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Abstract— One of the main drawbacks of orthogonal frequency
division multiplexing (OFDM) is the high peak-to-average power
ratio (PAPR) of the OFDM signal. In this paper, we propose the
use of hexagonal constellation for PAPR reduction of an OFDM
signal. Because hexagonal constellation is the densest packing of
regularly spaced points in two dimensions, we can have more
signal points in a given area with hexagonal constellation than
with quadrature amplitude modulation (QAM) constellation. We
can exploit these extra degrees of freedom provided by the
hexagonal constellation for PAPR reduction of an OFDM signal.
We will apply the proposed technique to eliminate data rate loss
due to the side information in partial transmit sequence (PTS)
technique and selected mapping (SLM) technique.

Index Terms— OFDM, PAPR, hexagonal constellation, partial
transmit sequence (PTS), selected mapping (SLM).

I. INTRODUCTION

ORTHOGONAL frequency division multiplexing
(OFDM) is a multicarrier modulation technique that has

recently found wide adoption in a variety of high data-rate
communication systems, including digital subscriber lines,
wireless LANs, digital video broadcasting, and other emerging
wireless broadband systems. One of the major problems of
OFDM is that OFDM signals have higher peak-to-average
power ratio (PAPR) than single carrier signals because an
OFDM signal is the sum of many narrowband signals in the
time domain [1]. The high PAPR necessitates using larger and
expensive linear power amplifiers. Since high peaks occur
irregularly and infrequently, this means that power amplifiers
will be operating inefficiently.

In this paper, we propose a novel PAPR reduction technique
based on hexagonal constellation. By using a hexagonal con-
stellation instead of quadrature amplitude modulation (QAM)
constellation, it is possible to have more signal points in
a given area and these extra degrees of freedom can be
utilized for PAPR reduction. The application of the hexagonal
constellation to the tone injection technique was proposed in
[2] by the authors. In this paper, we will use partial transmit
sequence (PTS) technique and selected mapping (SLM) tech-
nique as applications of the proposed hexagonal constellation
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based PAPR reduction technique. It is possible to eliminate
data rate loss due to the side information in PTS technique
and SLM technique by applying the proposed technique to
them. Similar idea of using hexagonal constellation for PAPR
reduction was independently proposed in [3]. But, this paper
generalizes the application of the hexagonal constellation also
to the SLM technique, presents efficient decoding methods
for hexagonal constellation, provides detailed computational
complexity comparison with other technique, and considers
realistic nonlinear amplifier model in evaluating the symbol
error rate performance.

II. SYSTEM MODEL

Let us denote the data block of length N as a vector X =
[X0,X1, · · · ,XN−1]T where N is the number of subcarriers.
Each symbol in X modulates one of a set of subcarriers,
{fn, n = 0, 1, · · · , N − 1}. The N subcarriers are chosen to
be orthogonal, that is, fn = nΔf , where Δf = 1/NT and
T is the duration of the data symbol Xn. The duration of
an OFDM data block is NT . The complex envelope of the
transmitted OFDM signal is given by

x(t) =
1√
N

N−1∑
n=0

Xnej2πfnt, 0 ≤ t < NT. (1)

The PAPR of the transmitted signal is defined as

PAPR =
max

0≤t<NT
|x(t)|2

1/NT · ∫ NT

0
|x(t)|2dt

. (2)

Since most systems employ discrete-time signals, the ampli-
tude of samples of x(t) is used in many of the PAPR reduction
techniques instead of continuous-time signal x(t) itself [1].
Since symbol-spaced sampling of (1) sometimes misses some
of the signal peaks and results in optimistic results for the
PAPR, the signal samples can be obtained by oversampling
(1) by a factor of L to approximate the true PAPR better.
The oversampled time-domain samples can be obtained by
an LN -point inverse discrete Fourier transform (IDFT) of the
data block with (L − 1)N zero-padding [1]. It was shown in
[4] that L = 4 is sufficient to capture the peaks. The PAPR
computed from the L-times oversampled time-domain signal
samples is given by

PAPR =
max

0≤k≤NL−1
|xk|2

E [|xk|2] . (3)

where xk = x(k · T/L) and E[·] denotes expectation.
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III. HEXAGONAL CONSTELLATION AND PAPR
REDUCTION

The densest packing of regularly spaced points in two
dimensions is the hexagonal lattice shown in Fig. 1(b) [5].
The volume or area of the decision region for each point is

νH = d2

√
3

2
(4)

where d is the minimum distance between points. When
compared with square QAM constellation shown in Fig. 1(a),
we can pack more signal points with hexagonal constellation
in a given area with hexagonal constellation. Specifically, the
ratio between the numbers of signal points is

(1/νH)/(1/νS) =
d2

d2
√

3
2

=
2√
3

(5)

where νS = d2 is the volume or area of the decision region
for each point in square QAM constellation.

We can have extra degrees of freedom by using hexagonal
constellation with appropriate number of points instead of
QAM constellation. A rough idea can be illustrated with the
hexagonal constellation with 7 signal points (7-HEX) and 4-
QAM shown in Fig. 1. Assume that 7-HEX is used instead
of 4-QAM which has 4 symbols ‘1’, ‘2’, ‘3’, and ‘4’. In this
case, we have 3 excess signal points out of 7 signal points. So
some of the points in 4-QAM may be associated with more
than one point in 7-HEX. In Fig. 1, symbol ‘1’ in 4-QAM
has 1 representation in 7-HEX and symbols ‘2’, ‘3’, and ‘4’
in 4-QAM have 2 representations in 7-HEX. We can freely
choose the points with more than one representation so that
the PAPR is reduced in the transmitted signal. At the receiver,
we use demodulation for 7-HEX and either ‘pA’ or ‘pB’ can
be considered as symbol ‘p’, p = 2, 3, 4. Note that it is not
necessary for the receiver to know the representation selected
at the transmitter side.

This idea can directly be related to the elimination of the
side information in the PTS and SLM techniques because we
can take advantage of these extra degrees of freedom in some
of the symbols that have more than one representation. In the
following, the number of representations for the symbols that
have more than one representation will be denoted R.

IV. APPLICATIONS TO PTS AND SLM TECHNIQUES

Ordinary PTS and SLM techniques require the side infor-
mation to be transmitted from the transmitter to the receiver
in order to let the receiver know what has been done in the
transmitter. In addition, the entire OFDM data block may be
lost if the side information is received in error. This may
increase the symbol error at the receiver. To protect the side
information against all channel impairments, a channel coding
technique can be used. However, this increases the amount of
side information and results in a further data rate loss. In the
following, we will apply the proposed technique to eliminate
data rate loss due to the side information in PTS and SLM
techniques.
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Fig. 1. 4-QAM and 7-HEX constellations.

A. PTS Technique with Hexagonal Constellation

In the PTS technique, an input data block of N symbols
is partitioned into disjoint subblocks. The subcarriers in each
subblock are weighted by a phase factor for that subblock. The
phase factors are selected such that the PAPR of the combined
signal is minimized. In the ordinary PTS technique [6], the
input data block X is partitioned into M disjoint subblocks
Xm = [Xm,0,Xm,1, · · · ,Xm,N−1]T , m = 1, 2, · · · ,M , such
that

∑M
m=1 Xm = X and the subblocks are combined to

minimize the PAPR in the time-domain. The L-times over-
sampled time-domain signal of Xm, m = 1, 2, · · · ,M , is
denoted as xm = [xm,0, xm,1, · · · , xm,NL−1]T . xm, m =
1, 2, · · · ,M , is obtained by taking an IDFT of length NL
on Xm concatenated with (L − 1)N zeros. These are called
the partial transmit sequences. Complex phase factors, bm =
ejφm , m = 1, 2, · · · ,M , are introduced to combine the partial
transmit sequences. The set of phase factors is denoted as a
vector b = [b1, b2, · · · , bM ]T . The time-domain signal after
combining is given by

x′(b) =
M∑

m=1

bm · xm (6)

where x′(b) = [x′
0(b), x′

1(b), · · · , x′
NL−1(b)]T . The objective

is to find the set of phase factors which minimizes the
PAPR. Minimization of PAPR is related to the minimization
of max

0≤k≤NL−1
|x′

k(b)|. In general, the selection of the phase

factors is limited to a set with a finite number of elements to
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reduce the search complexity. The set of allowed phase factors
is written as P = {ej2πl/W |l = 0, 1, · · · ,W − 1} where W
is the number of allowed phase factors. In addition, we can
set b1 = 1 without any loss of performance. So, the number
of required side information bits is �log2 WM−1� where �z�
denotes the smallest integer which does not exceed z.

We can use the hexagonal constellation in the PTS technique
to eliminate the exchange of side information between the
transmitter and the receiver. As explained earlier, some signal
points in the square QAM constellation can have more than
one associated points in the hexagonal constellation. It is
possible to modify ordinary PTS technique for OFDM system
with hexagonal constellation. Details of this PTS technique
with hexagonal constellation are as follows:

1) Data block is divided into M subblocks as in the
ordinary PTS technique.

2) Subcarriers in each subblock are classified into two
categories: subcarriers with one representation and sub-
carriers with R representations.

3) Subcarriers with one representation in all subblocks are
collected into a new (i.e., (M +1)th) subblock and these
subcarriers are nulled in the corresponding subblocks.
Now we have (M + 1) subblocks and the first M
subblocks have less than or equal to N/M nonzero
subcarriers.

4) Apply ordinary PTS technique for the (M+1) subblocks
with the phase factor for the (M + 1)th subblock being
fixed to 1.

In the ordinary PTS technique, different versions of each
subblock are obtained by multiplying the subblock by different
phase factors. In the PTS technique with hexagonal constel-
lation, rth modified version of each subblock is obtained by
selecting rth representations for all symbols with more than
one representation in the subblock. We use demodulation for
hexagonal constellation. Note that the side information is not
necessary for the PTS technique with hexagonal constellation.

B. SLM Technique with Hexagonal Constellation

In the SLM technique, the transmitter generates a set of
modified data blocks, all representing the same information
as the original data block, and selects the most favorable for
transmission [7]. Specifically, each data block is multiplied
component-wise by U different phase sequences, each of
length N , B(u) = [bu,0, bu,1, · · · , bu,N−1]T , u = 1, 2, · · · , U .
To include the unmodified data block in the set of the phase
rotated data blocks, we set B(1) as the all-one vector of length
N . Let us denote the phase rotated data block for the uth phase
sequence as X(u) = [X0bu,0,X1bu,1, · · · ,XN−1bu,N−1]T ,
u = 1, 2, · · · , U . After applying the SLM to X, the time-
domain signal for the uth phase sequence, u = 1, 2, · · · , U ,
becomes

x(u)(t) =
1√
N

N−1∑
n=0

Xnbu,n · ej2πnΔft, 0 ≤ t < NT. (7)

Among the phase rotated data blocks, the one with the lowest
PAPR is selected and transmitted. The information about the
selected phase sequence should be transmitted to the receiver

as side information. At the receiver, the reverse operation is
performed to recover the unmodified data block. The number
of required side information bits is �log2 U�.

We can also use the hexagonal constellation in the SLM
technique to eliminate the exchange of side information.
In the SLM technique with hexagonal constellation, slight
modifications are made for the construction and interpretation
of the phase sequences. Details of the SLM technique with
hexagonal constellation are as follows:

1) For each data block, denote the set of subcarrier indices
where the data symbols have more than one represen-
tation as I = {i1, i2, · · · , iJ} where J is the size of I
and 0 ≤ i1, i2, · · · , iJ ≤ N − 1.

2) Also re-define the phase sequences as the sequences of
integers between 0 and R. Each position of the phase
sequences has randomly selected integer value between
1 and R for the indices in I while it has value of 0 for
the rest of subcarriers.

3) Construct uth modified data block according to the uth
phase sequence. When the nth element of the uth phase
sequence is 0, the value of the nth position of the uth
modified data block will be the same as that in the
unmodified one. Otherwise, choose a specific represen-
tation according to the value of the phase sequence.

4) Choose the modified data block with the lowest PAPR.

C. Design and Construction of Hexagonal Constellation

We can design the hexagonal constellation such that the
amplitude of the equivalent points (the points in hexagonal
constellation associated with one point in QAM) is the same
and the average power of the signal points is less than or equal
to that of the square QAM constellation with same data rate.
Since the amplitude of all equivalent signal points is the same,
there is no power increase due to PTS or SLM. For example,
hexagonal constellation with 91 signal points (91-HEX) is
shown in Fig. 2. When 91-HEX is used instead of 64-QAM,
symbol ‘1’, ‘2’, · · ·, ‘37’ in 64-QAM have 1 representation in
91-HEX and symbol ‘38’, ‘39’, · · ·, ‘64’ in 64-QAM have 2
representations in 91-HEX. In this case, 2 representations of
a single point have same amplitude and opposite signs. So we
can find another representation by simply multiplying −1 to
one representation.

It is possible to generalize the proposed scheme to general
QAM constellations. We can think the hexagonal constellation
as a layered structure. For example, the layer 2 is made up of
points ‘2’, ‘3’, ‘4’, ‘5’, ‘6’, and ‘7’ in Fig. 2. For general QAM,
we can choose the number of layers in hexagonal constellation
so that the number of points in those layers exceeds that of
QAM constellation under consideration. For instance, there
are 7 points in layers up to 2 and 19 points in layers up to
3. So it is required to use more than 3 layers for 16-QAM.
If we choose to use layers up to 3, 13 points in 16-QAM
have 1 representation in hexagonal constellation with 19 points
(19-HEX) and 3 points in 16-QAM have 2 representations in
19-HEX. If we use more layers than minimum required, it is
possible to increase the number of points in QAM that have
more than one representation in hexagonal constellation. It is
also possible to partially use the outermost layer.
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Fig. 2. Hexagonal constellation with 91 signal points.

In designing hexagonal constellation, the average power is
also important. We can design the hexagonal constellation
such that the average power of hexagonal constellation is not
larger than that of QAM constellation under consideration.
For example, the average power of the signal points of the
91-HEX is 10.36d2 while that of the 64-QAM is 10.50d2. So
there is no average power increase from using 91-HEX instead
of 64-QAM. The average power can be reduced even further
if we reduce the number of signal points with more than 1
representation.

D. Computational Complexity

Here, we consider the computational complexity of the
PTS and SLM techniques with hexagonal constellation. We
also compare the computational complexity of the proposed
techniques with that of the similar techniques in [8] where PTS
and SLM techniques without side information were proposed.
Although details are different, the concept of eliminating side
information is the same for the proposed techniques and the
techniques in [8]. So, it is meaningful to compare the proposed
techniques with those in [8] in terms of PAPR reduction
capability, error performance, and computational complexity.
Here, we concentrate only on the computational complexity.
PAPR reduction capability and error performance will be
discussed in Section V. Table 1 summarizes the computationl
requirements for the proposed techniques and the techniques
in [8] both at the transmitter and the receiver.

It is shown that the computational complexity is almost
the same at the transmitter side. At the receiver side, the
proposed techniques are much simpler than the techniques
in [8] provided that we can demodulate the hexagonal con-
stellation with comparable complexity to QAM. Fortunately,
we do have a simple hexagonal constellation demodulation
technique whose complexity is not much larger than that

Fig. 3. CCDF of the PTS technique with hexagonal constellation with 91
signal points for an OFDM system with 64 subcarriers.

for the conventional QAM [9]. See Appendix for details of
efficient demodulation technique for hexagonal constellation.
So, the proposed technique has much smaller computational
complexity at the receiver side.

V. NUMERICAL RESULTS AND DISCUSSIONS

We assume an OFDM system with 64 subcarriers (N = 64)
with 64-QAM or hexagonal constellation with 91 signal points
(91-HEX) as shown in Fig. 2. Symbol ‘1’, ‘2’, · · ·, ‘37’
in 64-QAM have 1 representation in 91-HEX and symbol
‘38’, ‘39’, · · ·, ‘64’ in 64-QAM have 2 representations in 91-
HEX. For the PTS technique, the 64 subcarriers are divided
into M subblocks with N/M contiguous subcarriers in each
subblock. For the SLM technique, we randomly generate U
phase sequences. The transmitted signal is oversampled by a
factor of 4 (L = 4) and 100,000 random OFDM blocks were
generated to obtain the complementary cumulative density
functions (CCDFs) of PAPR.

Figure 3 shows the CCDFs of PAPR of the PTS technique
with hexagonal constellation. The CCDF of PAPR of the
unmodified OFDM signal is also shown for comparison. It is
shown that the unmodified OFDM signal has a PAPR which
exceeds 10.6 dB for less than 0.1 percent of the blocks. We
can lower this 0.1 percent PAPR by 2.4 dB, 3.0 dB, and
3.5 dB with the proposed scheme for M = 4, 8, and 16,
respectively. Note that there is no necessity to transmit side
information between the transmitter to the receiver, which may
cause data rate loss. Figure 4 shows the CCDFs of PAPR of
the SLM technique with hexagonal constellation. The CCDF
of PAPR of the unmodified OFDM signal is also shown for
comparison. We can lower the 0.1 percent PAPR by 2.4 dB,
3.2 dB, and 3.6 dB with the proposed scheme for U = 4, 8,
and 16, respectively. We also found that the PAPR reduction
capability of the techniques in [8] is almost identical to that
of the PTS and SLM techniques with hexagonal constellation
under same simulation settings.

It is also of interest to see how the proposed techniques
will perform under amplifier nonlinearity at the transmitter
side. To approximate the effect of nonlinear power amplifier,
we adopt Rapp’s model for amplitude conversion [10]. The
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TABLE I

COMPUTATIONAL OF COMPUTATIONAL REQUIREMENTS AT THE TRANSMITTER (TX) AND RECEIVER (RX).

PTS

Proposed
Tx

· (M + 1) IDFTs

· Search for M phase factors

Rx · Demodulation of hexagonal constellation

[8]

Tx
· M IDFTs

· Search for (M − 1) phase factors

Rx
· Decision metric Dm

PTS [8] calculation for each phase factor

· Demodulation of QAM constellation

SLM

Proposed
Tx · U IDFTs and find the minimum

Rx · Demodulation of hexagonal constellation

[8]

Tx · U IDFTs and find the minimum

Rx
· Decision metric DSLM [8] calculation

· Demodulation of QAM constellation

Fig. 4. CCDF of the PTS technique with hexagonal constellation with 91
signal points for an OFDM system with 64 subcarriers.

relation between amplitude of the normalized input signal A
and amplitude of the normalized output signal g(A) of the
nonlinear power amplifier is given by

g(A) =
A

(1 + A2p)1/(2p)
(8)

where p is a parameter that represent the nonlinear character-
istic of the power amplifier. The power amplifier approaches
linear amplifier as p gets larger. We chose p = 3 which is
a good approximation of a general power amplifier [10]. The
phase conversion of the power amplifier is neglected in this
paper. The input signal is normalized by a normalization factor
to appropriately fit the input signal into the desired range in the
input-output relation curve [11]. The normalized output signal
is processed back into original scale before normalization. The
amount of nonlinear distortion depends on the output back-
off (OBO) which is defined as OBO = Po,max/Po,avg where
Po,max is the output power at the saturation point and Po,avg

is the average power of the output signal.
Figure 5 shows the symbol error rate (SER) of the SLM

techniques with hexagonal constellation and that of the SLM
technique in [8] both with 16 phase sequences (U = 16) and

Fig. 5. SER of the SLM technique with hexagonal constellation with 91
signal points for an OFDM system with 64 subcarriers in a Rayleigh fading
channel.

OBO = 7 dB in a Rayleigh fading channel. It is shown that
the proposed scheme achieves lower SER than unmodified
OFDM signal under transmitter nonlinearity due to its reduced
dynamic range. It is also shown that the SER of the proposed
technique is within 0.5 dB of the ordinary SLM technique
when the phase sequence estimation is perfect. It is shown in
[8] that the performance gap of the SLM technique without
side information and that of the perfect phase sequence
estimation case is similar to that of the SLM technique with
hexagonal constellation. So it can be concluded that the SER
performance of both techniques is not much different.

VI. CONCLUSIONS

In this paper, we proposed the use of hexagonal constella-
tion for PAPR reduction and applied the proposed technique to
eliminate the side information in the PTS and SLM techniques.
It is shown that we can achieve significant reduction in PAPR
with no data rate loss from side information and achieve lower
SER than unmodified OFDM signal due to reduced dynamic
range. It is also shown that the proposed techniques achieve
almost identical PAPR reduction and SER performance to
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Fig. A1. Hexagonal lattice as a disjoint union of a rectangular lattice and
its coset [9].

the techniques in [8] with much reduced complexity at the
receiver.

APPENDIX

EFFICIENT DEMODULATION OF HEXAGONAL

CONSTELLATION

Here we will briefly summarize the algorithm for efficient
demodulation of hexagonal constellation, which was proposed
in [9].

One main difficulty of hexagonal constellation is its com-
plicate data decision operations. From Fig. 1 and Fig. 2, it is
obvious that the nearest neighbor region of every lattice point
is simply a regular hexagon centering at that point. The trivial
and straightforward method is to compute the distances of all
lattice points from the query points.

The new demodulation algorithm is stemmed from the idea
that a lattice may be represented as a disjoint union of a
sublattice and its cosets. Thus fast decoding of the constituent
sublattice leads to fast decoding of the original lattice. In
addition, we need the important observation that a hexagonal
lattice can be expressed as disjoint union of a rectangular
lattice and its coset.

We define the hexagonal lattice A2 as the set of all vectors
u1(0, 1)+u2(

√
3/2, 1/2) where u1 and u2 are integers. Define

B =
√

3Z
⊕

Z where Z is the set of integers. Then we
have A2 = B

⋃
((
√

3/2, 1/2) + B). Figure A1 illustrates
graphically how A2 is partitioned into B and its translated
version. Since B is a rectangular lattice, its decoding algorithm
involves only scaling and rounding operations. Let Φ(x) be
the closest point of x in B. The new decoding algorithm of
is now obvious.

Algorithm 1 – Given input vector x ∈ R2, compute Φ(x)
and Φ(x − (

√
3/2, 1/2)) + (

√
3/2, 1/2). Compare the two

resultant vectors with x and choose the closest.
Further simplification to Algorithm 1 is possible. Let e =

x − Φ(x) and e′ = x − Φ(x − (
√

3/2, 1/2)) − (
√

3/2, 1/2).

In other words, e and e′ are the error vectors resulting from
quantizing x by lattice B and (

√
3/2, 1/2) + B, respectively.

From Fig. A1, it can be seen that

e − e′ =

(√
3

2
sgn(e1),

1
2
sgn(e2)

)
(A1)

where (e1, e2) = x − Φ(x) and the sign function sgn(·) is
defined as

sgn(y) ≡
⎧⎨
⎩ 1, y ≥ 0,

−1, y < 0.

Algorithm 1 suggest to output x − e′ if ||e||2 > ||e′||2 and
output x−e otherwise. By (A1), ||e||2 > ||e′||2 ⇐⇒ √

3|e1|+
|e2| > 1. This suggest another version of the demodulation
algorithm.

Algorithm 2 – Given input vector x ∈ R2, compute
(e1, e2) = x − Φ(x). Output Φ(x) + (

√
3/2 · sgn(e1), 1/2 ·

sgn(e2)) as the closest vector if
√

3|e1|+ |e2| > 1, and output
Φ(x) otherwise.

By using Algorithm 2, demodulation of hexagonal constel-
lation is greatly simplified because it consists of normal QAM
demodulation and a comparator.
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