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Abstrac1—Composite fading takes place in several communication 
channels due to the random variations of the local average power 
of the received multipath-faded signal. The generalized-K 
(Gamma–Gamma) probability density function (PDF) has been 
proposed recently to model composite fading in wireless channels. 
However, further derivations using the generalized-K PDF have 
shown to be quite involved due to the computational and 
analytical difficulties associated with the arising special functions. 
In this paper, the approximation of the generalized-K PDF by a 
Gamma PDF using the moment matching method is explored. As 
expected, matching positive and negative moments leads to a 
better approximation in the upper and lower tail regions, 
respectively. However, due to arising limitations for small values 
of the multipath fading and shadowing parameters, and the 
higher level of accuracy sought, the use of an adjustable form for 
the expressions of the approximating Gamma PDF parameters, 
obtained by matching the first two positive moments, is devised. 
The optimal values of the adjustment factor for different integer 
and non-integer values of the fading and shadowing parameters 
are given. The introduced approximation may simplify 
performance analysis in distributed antenna systems (DASs), 
network MIMO, multihop relay networks, radar, and sonar 
systems. 

    Keywords: composite fading channels, generalized-K 
distribution, Gamma distribution, moment matching method, 
negative and positive moments, amount of fading, sum of 
generalized-K random variables. 

I. INTRODUCTION  
Statistical modeling of communication channels plays an 

essential role in the design and analysis of different 
communication schemes over such channels. In wireless 
channels, modeling the composite fading phenomenon resulting 
from the simultaneous occurrence of multipath fading and 
shadowing is relevant to many communication problems such 
as performance analysis of distributed antenna systems, relay 
networks and radar systems. The Gamma-Gamma (generalized-
K) model was first introduced in the literature on the scattering 
in radar and sonar systems [1] and is recently proposed to 
model composite fading in wireless channels as a substitute to 
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the analytically intractable lognormal-based models [2-4]. The 
theoretical and experimental validations for the use of this 
model are presented in [1]. However, further analysis using the 
generalized-K model has resulted in analytical and numerical 
difficulties due to the special functions encountered [5, 6].  

In [7], a region-wise approximation of the generalized-K 
PDF by the familiar Gamma probability density function (PDF) 
was introduced using an adjustable form of the well-known first 
two moment matching method. Numerical results for different 
values of the composite fading parameters have shown that 
such an approximation can be made accurate enough in both the 
lower and the upper tail regions.     

In this paper, the approximation of the generalized-K PDF 
by a Gamma PDF is further explored by matching both the 
positive and negative moments. The obtained results have 
shown that matching higher order moments leads to a good 
approximation, up to a certain level of accuracy, in both the 
upper and lower tail regions, and may lead to lower and upper 
bounds on the approximated cumulative distribution function 
(CDF). However, matching higher order moments has two main 
limitations; (i) it results in involved expressions that are 
difficult to solve and complicated to draw insights from and (ii) 
negative moments may not exist for small values of the 
multipath fading and shadowing parameters. To bypass these 
limitations, the use of the adjustable form for the expressions 
obtained by matching the first two positive moments, as 
introduced in [7], is devised and the optimal adjustment factors 
are computed for relevant values of the composite fading 
channel parameters.    

II. THE GENERALIZED-K COMPOSITE FADING MODEL  
The PDF of the instantaneous received power γ in a 

composite fading channel can be expressed, using the 
generalized-K model, as [1, 2]     
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where ( )⋅Γ  is the Gamma function, mm and ms are the 
Nakagami multipath fading and shadowing parameters, 
respectively. ( )⋅− ms mmK  is the modified Bessel function of the 

second kind and order ( )ms mm − ,
0

2
Ω

= sm mm
b , and Ω0 is the  

mean of the local average power.  
The CDF of the generalized-K random variable (RV) and 

the moment generating function as obtained in [3] contain 
special functions, namely the hyper-geometric and the 
Whittaker functions. These functions have numerical 
instabilities and are analytically cumbersome to handle [5]. 

III. THE APPROXIMATION USING HIGHER ORDER MOMENTS  
The moment matching method is widely used to fit 

distributions to empirical data or to approximate an analytically 
complicated distribution by a more tractable one. In this paper, 
moment matching is used to approximate the generalized-K 
distribution by the more tractable Gamma distribution.  

The nth moment of the generalized-K distribution can be 
derived as [3]                                                      
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      The nth moment of the Gamma distribution whose scale and 
shape parameters are θ and k, respectively is [8].                                                              
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Now, using the expressions in (2) and (3), the first and 
second positive moments of the generalized-K distribution and 
the approximating Gamma distribution can be matched as   
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Solving (4) and (5) for θ and k results in  

             ( ) 0,1 2,1012,1 >Ω−= θθ K ,                          (6-a) 

           0,
1

1
2,1

1
2,1 >

−
= k

K
k ,   (6-b) 

where ji,θ  and jik , denote the scale and shape parameters of the 
Gamma PDF obtained by matching the ith and the jth moments 

and ( )
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converges to mm as ms increases and vice versa.    

Similarly, matching the first positive moment, as given in 
(4), and third positive moment as  
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Note again that if mm and ms are large (i.e., K1→1 and 
K2→1), then θ1,3 →0 as expected.     

Matching the second positive moment, as in (5), and the 
third positive moment, as in (7), results in 
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On the other hand, negative moments, as defined in [9], of 
the generalized-K and the Gamma PDFs can be expressed using 
(2) and (3). Matching again the first positive moment, as in (4), 
and the first negative moment as 
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results in  

               ( ) 0,1 1,1011,1 >Ω−= −−− θθ K ,                      (11-a)  

                     1,
1

1
1,1

1
1,1 >

−
= −

−
− k

K
k ,                     (11-b) 

where
smsm mmmm

K 11111 +−−=− .        

Similarly, matching the first positive moments, as in (4), 
and the second negative moments, [ ]2−XE , as  
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Finally, matching the first and the second negative moments 
results in  
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Now, from the expressions given in (6) to (14), the 
following may be stated:  

• The scale parameter of the approximating Gamma PDF 
obtained by matching the positive moments is larger than 
the one obtained by matching negative moments. Since the 
negative moments characterize a distribution at the origin 
[9] (the lower tail for a positive RV) and the positive 
moments characterize a distribution at the upper tail, we 
may conclude that the generalized-K PDF can be 
approximated by a Gamma distribution whose scale and 
shape parameters depend on the region of the PDF (CDF) 
of interest. A similar region-wise (piece-wise) 
approximation was used in [10] to well-approximate the 
sum of lognormal RVs by a single lognormal RV.  

• Matching moments for n≥2 will lead to involved 
expressions as seen in (9-a) and (9-b). Moreover, not 
including the first positive moment in matching any two 
moments results in an approximating Gamma PDF that 
does not have the same mean as the approximated 
generalized-K PDF (i.e., the two PDFs may have different 
means of the local power).  

• Matching the negative moments is not possible for small 
values of mm and ms since these moments may not exist as 
indicated in (11-a) to (14-b).                       

• The scale and shape parameters of the approximating 
Gamma distribution are dependent on the fading 
parameters in the sense that as mm and ms increase, the 
difference between the predicted scale and shape 
parameters decreases and hence the difference between the 
approximating PDFs (CDFs) becomes small. So, for small 
values of mm and/or ms (while mm and ms>2), the 
difference between the two approximating Gamma CDFs 
might be large enough to bound the approximated CDF as 
seen in Fig. 1. On the other hand, matching the same 
moments for large values of mm and ms does not result in a 
good approximation if higher accuracy is sought as seen in 
Fig.s 2-3 since the approximating CDFs are too close to 
each other.  

 
Note: in Fig.s 1-3, the complementary cumulative distribution 
function (CCDF) and particularly the region corresponding 
to ( ) 1.0≤≥ xXP is shown to obtain more illustrative results for 

the upper tail region. The notation ji ,μ in these figures denotes 
that the ith and jth moments are matched. 

IV. THE MOMENT MATCHING METHOD WITH ADJUSTMENT  
In order to bypass the limitations explained before on the 

use of the moment matching for higher order moments, we may 
consider an adjustable form for the parameters of the 
approximating Gamma PDF obtained by matching the first two 
positive moments since (i) the expressions in (6-a) and (6-b) are 
simple and valid for any value of mm and ms and (ii) the first 
positive moment is included in the matching.                                                 

    The expressions in (6-a) and (6-b) may be re-written as 
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In the above, 
smsm mmmm

111 ++  is the amount of fading 

(AF) in the composite fading channel as derived in [2]. The 
value of maxAF is finite since the smallest values of mm and ms in 
real propagation channels are non-zero. However, the 
approximating PDF as given by (15-a) and (15-b) results in a 
poor fit in the lower and upper tail regions since matching only 
the first and second moments yields a good fit only around the 
mean. To overcome this limitation, we may consider the 
following adjustable form of the expressions in (15-a) and (15-
b) 
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Since the amount of fading “added” to the scale parameter 
of the approximating Gamma PDF can not exceed the original 
amount of fading of the approximated PDF (i.e., AF≤0ε ), the 
value of ε should be bounded as AFAF ≤≤− ε . Due to the 
fact that the relevant practical range of AF is from zero (for 
non-fading channels) to around 8 (for severe multipath fading 
and shadowing conditions where mm=0.5 and ms=0.5) 2 , the 
relevant range of the adjustment factor ε becomes 88 ≤≤− ε .  

The optimal values of the adjustment factor can be 
computed through minimizing a numerical measure of the 
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difference between the approximated and the approximating 
PDFs (CDFs). A common measure is the absolute value of the 
difference between the approximated and the approximating 
PDFs (CDFs) that is similar to the well-known Kolmogorov-
Smirnov test on the difference between the CDFs of two 
continuous distributions [8]. Also, in this paper, the CDFs 
rather than the PDFs are considered since the Gamma PDF goes 
to infinity near the origin for k<1 [8] which causes numerical 
instabilities in the lower tail region. The plots of the optimal 
adjustment factor versus the multipath fading and shadowing 
parameters are shown in Fig.s 4 and 5 for values of both mm and 
ms ranging from 0.5 to 10. It is observed from the plots that the 
adjustment factor decreases as either or both mm and ms 
increase. The decrease of the adjustment factor as both mm and 
ms increase is interesting since it indicates that the product of 
two Gamma PDFs can be approximated by a Gamma PDF 
using the method of matching the first two moments. The 
amount of fading for mmm sm == can be expressed 

as ( ) 2/12 mmAF += which is approximately 2/m for moderate 
values of m, and it converges to zero for very large values of m. 
However, if a high level of accuracy is sought, then the 
magnitude of the adjustment factor increases. Similar plots can 
be obtained for other regions of interest. The optimal values of 
the adjustment factor can be tabulated as in Table I to be 
available for use.    

V. ON APPROXIMATING THE  PDF OF THE SUM OF 
GENERALIZED-K RVS     

The distribution of the sum of N independent generalized-K 
RVs is needed to analyze the performance of maximal ratio 
combining (MRC), the outage capacity and the ergodic 
capacity in composite fading channels. The adjustable form of 
the first two moments matching can be used to approximate 
the PDF of the sum of N independent generalized-K RVs and 
the 3-D plots of ε versus mm and ms for each value of N>1 can 
be obtained. Moreover, it is found [12] that the PDF of the sum 
of N independent and identically distributed (i.i.d.) 
generalized-K RVs is closely approximated by the PDF of 
another generalized-K RV, ζ, whose amount of fading is 

smsm mNmNmNm
AF 111 ++=ζ ; the corresponding mm,ζ and 

ms,ζ can be computed by matching the AF and setting 

s

m

s

m

m
m

m
m

=
ς

ς

,

, , and 0,0 Ω=Ω Nζ . It can also be shown that the 

PDF of the sum of N generalized-K RVs whose shadowing 
components are identically distributed and fully correlated and 
multipath components are i.i.d. is identical to the PDF of 
another generalized-K RV whose parameters are 

msumm Nmm =, and ssums mm =, , and vice versa. Furthermore, 
the approximation in Section IV can be used to approximate 
the PDF of the sum of N generalized-K RVs by a single 
Gamma RV.  

VI.  CONCLUSIONS 
In this paper, the approximation of the generalized-K 

distribution by the more tractable Gamma distribution using the 
moment matching method is investigated. The obtained results 
have shown that matching the positive and negative moments 
can yield a good approximation in both the lower and upper tail 
regions. However, the associated limitations have led to the 
proposal of an adjusted form of the expressions of the 
parameters of the approximating Gamma PDF obtained by 
matching the first two positive moments. This simple and 
sufficiently accurate approximation can be further used to 
approximate the PDF of the sum of both independent and 
correlated generalized-K RVs. Extensions of this work may 
include considering matching non-integer moments and 
approximating the PDF of the sum of non-i.i.d. generalized-K 
RVs using the proposed method. 
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Figure 2.  The CDFs corresponding to the generalized-K and the  
approximating Gamma PDFs for mm=7 and ms=4 using the moment matching

method. 
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Figure 1.  The CDFs corresponding to the generalized-K and the 
approximating Gamma PDFs for mm=2.5 and ms=2.5 using the moment 
matching method where ji ,μ denotes that the ith and jth moments are

matched. 
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Figure 3.   The CDFs corresponding to the generalized-K and the 
approximating Gamma PDFs for mm=10 and ms=10 using the moment 

matching method. 
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Figure 4.    The plot of the adjustment factor that minimizes the absolute 
value of the difference between the approximated generalized-K and the 

approximating Gamma distributions over the entire CDF. 
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Figure 5.  The plot of the adjustment factor that minimizes the absolute value  
of the difference between the approximated generalized-K and the 
approximating Gamma distributions for the lower tail (CDF<0.1). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table I 

The optimal values of the adjustment factor that minimize the absolute value of the difference between the generalized-K and the 
Gamma distributions over the entire CDF for different values of mm and ms (refer to Fig. 4). 

 

 

mm      ms 0.5 0.75 1 1.5 2 3 4 6 8 10

0.5 2.20 1.4 1.0 0.70 0.40 0.36 0.28 0.20 0.16 0.12

0.75 1.4 0.9 0.70 0.46 0.36 0.24 0.19 0.129 0.10 0.08

1 1.0 0.7 0.50 0.34 0.30 0.18 0.15 0.10 0.075 0.06

1.5 0.70 0.46 0.34 0.22 0.18 0.12 0.09 0.07 0.05 0.04

2 0.40 0.34 0.30 0.18 0.12 0.09 0.08 0.05 0.04 0.03

3 0.36 0.24 0.18 0.12 0.09 0.06 0.05 0.035 0.025 0.02

4 0.28 0.19 0.15 0.09 0.08 0.05 0.03 0.02 0.018 0.015

6 0.20 0.129 0.10 0.07 0.05 0.035 0.02 0.018 0.013 0.012

8 0.16 0.10 0.075 0.05 0.04 0.025 0.02 0.013 0.009 0.0075

10 0.12 0.08 0.06 0.04 0.03 0.02 0.015 0.012 0.0075 0.006


