values versus 
BG voltage magnitudes. For this reason, in what follows 
reference is made to the general NLIh,k without specifying if it 
refers to admittances or currents.  

Fig. 10 show the non-linearity index NLIh,3 (for h=3,5,7)
for the case of the RL and RC diode rectifiers, versus the 
applied 3-rd BG harmonic voltage magnitude. 
It is possible to observe that the non linearity index: 

is linear with the magnitude of the applied BG voltage; 
its slope is different for RL and RC rectifiers;
in both cases, it grows with the harmonic order 
demonstrating that non-linearity increases with increasing 
distance of harmonic orders between applied BG voltage 
harmonic and considered current harmonic. 
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Figure 10. Non linearity index NLIh,3 (for h=3,5,7) for the case of the RL and 

RC diode rectifiers, versus the applied BG V3.

In order to investigate the correlation between NLI and the 
magnitude of the errors the following error index has been 
introduced for each magnitude of the BG harmonic voltage: 
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being Iest
h,k the current variation estimated by (1) for each 

angle variation and Isim
h,k the corresponding simulated value.

Fig. 11 shows I,h,k versus NLI for the same harmonic 
orders of Fig. 10. It is possible to observe, that, for both 
converters, the error is numerically equal to NLI up to 5% .
This threshold can be considered as first proposal for linearity 
hypothesis fulfillment. This is also coherent with the values 
of BG distortion magnitudes corresponding to the "loss of 
linearity" qualitatively highlighted in the previous section for 
RL (3%) and RC (1%) Diode rectifiers, respectively.  

Figure 11. I versus non linearity index.

VI. CONCLUSIONS

With reference to the two simple circuits analyzed, the 
main outcome of the paper are: 

FDs are very good and robust tool to investigate the non 
linearity of PE devices; 
a threshold of the introduced NLI of 5% can be 
considered a good value for linearity hypothesis 
fulfillment accepting an error lower than 5% (errors on 
the entire currents will be lower of one order of quantity). 

VII. REFERENCES

[1] C. T. Zahn and R. Z. Roskies, “Fourier descriptors for plane closed 
curves,” IEEE Trans. Comput., vol. C-21, no. 3, pp. 269–281, 1972. 

[2] Zhanwei Yuan, Fuguo Li, , Peng Zhang, Bo Chen, "Description of 
shape characteristics through Fourier and wavelet analysis" Chinese 
Journal of Aeronautics, Volume 27, Issue 1, Feb. 2014, Pages 160–168. 

[3] J. Arrillaga, B. C. Smith, N. R.Watson, and A. R.Wood, Power System 
Harmonic Analysis. New York: Wiley, 1997. 

[4] A. Medina, J. Segundo-Ramirez, P. Ribeiro, W. Xu, K. L. Lian, G. W. 
Chang, V. Dinavahi, and N. R. Watson, Harmonic Analysis in 
Frequency and Time Domain, Power Delivery, IEEE Transactions on, 
Vol. 28, No. 3, July 2013. 

[5] J. Arrillaga, A. Medina, M. L. V. Lisboa, P. Sánchez, and M. A. Cavia, 
“The harmonic domain. a frame of reference for power system 
harmonic analysis,” IEEE Trans. Power Syst., vol. 10, no. 1, 1995. 

[6] B.C. Smith, N.R. Watson, A.R. Wood, and J. Arrillaga. Harmonic 
tensor linearisation of HVDC converters. Power Delivery, IEEE 
Transactions on, 13(4):1244–1250, Oct 1998. 

[7] Y. Sun, G. Zhang, W. Xu, and J. G. Mayordomo, “A harmonically 
coupled admittance matrix model for AC/DC converters,” IEEE Trans. 
Power Syst., vol. 22, no. 4, pp. 1574–1582, 2007. 

[8] J. E. Caicedo, A. A. Romero, and H. C. Zini, “Frequency domain 
modeling of nonlinear loads, considering harmonic interaction,” in 
2017 3rd IEEE Workshop on Power Electronics and Power Quality 
Applications, PEPQA 2017 - Proceedings, 2017.

[9] L. Frater, "Light Flicker and Harmonic Modelling of Electrical 
Lighting", Ph.D.  thesis in Electrical and Computer Engineering at the 
University of Canterbury, Christchurch, New Zealand. 2015 
(http://ir.canterbury.ac.nz/handle/10092/11370).

[10] D. Gallo, C. Landi, R. Langella, M. Luiso, A. Testa, and N. Watson, 
“On the Measurement of Power Electronic Devices’ Frequency 
Coupling Admittance,” in 2017 IEEE International Workshop on 
Applied Measurements for Power Systems (AMPS), 2017, pp. 1–6.

[11] J. Molina, J. J. Mesas, N. Mesbahi, and L. Sainz, “LED lamp modelling 
for harmonic studies in distribution systems,” IET Gener. Transm. 
Distrib., vol. 11, no. 4, pp. 1063–1071, 2017.

[12] Joaquín E. Caicedo, Andrés A. Romero, Humberto C. Zini, Roberto 
Langella, Jan Meyer, Neville R. Watson, "Impact of reference 
conditions on the frequency coupling matrix of a plug-in electric 
vehicle charger", submitted to 18th ICHQP, May 13-16 2018,
Ljubljana, Slovenia.

[13] S. Müller, J. Meyer, P. Schegner, S. Djokic: „Harmonic Modeling of 
Electric Vehicle Chargers in Frequency Domain“, International 
Conference on Renewable Energies and Power Quality (ICREPQ), 
March 2015, La Coruna, Spain. 

[14] J. Meyer, S. Müller, P. Schegner, S. Z. Djokic, A. J. Collin, X. Xu: 
“Comparison of Methods for Modelling Electric Vehicle Chargers for 
Harmonic Studies”, 19th Power Systems Computation Conference 
(PSCC), June 2016, Genova, Italy. 

[15] S. Müller, J. Meyer, P. Schegner: “Characterization of Small 
Photovoltaic Inverters for Harmonic Modeling”, 16th ICHQP, June 
2014, Bucharest, Romania. 

[16] EN 50160, “Voltage characteristics of public distribution systems,” 
2010. 


