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Abstract. The level of maturity that has been reached by model trans-
formation technologies is proved by the growing literature on transforma-
tion libraries that address an increasingly wide spectrum of applications.
With the success of the modeling and transformation paradigm, the need
arises to address more complex applications that require a direct manip-
ulation of model transformations.
The uniformity and flexibility of the model-driven paradigm allows this
class of applications to make use of the same transformation infrastruc-
ture. This is possible because transformations can be translated into
transformation models and given as objects to a different class of model
transformations, called Higher-Order Transformations (HOT).
This paper provides an introduction to HOTs and a survey of the several
application cases where their use is relevant. A number of possible future
applications of HOTs is also proposed.

1 Introduction

The popularity of Model-Driven Engineering (MDE) is continuously growing and
the reason behind this increasing success is mainly technological: a set of automa-
tion frameworks, built around model transformation technologies, are reaching
a good level of maturity. This maturity is related to two important technological
drivers. At first, common recognized formalisms (e.g. MOF, Ecore, KM3[23])
have allowed the explicit characterization of several metamodels; then more and
more libraries of transformations have started to gather reusable model trans-
formations expressed in declarative rule-based languages (e.g. QVT, ATL[24]).

The evolution of model-driven environments since its first steps can be out-
lined distinguishing three phases. In a first phase, early MDE tools were limited
to assistance in drawing models, sometimes reverse-engineering them from ex-
isting code, and to generation of structural skeleton of programs from diagrams.
Such limited approaches were relegating models to the role of mere program
documentation, difficult to maintain, with a cost that was not clearly justified
by a tangible improvement in software quality.
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The second phase saw an increasing success of model transformation tech-
nologies to automate forward engineering and several other software development
activities. Automation is among the most appealing means to reduce costs and
increase productivity. While the idea of automating the generation of a signifi-
cant part of the program code accompanies MDE since its first steps, the success
of code generation only started when it was able to produce code whose efficiency
was comparable to hand-crafted code. Since that moment, the use of models in
software development started to become much wider than their role as drivers
of the implementation. Once models become an integral part of the software
engineering process, there is no reason not to exploit the same transformation
infrastructure to automate other tasks. This lead to the development of a vast
library of transformations to accomplish several activities automatically, such as
metrics evaluation, testing, generation of documentation.

Finally in a third phase, while models and transformations are still a central
part of the software development process, they start to become also an inte-
gral part of the developed system. Model-based software systems appear, where
models and model transformations are first-class elements of the runtime archi-
tecture, together with data structures and programs. In these systems, models
are used to represent several heterogeneous types of information. They can be
handled natively at runtime, and system logic can be represented by complex
transformation workflows.

It is especially in this third phase that the idea of transformation manip-
ulation naturally arises. As part of the developed system, transformations can
be themselves generated and handled by model-driven development, exactly like
traditional programs. While transformation manipulation can be performed by
means of an independent methodology (e.g., program transformation, aspect ori-
entation), the elegance of the model-driven paradigm allows again the reuse of
the same transformation infrastructure. To achieve this objective, the concept of
model transformation needs to be extended with that of transformation model
[11]. The transformation is represented by a transformation model that has to
conform to a transformation metamodel. Just as a normal model can be cre-
ated, modified, augmented through a transformation, a transformation model
can itself be instantiated, modified and so on. This uniformity is beneficial in
several ways: especially it allows reusing tools and methods, and it creates a
framework that can in theory be applied recursively (since transformations of
transformations can be transformed themselves).

Once the boundary between development-time transformations and execution-
time transformations is weakened, a wide set of application patterns appear that
involve transformation models in the roles of both manipulation program and
manipulated object. This paper provides a first survey and classification of these
applications and the related transformation patterns.

The rest of the paper is organized as follows: Section 2 introduces definition
and structure of higher-order transformations, i.e. transformations of transfor-
mations; Section 3 presents the outline of the classification and the main trans-
formation types; Section 4, 5, 6 and 7 describe the four main areas in which
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the survey is divided, namely transformation synthesis, analysis, composition
and modification; Section 8 suggests other applications that can be addressed in
future by higher-order transformations; Section 9 draws the conclusions.

2 Higher-Order Transformations

An essential prerequisite for fully exploiting the power of transformations is their
treatment as objects. This demands the representation of the transformation as
a model conforming to a transformation metamodel.
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Fig. 1. Simplified version of the ATL Metamodel.

Not all transformation frameworks provide a transformation metamodel. In
this work we will mainly refer to the AmmA framework [27] that contains a
mature implementation of the ATL transformation language. Within AmmA an
ATL transformation is itself a model, conforming to the ATL metamodel. Figure
1 shows the main classes of the ATL metamodel. Besides the shown elements
like the central classes of Rule, Helper, InPattern, and OutPattern, the ATL
metamodel also incorporates the whole OCL metamodel to represent expressions
on the manipulated models.

Once the representation of a transformation as a transformation model is
available, a HOT can be defined as follows:

Definition 1 (Higher-order transformation). A higher-order transforma-
tion is a model transformation such that its input and/or output models are
themselves transformation models.
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According to this definition HOTs either take a transformation model as
input, produce a transformation model as output, or both. An example of a
HOT in the AmmA framework is shown in Figure 2. This example reads and
writes a transformation, e.g. with the purpose of performing a refactoring. The
three operations shown as large arrows at level M1 (Models) are:

– TCS Injection. The textual representation of the transformation rules is read
and translated into a model representation. This example uses for this step a
generic program that is parametrized with a model representing the concrete
syntax of the ATL language. The Textual Concrete Syntax is described in
AmmA by means of the TCS formalism [22]. The generated model is an
instance of the ATL metamodel (Figure 1).

– HOT. The transformation model is the input of a model transformation
that produces another transformation model. The input, output and HOT
transformation models are all conforming to the same ATL metamodel.

– TCS Extraction. Finally an extraction is performed to serialize the output
transformation model into a textual transformation program.

Note that the injection and extraction operations are not always used during
a HOT. For instance, the source transformation model may come from a previous
step, and already be in the form of a model. Similarly, the target transformation
model is sometimes reused as a model without an immediate serialization.

Fig. 2. A typical example of Higher-Order Transformation.

3 A survey of Higher-Order Transformations

The next sections are an overview of the literature on model transformations
that involve the use of HOTs for specific tasks.

This survey comprises all publications known to us that are related to HOTs
in the ATL language. ATL appears to be the preferred language for HOTs de-
velopment to date, and we were able to gather a set of 44 transformations from
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previous work. We add to this set other notable examples of HOTs in other
frameworks. Most of the described model transformations are freely available
and highly reusable. They constitute a first comprehensive library of HOTs.

The survey is organized in a two-level hierarchy. The first level is focused on
the identification of base transformation patterns, each of them representing the
usage pattern of a given class of HOTs. In the second level, each one of the base
groups is further divided by considering different variants of the patterns.

We identified four transformation patterns that are shown in Figure 3. These
patterns include the following models: the HOT, its input and output models
and the input and output models of the transformations that are handled by the
HOT. Models are included together with their respective metamodel and they
are linked by the following associations: the conforms-to relationship between
a model and its metamodel (represented as a thin arrow), and the transforms
relationship between a transformation and its output and input models (rep-
resented as thick arrows). The transforms arrows of the HOTs are shown in a
darker shade of gray. The four base patterns are:

Fig. 3. Base HOT patterns: a) Transformation synthesis, b) Transformation analysis,
c) Transformation composition (decomposition not shown), d) Transformation modifi-
cation.
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Transformation Synthesis (Section 4) is the common pattern for HOTs that
generate transformations from different information sources. These HOTs
are defined by two conditions: 1) the output model is a transformation; 2)
the input models, if present, are not transformations;

Transformation Analysis (Section 5) is the pattern for HOTs that take trans-
formations as input, to generate different kinds of data, in the form of output
models. More precisely: 1) they have a transformation as input model; 2) they
do not have transformations as output models.

Transformation (De)composition (Section 6) is the pattern for HOTs that
take multiple transformations as input (composition) and/or output (decom-
position). Three conditions define these HOTs: 1) at least one of the input
models must be a transformation; 2) at least one of the output models must
be a transformation; 3) the input and/or output models must contain more
than one transformation.

Transformation Modification (detailed in Section 7) is the pattern for HOTs
that take a transformation as input and generate a modified version of the
same transformation. These HOTs must have: 1) one transformation as in-
put; 2) one transformation as output.

Additional input or output models are allowed for all the previous HOTs,
with the condition that they are not transformation models.

4 Transformation Synthesis

All the cases of transformation synthesis in our survey can be inserted in one
of the following sub-classes: 1) mapping implementation, i.e. the generation of
an executable version of an abstract mapping; 2) generic metamodel, i.e. the
construction of transformations that are generic with respect to the input or
output metamodel.

4.1 Mapping implementation

The semantics of a transformation language, while representing an abstract map-
ping between metamodels, needs to be concrete enough to allow a direct execu-
tion in a transformation engine. For a set of practical applications this level of
abstraction is not sufficient and a higher-level specification is preferred. A more
abstract mapping has advantages in terms of readability and manageability and
can provide useful features that may not be in the transformation language,
such as bi-directionality. However the non-executable representation needs to
be translated into an executable transformation. This is a typical application
of HOTs. We refer to this class of HOTs with the term mapping implemen-
tation, since the abstract representation can be considered as the higher-level
specification of a mapping that needs to be implemented as a transformation.

In [15] a practical use case for mapping implementation HOTs is deeply
studied. The motivating scenario is enabling tool interoperability between dif-
ferent bug-tracking systems. Two autonomous software development companies
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that need to collaborate rely on different bug-tracking systems and they need
an import/export mechanism between their bug-tracking metadata. A declar-
ative correspondence model is semi-automatically generated by the analysis of
the metamodels used by the two systems. The correspondence model represents
a set of relationships between model elements. To address the problem of the
possibly infinite kinds of relationships between source and target elements, the
authors use an extension mechanism. The supported links are classified in three
major groups: similarity expressions (e.g., equivalence of model elements), map-
ping expressions (e.g., one-to-many, many-to-one or many-to-many relationships
between source and target model elements) or data-value expressions that in-
volve values of related attributes (e.g., the relationship between the values of the
status attribute for a bug request in the two systems). Finally a HOT translates
this representation in an executable transformation.

The same authors provide another example of this approach in [7]. Using
AMW (i.e. a model that represents generic correspondences between models
[29]) and an ATL HOT it is possible to generate two model transformations that
translate a KM3 metamodel in the SQL DDL and vice versa. In this example
the HOT takes as input a AMW weaving model (i.e. a correspondence model)
between a KM3 metamodel and a SQL DDL metamodel. The weaving model
defines a correspondence between metamodel classes and tables on a database.
This model is then used to produce the two implementation transformations for
bidirectional translation.

HOTs to translate an AMW correspondence model into an implementation
are provided also in [1]. This example contains an extension of the core weaving
metamodel to specify correspondences from a metamodel with flat structures
and foreign keys relationships (as in relational databases) to a metamodel that
contains nested structures (as in XML). The two proposed HOTs generate re-
spectively an ATL and an XSLT executable version of the AMW specification.

The same general schema is followed by:

– [25] that addresses the issue of adapting a model to an evolving metamodel;
– DUALLy [28], an automated framework that allows architectural languages

and tools interoperability;
– the MML2MMR transformation in [20] for studying the integration of DoDAF

[5] metamodels and models.

In all these cases an AMW mapping that correlates two different metamodels
is translated into two transformations at model level (one for each direction of
the mapping). Each AMW link corresponds to one or more rules or helpers in
the generated transformations. [16] provides an abstract specification of several
transformations. Among them, the patchgen transformation is the specification
of the previous transformation group.

[14] presents an alternate representation for differences between models that
conform to the same metamodel. In this proposal the difference model con-
forms to a new metamodel that is derived from the input metamodel using a
model transformation. This transformation specializes the metaclasses of the in-
put metamodel in three subclasses: for each class ClassName an 1) AddedClass-
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Name, a 2) DeletedClassName and a 3) ModifiedClassName are introduced. The
instances of these metaclasses represent all the differences between the analyzed
models. In this case too, starting from the difference representation, the authors
use a HOT to derive an ATL implementation (they call this implementation
difference animation).

Ecore2RDF [19] is a bridge between the EMF and SemanticWeb technical
spaces. A custom mapping metamodel, which extends the whole ATL metamodel
by adding novel constructs, is the core formalism of this solution. Two HOTs
generate the two directions of the mapping.

Mapping implementations are common also outside the ATL environment.
For instance WebRatio[8] is a modeling environment for the WebML domain-
specific language that allows the generation of a Web application from structure
and navigation models. WebRatio includes a tool called EasyStyle to generate
the presentation of Web pages. EasyStyle is based on a XSLT HOT which takes
as input an HTML template annotated with custom tags, i.e. placeholders for
the content elements of the page. The XSLT HOT translates this HTML file
into another XSLT transformation that generate pages conforming to that tem-
plate. This application is not different from the previous ones, since the HTML
template can be considered as a mapping that relates the elements of the input
model (the Web application model) with the elements of the output model (the
page layout model).

4.2 Generic metamodels

Several application cases require the development of generic model transforma-
tions that need to take as input or output a metamodel that is not known a priori.
The typical solution in these cases is using HOTs for the on-the-fly generation of
those model transformations that could not be easily developed manually with
a sufficient generality.

For instance the proposal in [18] includes a HOT that takes a KM3 metamodel
as source model and generates a transformation for conflict detection. The output
transformation takes two source models (an implementation and an architecture
model) that conform to the same metamodel and generates a target model that
is the union of the two source models with each of the model elements labeled
convergent, divergent or absent depending on their occurrence in one or both of
the architecture and implementation models.

The need to use a HOT in this case is related to the limitations of the ATL
language. The expressing power of ATL (at least in its declarative form) does not
allow the direct development of a generic conformance checking transformation.
For instance a specific input and output metamodel needs to be specified at
development time. The reflectivity features of declarative ATL are not enough
to outflank the problem (an alternative using imperative ATL is possible but not
painless). This limitation is shared by several other transformation languages.

An analogous problem is presented in [6], where the HOT is used to generate
a generic copier for models conforming to a metamodel that is only known at
runtime. [12] presents an alternative implementation of the model copier as a
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HOT based on the transformations in [36] and applied to product lines. In this
case a so-called configuration is obtained by a copier transformation that selects
only a subset of the elements of an extremely generic default model. To keep
the genericity with respect to the configuration metamodel, a HOT dynamically
generates the copier.

In [10] the authors develop a set of transformations to bridge models ex-
pressed in the Microsoft DSL framework to the Eclipse Modeling Framework. A
first sequence of transformations performs the bridging at M2 level, translating
metamodels between the two frameworks. A second set deals with the models.
The last step of this process is a transformation that needs to build models
conforming to the metamodel generated in the first step. Knowledge about this
metamodel is available only at runtime and can not be embedded into the last
transformation. In the proposed solution the last transformation is dynamically
generated from a HOT that instantiates some general ATL rules for the elements
of the input metamodels.

Generating test cases for model transformations is a task that can be easily
performed by exploiting the syntactic description of the input and output do-
mains of the transformation, given by the input and output metamodels. This
kind of approach to test set generation is referred to as black-box generation,
since the process does not involve an analysis of the internal structure of the
transformation under testing. In [9] the last step of the test data generation pro-
cess is the MM2TM transformation for the generation of test models according to
a test criterion. In [9] the generation of models is guided by model fragments that
are particular model chunks identified in previous steps: each model fragment
should appear at least once in generated test models. To be implemented as a
generic model transformation, applicable to any input metamodel, the MM2TM
transformation has to be dynamically generated for each input metamodel. The
generating HOT contains the logic of the coverage criteria (i.e., a different HOT
has to be developed if we want to use a different criteria).

5 Transformation Analysis

The generation of an output model that represents a particular analysis of an
input transformation is inherently a HOT.

An example of these HOTs is given in [4]. The ATL to Problem use case
describes a transformation from an ATL model into a Problem model. The
generated Problem model conforms to a single-class Problem metamodel and
contains the list of non-structural errors and warnings that have been identified
within the input ATL model. The transformation assumes the input ATL model
is structurally correct, i.e. it conforms to the ATL metamodel.

[26] shows a complex example of transformation analysis in the GReAT
framework. The HOT in this case reads a model transformation to derive a vari-
ability metamodel: for each mapping defined in the transformation, the types of
the input and output elements are extracted and gathered into a model of the
possible variabilities of the system.
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A HOT included in the Topcased project [33] analyzes a transformation to
address the problem of conformance checking. In [33] the authors describe a
framework that translates abstract SimplePDL models into Petri nets. The Sim-
plePDL2PetriNet transformation is strongly dependent on a set of implementa-
tion choices made by the user. When the author faces the task of checking the
correctness of the Petri nets starting from SimplePDL specifications, they need to
analyze also the SimplePDL2PetriNet transformations to retrieve the translation
choices. The corresponding ATL HOT takes as input the SimplePDL2PetriNet
transformation, the Petri net to check, and the high-level specifications. As out-
put it returns a boolean value expressing the result of the conformance test.

6 Transformation Composition

There are two mechanisms to perform the composition of model transformations.
External composition consists in chaining separate model transformations and in
passing models from one transformation to another. Internal composition com-
poses two model transformation definitions into one new model transformation,
with a typically complex merge of the transformation rules. Internal composition,
when performed by a model transformation, is a higher-order problem.

[36] provides an example of internal composition performed by a HOT. The
paper uses superimposition as the composition mechanism to merge two ATL
transformation modules into a single output transformation. Superimposition is
a simple kind of internal composition in which a transformation module A is
superimposed to a transformation module B obtaining a transformation module
C, such that: 1) C contains the union of the sets of transformation rules and
helpers of A and B; 2) C does not contain any rule or helper of B, for which A
contains a rule or helper with the same name and the same context.

In [36] the HOT is split up in the external composition of two HOTs: ATL-
Copy.atl that is a simple copying transformation, and Superimpose.atl that pro-
vides the special transformation rules for superimposition.

7 Transformation Modification

In our survey the most common use of HOTs is related to the modification of
existing transformations. The HOTs of this kind can be more precisely classified
in one of the sub-classes described in the following sections.

7.1 Transformation variants

The transformation variants approach is particularly useful when developing
product lines, as in [32]. In this work HOTs are programmed using the model-to-
text transformation language MOFScript. Two sets of HOTs are used to generate
two kinds of variability: 1) Platform Variability is implemented by generic HOTs
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that are developed once and can be applied on every input transformation; Intra-
domain Variability is implemented by ad-hoc HOTs that hard-code some domain
knowledge to change the internal structure of the original transformation.

A particular kind of variants is produced during mutation analysis. Mutation
analysis consists in systematically creating faulty versions of a program (called
mutants) and in checking the efficiency of a test dataset to reveal the faults
in these erroneous programs. The main interest of mutation analysis is to pro-
vide an estimate of the quality of a test dataset with the proportion of faulty
programs it detects. To be effective, mutation analysis must create mutant pro-
grams that correspond to realistic faults. The faults are injected into the correct
program by means of a set of mutation operators. The problem to identify a set
of realistic mutation operators for model transformations, independently from
a particular transformation language has already been studied in [30]. The au-
thors distinguish four error classes, correspondent to the four main operations
performed by model transformations, i.e navigation, filtering, output creation,
input modification. For each one of the error classes, a set of mutation operators
is defined to represent the most common mistakes in transformation develop-
ment. For instance one of the simplest mutation operators is Collection Filtering
Change with Deletion (CFCD) that represent the mistake of forgetting a needed
filter from the left hand side of a transformation rule. [9] proposes a formaliza-
tion of mutation operators as a set of HOTs and provides an implementation of
the mutation framework in the EMF platform.

7.2 Feature weaving

HOTs can be easily used to weave cross-cutting concerns into a model trans-
formation. Examples of these concerns are related to debugging, traceability,
program tracing. A HOT for adding a cross-cutting concern can usually be pro-
grammed with extreme generality, and complete independence from the logic of
the original transformation. In this way the same HOT can be used as a general
means to add that specific feature to any transformation. As a further conse-
quence several features can be added to the same transformation by sequentially
applying the corresponding HOTs.

The use of HOTs in this application case is especially convenient when the
transformation language does not provide a native implementation of aspect
orientation. An aspect oriented mechanism can be in fact considered as a partic-
ular type of higher-order transformation that is performed on-the-fly when the
original transformation is executed. A further solution to attach cross-cutting
concerns to existing rules could be based on rule inheritance. Such a solution is
already programmable in the current ATL but it lacks generality, having a tighter
coupling with the program logic. Finally a more general alternative could be im-
plemented by using reflection, letting the developer dynamically plug-in code
to existing rules. The coupling between the feature code and the program logic
could be relatively loose in this case.

There are several cases in literature that exploit ATL HOTs for cross-cutting
concerns. [3] describes an ATL2BindingDebugger HOT that adds a debug in-
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struction to each attribute binding in an input ATL transformation. Each time
that a value is assigned to an attribute using a binding in the target element of a
rule, a line is printed in the logfile containing the names of the rule, of the target
element and of the assigned value. This feature is easily implemented augmenting
each binding in the form targetAttribute ← value with a print on a logfile us-
ing the syntax targetAttribute← value.debug(′ruleName.targetName.value′).
The required ATL2BindingDebugger HOT is very concise and shows how nicely
HOTs can address cross-cutting concerns.

[21] and [2] provide two different implementations for another application
case, in which the addressed cross-cutting concern is traceability, i.e. the main-
tenance of a set of links between corresponding source and target model elements.
In [21] traceability is implemented by adding to each original transformation rule
the production of a traceability link in an external ad-hoc traceability model
(conforming to a small traceability metamodel). The solution presented in [2] is
analogous, with a slightly higher complexity, due to the fact that the traceability
link is represented by an ad-hoc extension of the core weaving metamodel.

7.3 Changing the engine execution mode

A higher-order transformation can be used to modify the execution mode of
the transformation engine for particular model transformations. Some practical
problems, in fact, would find a more natural solution if the transformation engine
had a different execution semantics. This would allow for more readable and
concise transformation code.

For example in [9] transformations are used to implement mutation opera-
tors. The most natural way to express a mutation operator is a single trans-
formation rule, whose intended application would require the generation of a
different output model (i.e.; a mutation) each time that the rule is applied to
a single mutation point. In the chosen solution a HOT translates the simple
mutation specification with the mutation semantics in an equivalent, much more
verbose, version with the standard execution semantics.

As a side note the solution in [9] has another reason of interest in being the
only second order HOT in this survey. It is a transformation that takes as input
and output other HOTs, i.e. the mutation operators.

7.4 Transformation language extension

One of the means to simplify the specification of a transformation is the addition
of new language features, e.g., a new operator. However the direct extension of a
transformation language and engine may not be the optimal solution. Often the
new feature would be useful in only a limited set of cases, not enough to justify
the cost of making the engine and notation heavier.

HOTs provide a good alternative for language extension. The transformation
language can be easily extended by adding new metaclasses to the transformation
metamodel. Then a HOT can be developed to convert the new elements into a
set of rules in the existing transformation language. In this way the extension
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does not require to change the actual engine and can be easily applied only
to transformations that need it. Examples of this kind of transformations are
described in [31]. [17] uses this approach to develop an extended version of ATL
to address the specification of model matching strategies.

7.5 Parametric transformation

Being faithful to the “everything is a model” ideal, ATL does not support an
explicit parameter initialization mechanism but it requires to define a metamodel
for the parameters and to add it as a further input to the transformation.

A common alternative among ATL developers is the use of HOTs to overwrite
a parameter value directly defined within the original transformation. This solu-
tion is sometimes more concise (thanks to the ATL refining mode) and flexible
of the standard one.

7.6 Transformation adaptation

Within a model-driven system it is possible that a set of properties for a specific
transformation is known only at runtime. Often such a problem is addressed by
representing these properties as a configuration model. The configuration model
is given as input to the transformation, guiding a set of choices that are hard-
coded into a limited set of rules. This approach, however, requires to define, at
development time, the kinds of variations that will be possible at runtime.

HOTs are the natural means to remove any constraint on the possible runtime
adaptations of the base transformation. [34] describes an example of this kind,
and provides a simple implementation that chooses at runtime among different
variants of rule, based on runtime statistics.

8 Other applications for HOTs

This section lists application areas for HOTs that have not yet been explored
by works in literature. The list does not want to be exhaustive but it has the
purpose of providing some directions for future works.

Transformation metrics. One of the most natural applications of HOTs is
the analysis of model transformations for deriving metric values. Several
works implement measurement transformations for generic models (e.g., [35])
and these transformations are of course applicable also to the analysis of
transformation models. However, current research lacks a set of specifically
higher-order transformations for the generation of transformation metrics.

Transformation refactoring. The building of model transformations could
benefit from a set of transformation refactorings, encapsulating best practices
for transformation development. These refactorings could be implemented as
HOTs and executed by the users during the editing of the transformation. A
theory of model transformation refactorings has not been investigated and
refactoring HOTs have not been developed yet.
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Transformation optimization. The execution of a model transformation could
be improved by preceding the execution phase with a preprocessing step. In
this step the transformation could be analyzed to detect common patterns
and translated into an equivalent version that trades a speed or memory
improvement with a loss in readability and manageability. This topic has
not been addressed by previous work.

Partial Evaluation. While a model transformation has often several input
models, it is very common the case in which some of the input models are not
subject to frequent changes. At every execution, the transformation needs
to process all the input models, including the stable ones. Often it is possi-
ble to obtain a remarkable performance gain by removing the stable input
models and hard-coding their information inside the transformation. This
process, called partial evaluation has two benefits: 1) the new version of the
transformation needs to process only the input models that actually change
between different executions; 2) the hard-coding of some input models can
allow ad hoc optimizations and a simplification of the transformation struc-
ture. The implementation of a general HOT for the partial evaluation of any
transformation, with respect to any input model has never been addressed.

9 Conclusions

In this paper we have presented a categorized survey of HOTs. The categorization
is based at its first level on the concept of transformation pattern, for which
we have given an informal definition. Four base patterns are identified. Then
HOTs are further divided based on some variants of the base patterns. Table 1
summarizes this list of HOTs showing their input and output metamodels and
the transformation areas they belong to.

The main contributions of this paper are: 1) to provide an index of the
previous work on HOTs, and to identify some important unexplored areas; 2)
to provide a list of applications for HOTs proving the practical value of this
approach and the necessity of a deeper research in this direction; 3) to identify a
limited set of common transformation patterns that involve HOTs; 4) to provide
a first categorization of existing and future HOTs based on their role within
transformation patterns.
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