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ABSTRACT
Maintaining an object-oriented design for a piece of software
is a difficult, time-consuming task. Prior approaches to au-
tomated design refactoring have focused on making small,
iterative changes to a given software design. However, such
approaches do not take advantage of composition of design
changes, thus limiting the richness of the refactoring strate-
gies that they can generate. In order to address this prob-
lem, this paper introduces an approach that supports com-
position of design changes and makes the introduction of
design patterns a primary goal of the refactoring process.
The proposed approach uses genetic programming and soft-
ware engineering metrics to identify the most suitable set
of refactorings to apply to a software design. We illustrate
the efficacy of this approach by applying it to a large set of
published models, as well as a real-world case study.
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1. INTRODUCTION
Maintaining an object-oriented design for a piece of soft-

ware is a difficult, time-consuming task. Designing that soft-
ware to be easily maintained and extended in order to satisfy
new requirements is even more difficult, as it forces develop-
ers to consider not only the details of the solution space (e.g.,
how to build on-board software for automobiles) but also de-
tails of the problem space (e.g., how to manage a large and
ever-changing number of AutoPart subclasses and their ob-
ject instances). These difficulties led to the development of
two important enabling technologies in software engineering.
First, metrics enable a software engineer to evaluate various
characteristics of design quality, such as flexibility or read-
ability, in a mathematically rigorous fashion [1]. Second,
design patterns provide a context-driven solution template
for solving design problems that occur frequently in large
software projects [6]. However, using metrics and design pat-
terns often requires significant intellectual investment, thus
limiting their adoption.

This paper addresses these concerns by introducing an ap-
proach, based on genetic programming, that automates the
use of software engineering metrics to generate refactoring
strategies that introduce design patterns. The approach is
modular, thus enabling the reconfiguration or substitution
of metrics and design patterns as appropriate. In addition,
the output from the approach includes the specific set of
refactoring steps to perform in order to apply the strategy
that was generated. This information facilitates either man-
ual or automatic application of the refactoring strategy, and
we defer this decision to the software engineer.

Prior approaches to automated design refactoring have
focused on making small, iterative changes to a given soft-
ware design. For example, such an approach might identify
so-called “god classes” that have a large number of public
fields and methods. A god class can be split into a number
of smaller classes, and its fields and members can be dis-
tributed among them. If the design is being evaluated by a
metrics suite that analyzes class size, then such a change re-
flects favorably on the quality of the design. Ó Cinnéide [9],
as well as Sunye et al.[14], introduced sets of refactorings
that, under well-specified conditions (e.g., when OCL pre-
conditions are satisfied), can be automatically applied in or-
der to restructure a software design. However, the rule-based
nature of these refactorings limits their general applicability.
In contrast, evolutionary computation (EC) harnesses the
exploration and exploitation capabilities of Darwinian evo-
lution to find the best solutions to an optimization problem,
including many software engineering problems [3, 4, 10, 11,
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13]. While these approaches have demonstrated that evo-
lutionary computation can be harnessed to generate novel
sequences of design refactorings, their use of simple, itera-
tive refactorings is not expressive enough to effect complex
design changes. Specifically, they do not support the com-
position and interaction of multiple design changes in order
to construct design artifacts such as design patterns.

In order to address this problem, this paper introduces
Remodel, an evolutionary computation-based approach to
automatically generate design refactorings. Remodel sup-
ports composition of design refactorings and makes the in-
troduction of design patterns a primary goal of the refactor-
ing process. This shift in focus carries three key benefits.
First, we leverage the generally accepted notion that judi-
cious application of design patterns improves the reusabil-
ity and maintainability of non-trivial software designs [12].
Second, evolutionary computation enables us to explore the
effects of composite refactorings to generate more innova-
tive refactoring solutions that incorporate design patterns.
Third, the approach illustrates the use of a modular frame-
work for search-based refactoring whose components (i.e.,
metrics, design patterns, and design change mechanisms)
can be easily substituted as appropriate for a given software
project. By automatically generating refactoring strategies
that are highly rated by software engineering metrics and
also introduce design patterns, we reduce the cognitive la-
bor for software engineers by suggesting design changes that
are tailored to the software design in question. Furthermore,
Remodel provides the sequence of refactoring steps through
which the input design can be transformed into a design that
implements the suggested refactoring strategy, thus making
it amenable for manual application by developers as well as
inclusion in automated design tools.

We use genetic programming (GP) to identify the most
suitable set of refactorings to improve software design. As
with any evolutionary approach, GP comprises three com-
ponents: a solution representation, a mechanism for making
changes to that solution, and finally a means of measuring
the solution’s quality. In this approach, a solution is a refac-
tored software design and the set of steps to transform the
original design into the refactored design. Therefore, our
solution representation comprises two key elements: first,
a design graph that represents the software design that is
being refactored; and second, a transformation tree whose
nodes represent small, well-defined changes to the software
design that is being refactored. These changes are known
as minitransformations, leveraging work by Ó Cinnéide [9].
The minitransformations, when composed, are capable of
creating instances of design patterns. The minitransforma-
tions make specific changes to the software design and are
defined as functions that accept inputs and return outputs.
As such, we developed an approach to express them con-
cisely as nodes in a transformation tree, thus making them
a strong candidate for use in a GP solution. These nodes
gather input from their child nodes, which in turn represent
elements of the software design that is being analyzed. In or-
der to evaluate the quality of refactored designs, we use the
QMOOD [1] metric suite that combines a rich set of metrics
for analyzing the complexity of object-oriented hierarchies,
cohesion of classes, and so on. QMOOD has also been used
in prior search-based refactoring work [11].

We illustrate the efficacy of Remodel by applying it to
a large set of published models [7], as well as a real-world

case study [5]. The remainder of the paper is organized as
follows. Section 2 gives background information related to
our approach. In Section 3, we present a detailed discussion
of Remodel. Section 4 contains a discussion of the exper-
imental validation that we performed. Finally, we present
our conclusions and future work in Section 5.

2. BACKGROUND AND RELATED WORK
This section reviews background concepts that support

Remodel, including metrics for object-oriented designs, de-
sign patterns, and related work.

2.1 Metrics
As the word suggests, a metric is a mechanism for measur-

ing a specific aspect of an element, with a specific focus on
how that aspect changes over time. In software engineering,
metrics are used to measure characteristics of software such
as lines of code, number of classes, cohesion among classes,
and so on. They provide both an instantaneous snapshot of
these characteristics and, when applied over time, a profile
of how a software design has changed through its lifetime.

The hierarchical Quality Model for Object-Oriented De-
sign (QMOOD) introduced by Bansiya and Davis [1] com-
prises 11 individual metrics, each of which evaluates a dis-
tinct aspect of object-oriented design quality. Notably, these
metrics are designed to be amenable to automated evalua-
tion, thus making them ideal for use in software engineering
tools. From these metrics, Bansiya and Davis derived a
set of formulas that measure abstract quality characteristics
such as extensibility, readability, and maintainability. Such
high-level quality characteristics can inform software devel-
opers of the ways in which their software is well-designed,
and conversely, where it can be improved. Additionally,
the QMOOD authors recommend that a real-valued weight
should be assigned to each quality characteristic in order
to specify its relative importance, thus providing quantita-
tive feedback regarding how well a software design meets its
design quality goals.

Two levels of validation were performed to evaluate the
QMOOD quality model. The individual quality character-
istics were evaluated first, followed by QMOOD’s overall
ability to estimate software quality. The authors chose the
Windows Foundation Classes and the Borland Object Win-
dows Library (OWL) as the design suite on which to validate
the individual characteristics. They showed that the results
from QMOOD agreed with the expected change in qual-
ity characteristics over time. To validate QMOOD’s over-
all quality estimation, a group of 13 independent evaluators
with experience in commercial software development were
asked to develop a set of design and implementation heuris-
tics that influence software development. The evaluators
then assigned each heuristic to one or more of the QMOOD
quality characteristics and scored 14 independently-developed
projects according to how well each project satisfied the
heuristics. The authors demonstrated a statistically signif-
icant positive correlation between the QMOOD-determined
quality assessment of the projects and the 13 evaluators’
assessments, thus demonstrating that the QMOOD quality
model can effectively measure design quality.

2.2 Design Patterns
One popular type of structural improvement that is ap-

plied to software designs is the application of a design pat-
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tern. Design patterns are small, reusable solutions to com-
mon design problems that occur in a specific context [6]. In
this paper, we focus on a subset of the so-called Gamma de-
sign patterns, including Abstract Factory, Adapter, Bridge,
Decorator, Prototype, and Proxy [6]. This subset of the
Gamma design patterns addresses problems related to classes
and their associations that make up the structure of an
object-oriented software design. We refer to the process of
applying a design pattern to a software design as design pat-
tern instantiation. This term is used in software engineering
when discussing the instantiation of an object from a class,
and we extend its meaning to include the realization of a
design pattern in a concrete software design.

2.3 Related Work
Extending automated refactoring to include the introduc-

tion of design patterns, Ó Cinnéide [9] proposed a series
of refactorings called minitransformations that, when com-
posed, interact to create instances of design patterns. The
minitransformations create indirection or increased abstrac-
tion between classes by loosening coupling between those
classes. For example, when applied to a software design
in which Maker class creates many instances of a Product
class, two PartialAbstraction minitransformations can in-
teract to create an instance of the Abstract Factory design
pattern, which facilitates construction of future subclasses
of both Maker and Product. The minitransformations en-
able software developers to incorporate design patterns into
their software design with minimal manual refactoring la-
bor. However, design patterns contain multiple roles that
must be filled by classes. For instance, the Automobile class
discussed previously fills the role of Factory because it needs
to produce many object instances. Thus, the approach pro-
posed by Ó Cinnéide requires human input in order to decide
the set of classes that will fill the roles of a given pattern.

Search-Based Refactoring.
O’Keeffe and Ó Cinnéide [10, 11] propose a technique in

which an evolutionary algorithm decides the optimal set of
refactorings to apply. They represent the source code and
object-oriented structure of the program being refactored
using an abstract syntax tree. To evaluate the quality of a
refactored program, they use a fitness function based on the
QMOOD metrics suite. Seng et al.[13] proposed a similar
approach that used a genetic algorithm to optimize the class
hierarchy of an object-oriented program by moving meth-
ods from one class to another and evaluating the modified
designs using software engineering metrics. While these ap-
proaches are promising, they do not consider the introduc-
tion of design patterns as a key mechanism for refactoring
software designs.

3. REMODEL: REFACTORING DESIGNS
This section introduces Remodel, our approach to refac-

toring object-oriented software designs. Remodel comprises
a genetic programming environment (hereafter, “a GP”) that
is guided by software engineering metrics to determine the
optimal set of refactorings to apply to a software design.
This approach has two objectives: first, to improve the qual-
ity of the design as measured by the QMOOD suite of object-
oriented metrics; and second, to introduce design patterns
when appropriate in order to improve the maintainability
of the target software design. In this section, we describe

components of Remodel, including how individuals in the
evolving population are represented, how those individuals
are changed through mutation, and how newly-evolved in-
dividuals are evaluated.

3.1 Individual Representation
In general, a GP contains a finite population of individ-

uals that are given an optimization problem to solve. In
Remodel, these individuals are represented as a pair that
includes a design graph and a transformation tree. A visual
depiction of this arrangement is given in Figure 1.

3.1.1 Design Graph
The design graph represents the software design that is be-

ing refactored. For simplicity, we refer to this design as the
target software design. The target software design is based
on a UML class diagram, an example of which is given at
the bottom of Figure 1, into a graph structure that is readily
analyzed and manipulated. The Driver, Convertible, and
ConvertibleFactory classes in the UML class diagram are
translated into vertices (ovals) in the graph, and the relation-
ships among those classes (labeled drives and produces in
the UML class diagram) are represented by labeled edges be-
tween those vertices. In order to provide the GP with richer
design information, we augment the design graph with se-
mantic details such as class instantiations and function calls.
When the GP population is initialized, each individual is
given its own copy of the design graph to modify.

3.1.2 Transformation Tree
The second component of an individual, its transformation

tree, is an encoding of a set of changes to the individual’s
design graph. When the tree is executed, it performs these
changes and produces a modified (refactored) version of the
design graph. Executing the tree involves visiting each of its
nodes, beginning with the root, and executing that node’s
children recursively from left to right. Each node is either a
transformation node that performs modifications to the de-
sign graph, an information node that informs and supports
the modifications that are made by a transformation node,
or a root node that acts as a placeholder. Each transforma-
tion node is an implementation of one of Ó Cinnéide’s mini-
transformations [9]. Since the minitransformations require
input in the form of classes, interfaces, and operations to
perform their work, we need a mechanism to provide this in-
put. Information nodes fill this role by representing elements
from the design graph. The information nodes are attached
as child nodes of the transformation nodes, and when the
tree is executed, information flows from the leaf (informa-
tion) nodes upward in the tree to the transformation nodes
and eventually the root node. In Figure 1, PartialAbstrac-
tion is a transformation node, and Driver, Convertible,
and ConvertibleFactory are information nodes.

This individual representation is novel and carries the fol-
lowing key benefits. First, our use of a graph to represent
the target software design enables efficient computation of
metrics that can be implemented as graph algorithms, such
as QMOOD. Second, the order of the nodes in the trans-
formation tree describe a step-by-step series of refactorings
that can be applied to the target software design, thus sup-
porting both manual and automated design refactoring.
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3.2 Design Change Mechanisms
In Remodel, an individual’s transformation tree is re-

sponsible for making changes to its design graph. Six dis-
tinct types of transformation nodes can exist in a transfor-
mation tree. These transformation nodes are an implemen-
tation of Ó Cinnéide’s six minitransformations. We now
describe each transformation node type in turn.

3.2.1 Transformation Nodes

Abstraction.
The Abstraction transformation node constructs a new

interface that contains all of the public methods in an exist-
ing class, thus enabling other classes to take a more abstract
view of the original class and any future classes that imple-
ment the interface. Introducing an interface in this fashion
is a common refactoring step that restructures a software de-
sign to support additional functionality. For example, soft-
ware that tracks vehicle inventory for an automotive deal-
ership needs to track multiple vehicle types. These differing
vehicle types will have many common characteristics, and
a corresponding software design will include a class inher-
itance hierarchy that reflects those characteristics. When
given a representative prototype, such as a class represent-
ing a mid-sized car, the Abstraction minitransformation
can construct an interface for all classes that represent ve-
hicles. A new vehicle-related class, then, only needs to im-
plement the interface in order to integrate with the existing
design.

Abstract Access.
The Abstract Access transformation node modifies a class

Context that directly uses another class Concrete so that
Context accesses Concrete through an interface IConcrete.
This change is illustrated in Figure 2. It is generally ac-
cepted that such decoupling, or loosening of the relationships
between two classes by using an interface, facilitates the de-
velopment of new classes and other design changes in order
to meet future requirements [6]. This minitransformation,
when used in combination with the Abstraction minitrans-

formation that creates a new interface from an existing class,
uses that newly-created interface in order to decouple one
class from another.

Delegation.
The Delegation transformation node is used to move part

of an existing class to a component class, and to set up a
delegation relationship from the existing class to its com-
ponent. A class that has accumulated too many methods
(sometimes called a “god class”) may benefit from moving
some of those methods to a separate component class. Since
a method that is moved from one class to another will no
longer have access to private members of the original class,
those members must be made public. Thus, Delegation can
require the public interface of a class to change.

EncapsulateConstruction.
The EncapsulateConstruction transformation node weak-

ens the binding between a class that creates instances of an-
other class by relocating the code statements that perform
instantiation into a dedicated method. In general, a class
that contains many code statements that create objects is
difficult to maintain. For example, if there is a change in the
parameters of a class’s constructor, then all statements that
instantiate that class are invalidated and must be updated
to use the modified parameters. However, we can resolve the
problem by moving all object-creating code statements for a
class Shape to a dedicated method CreateShape that is re-
sponsible for constructing and returning instances of Shape.
By creating this dedicated method, we guarantee that any
change to the constructor of class Shape only affects the Cre-
ateShape method, thus reducing refactoring effort. The En-
capsulateConstruction minitransformation constructs the
dedicated method and modifies the relevant code statements
to use the new method.

PartialAbstraction.
The PartialAbstraction transformation node constructs

a new abstract class from an existing (concrete) class and
adds an inherits relationship from the concrete class to
the abstract class. Growing the class inheritance hierarchy
in a software design is a common task as the design matures
and as requirements change over time. PartialAbstraction
grows the inheritance hierarchy by creating a new abstract
class that has the same methods as an existing class, thus
enabling other classes to inherit the functionality of the ex-
isting class in a way that facilitates future maintenance.

Wrapper.
The Wrapper transformation node wraps the functional-

ity of an existing class with another class. Requests (e.g.,
method calls) to a wrapper object are forwarded to the
wrapped object, and similarly the responses to those re-
quests are passed back to the wrapper class and returned to
the original calling object. This enables the wrapped class
to be replaced at run time and loosens the coupling between
the wrapped class and classes that use it.

3.2.2 Mutation Operators
To explore the space of refactoring strategies, this ap-

proach uses subtree crossover and point mutation in the
transformation tree. Due to the nature of the nodes in the
tree, a strict typing system is used to ensure that newly
generated transformation trees are syntactically valid. Af-
ter being selected, 90% of individuals undergo both subtree
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Figure 2: Abstract Access Minitransformation

crossover and mutation. The remaining 10% of individu-
als are reproduced as-is into the population that forms the
next generation. During subtree crossover, non-leaf nodes
are selected 90% of the time and leaf nodes are selected the
remaining 10% of the time.

3.2.3 Example
We now present an example that shows the execution of a

transformation tree and highlights the changes that it makes
to a software design (represented by the design graph). A
graphical depiction of the transformation tree and the UML
representation of the software design are shown in Figure 3a
and Figure 3b, respectively.

RootNode

Convertible "Automobile"
Convertible

Factory
"Factory"

PartialAbstraction2 (PA2)

Driver Convertible
Convertible
Factory

* 1

Driver Convertible
Convertible
Factory

* 1

Driver Convertible
Convertible
Factory

* 1

Factory

Automobile

Automobile

After PA1:

After PA2:

Original:

a: Transformation Tree

b: Intermediate Results

PartialAbstraction1 (PA1)

Figure 3: Example Transformation Tree Execution

This example illustrates the construction of an instance
of the Abstract Factory design pattern. The transforma-
tion tree is executed using a post-order traversal. The three

UML class diagram fragments represent, beginning with the
top-most fragment, the state of the software design at the
start of the tree traversal, after PartialAbstraction1 is ex-
ecuted, and finally after PartialAbstraction2 has been ex-
ecuted, as denoted by the annotations on the left side of the
diagrams. The shaded ovals in Figure 3a are minitransfor-
mation nodes, and the shaded rectangles in Figure 3b denote
the classes that are added at each respective execution step.
In the original design, there are three classes: Driver, Con-
vertible, and ConvertibleFactory. While this design is
effective when only one type of vehicle (a convertible) needs
to be considered, it quickly breaks down when new vehi-
cles are added. To address this situation, we can modify
the design to be more generic by introducing an abstract
Automobile class and modifying the existing Convertible
class to inherit Automobile. The next node to be executed
is PartialAbstraction1, and it is responsible for introduc-
ing the Automobile class. Its two child (information) nodes
inform the PartialAbstraction1 node of which class to use
as the concrete class (Convertible), as well as the name to
give the new abstract class (“Automobile”). The first mod-
ified software design, denoted by After PA1, reflects this
change.

Now that we have introduced the abstract Automobile
class, we observe that the ConvertibleFactory class is only
capable of making instances of the Convertible class, and
there may be other subclasses of Automobile that need to
be instantiated. To solve this problem, we can construct
another abstract class called Factory. The
PartialAbstraction2 node makes this change, and its child
information nodes specify that ConvertibleFactory should
be the concrete class that inherits the new abstract class
named “Factory”. At this point, there is a functional1 in-
stance of the Abstract Factory design pattern in the soft-
ware design. The final software design is denoted by the
label After PA2. Finally, RootNode is evaluated, and the
execution of the transformation tree is complete.

3.3 New Design Evaluation
Next, we turn our attention to the way in which the qual-

ity of refactored designs is evaluated. After a population
of individuals is constructed, each individual undergoes a

1We note that the Driver class should now communicate
with the new Automobile class, but this change is outside
the scope of the example.
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fitness evaluation. During this evaluation, the individual’s
transformation tree is executed and makes a series of changes
to that individual’s design graph. The fitness value that is
computed for the individual is a function of the overall qual-
ity of the design graph. Design metrics and the presence of
one or more design pattern instances are the two key el-
ements that are used to define the fitness functions. The
remaining fitness function elements capture two optimiza-
tion strategies for design refactoring. In this section, each
element of the fitness evaluation is described in turn.

3.3.1 Metrics
To assess the overall quality of a software design, we lever-

age Bansiya and Davis’s [1] QMOOD metrics suite. QMOOD
comprises 11 individual metrics, each of which evaluates a
distinct characteristic of object-oriented design quality, such
as cohesion (i.e., how focused the responsibilities of a given
class are) and coupling (i.e., the degree to which a class
depends on other classes). Notably, the QMOOD metrics
are designed to be amenable to automated evaluation, thus
making them ideal for use in software engineering tools.

3.3.2 Design Patterns
The design change mechanisms (i.e., minitransformations)

are designed to create instances of the Gamma design pat-
terns [6] when they are composed. However, in order to iden-
tify software designs that include design patterns we must
have a mechanism for detecting design pattern presence. In
this section, we describe the Prolog-based design pattern
detector that we developed for this work.

Prolog [8] is a declarative logic programming language
that supports queries over relations. To facilitate design
pattern detection, we translate the target software design
into relations that specify the classes and operations in the
design as well as the relationships between them (e.g., class
inheritance or class-operation ownership). The relations for
classes, interfaces, and operations are cls, interface, and
operation, respectively. With this set of relations in hand,
we construct one Prolog query for each design pattern whose
instances we wish to detect in a given software design. The
Prolog query for the Abstract Factory design pattern is
shown in Figure 4. The queries in our implementation are
adapted from QL queries given by Birkner [2].

abstract_factory(AFact,CFact,AProd,CProd,Client) :-
cls(AFact), cls(CFact), cls(AProd), cls(CProd),
cls(Client), inherit(CFact,AFact),
inherit(CProd,AProd), instantiate(CFact,CProd),
fcall(Client,CProd), AFact \= CFact,
AProd \= CProd, AFact \= Client,
CFact \= Client, AProd \= Client,
CProd \= Client, AFact \= AProd,
AProd \= CFact.

Figure 4: Prolog code for Abstract Factory design
pattern

When an individual in the population is being evaluated,
the Prolog design pattern detector analyzes the individual’s
target software design for the presence of design pattern in-
stances. When an instance is detected, Prolog returns the
set of design elements that satisfy the query; i.e., the set
of classes, interfaces, and operations that participate in the
design pattern instance. In the case of the Abstract Factory

design pattern, this set of elements must include classes that
fill the following roles: Abstract Factory, Concrete Factory,
Abstract Product, Concrete Product, and Client. Remodel
records this set of design elements for later processing. (As
an aside, we also used the Structured Query Language [SQL]
to detect design patterns, and SQL returned results signifi-
cantly faster than Prolog. However, we presented the equiv-
alent Prolog queries here for simplicity of understanding. It
should be noted that we were able to swap the Prolog and
SQL detection engines in a straightforward fashion, as an
illustration the modularity of Remodel.)

3.3.3 Optimizations
While the QMOOD quality and presence of design pat-

tern instances provide a sound overall measurement of de-
sign quality, we have identified two optimizations to steer the
evolutionary process toward useful refactoring strategies.

The first optimization encourages individuals to evolve
transformation trees with fewer transformation nodes. The
number of transformation nodes in a transformation tree
roughly corresponds to the number of refactorings that a de-
veloper must perform in order to realize the design changes
suggested by this approach. Therefore, encouraging the evo-
lution of fewer transformation nodes means that the burden
on the developer will be smaller and the suggested design
changes will be easier to understand.

The second optimization rewards individuals that incor-
porate sequences of transformation nodes that are known
to produce design pattern fragments in green-field scenar-
ios [9]. By using these sequences as templates, we believe
that individuals will be able to discover similar, yet novel,
refactoring strategies more efficiently than they would if they
had to discover the sequences independently.

3.3.4 Fitness Function
The fitness function is given by the following formula:

F = Q + CPR · PR− CNCP · NCP + CMSR · MSR,

where Q is the quality of the individual’s design graph as
measured by the QMOOD metrics suite, PR is the amount
of fitness bonus given for the presence of at least one de-
sign pattern instance, NCP is a fitness penalty proportion-
ate to the number of transformation nodes in the individual’s
transformation tree, and MSR is a fitness bonus given for the
presence of specific sequences of transformation nodes. The
last three terms have a real-valued coefficient (e.g., CPR)
that determines the relative weight of that term. The op-
timal values for these coefficients is an open question, and
we present empirical results from experiments using several
sets of values in the next section.

4. VALIDATION
In this section, we present the results of four empirical

experiments and analyze the results of a case study of a
large, Web-based software system known as ReMoDD. The
empirical experiments apply Remodel to a set of 58 pub-
lished software designs [7], each comprising 5 to 15 classes.
The first experiment provides a baseline assessment of the
approach, using only the QMOOD metric suite to deter-
mine fitness. The remaining experiments determine optimal
values for the coefficients in the fitness function. Each ex-
periment considers several values for a single coefficient, and
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once the best value is determined, it is used for the remain-
ing experiments. The resulting fitness function is used to
apply Remodel in a large case study.

4.1 Environment and Implementation
These experiments were conducted on a large cluster of

PCs running SuSE Linux Enterprise Server 10. Our pro-
totype GP was constructed using the Evolutionary Com-
putation for Java (ECJ) framework.2 The Java package
JGraphT3 provided support for graph analysis, and JLog4

provided Prolog support.
Each of the five experiments comprised 100 generations.

Tournament selection was used with a tournament size of
7. When tallying results, we considered only the most-fit
individual at the end of each run. Remodel was applied to
each design run five times, using a unique random seed for
each run, in order to acquire an unbiased sample.

4.2 Results and Discussion
Exp. I: Baseline.

The first experiment provides a baseline assessment of Re-
model, using only the QMOOD metrics suite to measure
individual fitness. A total of 3,103 new design pattern in-
stances evolved in the 290 runs (58 software designs and five
runs per design) for an average of 10.70 instances per design.
These initial results demonstrate that Remodel is capable
of introducing design patterns in a diverse set of software
designs.

Exp. II: Penalizing Large Tree Size.
The second experiment evaluates a mechanism for penal-

izing individuals in proportion to the number of transfor-
mation nodes in their transformation trees. This number is
approximately equal to the number of refactoring steps that
the tree represents, and our goal is to apply a small pres-
sure toward a smaller number of refactoring steps in order to
ensure that a software engineer can understand the refactor-
ing strategies that Remodel generates. We used the values
0.0025, 0.025, and 0.25 as the coefficients on the NCP term.
The value 0.025 yielded the best set of results with an av-
erage of 5.86 transformation nodes, and we used this value
for the CNCP coefficient in the remaining experiments.

Exp. III: Rewarding Design Pattern Instances.
The third experiment evaluates a mechanism for reward-

ing individuals whose refactoring sequences introduce at least
one new design pattern into the target software design. We
used the values 0.125, 0.25, 0.5, 1.0, and 2.0 as the set of
candidate coefficients for the PR term. After measuring the
percentage of the 58 software designs that showed a statisti-
cally significant (p < 0.05) increase in the number of design
patterns when each value was tested, we observed that the
value 1.0 yielded the greatest percentage of designs. There-
fore, we used 1.0 as the value for the CPR coefficient in the
remaining experiments.

Exp. IV: Rewarding Transformation Sequences.
The fourth experiment evaluates a mechanism for reward-

ing individuals whose refactoring sequences contain subse-

2http://cs.gmu.edu/~eclab/projects/ecj
3http://jgrapht.sourceforge.net
4http://jlogic.sourceforge.net

quences that are known from work by Ó Cinnéide to con-
struct design pattern fragments [9]. After measuring the
percentage of the 58 software designs that showed a statisti-
cally significant (p < 0.05) increase in the number of design
patterns when each value was tested, we observed that the
value 1.0 yielded the greatest percentage of designs. There-
fore, we used 1.0 as the value for the CMSR coefficient in the
remaining experiments.

4.3 Case Study: ReMoDD
Next, we present the results of a case study in which we

applied Remodel to a large, Web-based software system
known as the Repository for Model-Driven Development, or
ReMoDD [5]. ReMoDD contains model-driven engineering
artifacts, including models, test cases, documentation, and
code. The ReMoDD design comprises 23 classes and in-
cludes instances of design patterns, so this experiment also
evaluates Remodel’s ability to construct instances of de-
sign patterns in the presence of existing instances. In this
experiment, we used the coefficient values that were selected
in the previous four experiments. Specifically, CPR = 1.0,
CNCP = 0.025, and CMSR = 1.0. We conducted five runs
for this experiment, and each run was assigned a unique seed
in the range [1,5] to introduce random variation and avoid
bias.

4.3.1 Results
The results of the case study are summarized in Table 1,

which shows the number of new instances of each design pat-
tern that evolved. The numbers shown are the totals from
the five independent runs. The average number of transfor-
mation nodes in the best individuals in each run was 4.50.

Pattern # of Instances
Abstract Factory 2
Adapter 13
Bridge 3
Composite 0
Decorator 2
Prototype 26
Proxy 15

Table 1: Evolved Pattern Instances in Case Study

A sample design pattern instance that evolved in the Re-
MoDD design is shown in Figure 5. The classes that par-
ticipate in the pattern instance are enclosed in the shaded
rectangle. Three application classes are shown to illustrate
how the instance attaches to the rest of the design. The
evolved design pattern is an instance of Abstract Factory
and therefore includes the following roles: Abstract Factory,
Concrete Factory, Abstract Product, and Concrete Prod-
uct. These roles are filled by the classes User, Viewer,
AbstractNewClass, and Review, respectively. The class
AbstractNewClass was created during the execution of a
PartialAbstraction transformation node.

4.4 Discussion
This case study demonstrates that Remodel can be ap-

plied to a large software design. An average of 12 new de-
sign pattern instances evolved in the best individuals, thus
providing plenty of suggestions for a software engineer who
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Figure 5: Evolved Design Pattern Instance

might be considering the introduction of design patterns to
make the ReMoDD design more extensible or maintain-
able. However, this broad set of suggestions also highlights
the need for human review and demonstrates that this au-
tomated approach should not be blindly followed.

We note that the arbitrary class name AbstractNewClass
is a placeholder that should be replaced. The transformation
nodes are not equipped with natural language processing
mechanisms, and therefore it is difficult for them to choose
sensible names for new classes. One possible solution to
this difficulty is to choose names from a dictionary of nouns
taken from a requirements document. However, this solution
may still produce class names that do not make sense to
a developer. In order to preserve the full automation of
Remodel and minimize confusion, we recommend that the
choice of new class names be deferred to a human developer
when an evolved pattern instance is being applied.

5. CONCLUSIONS
In this paper, we presented Remodel, an approach for

automated refactoring of software designs that combines ge-
netic programming, software engineering metrics, and mini-
transformations to introduce design patterns in existing soft-
ware designs. Specifically, we showed that the minitrans-
formations support composition of multiple design changes,
thus enabling the generation of richer refactoring strategies
than were previously possible. We conducted a set of four
experiments to determine the optimal coefficients for the
terms in our fitness function. Finally, we applied Remodel
to a large, Web-based software system. Our results show
that the approach is capable of simultaneously improving
the quality of a software design with respect to metrics as
well as automatically introducing design pattern instances, a
combination that was not previously considered. Our ongo-
ing research considers the use of different metrics, domain-
specific design patterns, and design change mechanisms with
different levels of abstraction to explore the impact of these
factors, as well as the modularity of Remodel, on different
refactoring problems.
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