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Abstract. Using hyperspheres as antibody recognition regions is an es-
tablished abstraction which was initially proposed by theoretical immu-
nologists for use in the modeling of antibody-antigen interactions. This
abstraction is also employed in the development of many artificial im-
mune system algorithms. Here, we show several undesirable properties
of hyperspheres, especially when operating in high dimensions and dis-
cuss the problems of hyperspheres as recognition regions and how they
have affected overall performance of certain algorithms in the context of
real-valued negative selection.

1 Introduction

Work in theoretical immunology has developed various representations for the
interactions between antibody and antigen, and affinity metrics for modeling
these such interactions. These antibody-antigen binding models were proposed
for describing antibody cross-reactivity and multi-specificity [1] or for estimating
the antibody repertoire size [2]. This work has provided much of the foundations
for the development of artificial immune system (AIS) [3].

AIS is a paradigm inspired by the immune system and is used for solving
computational and information processing problems. AIS exploit principles and
methods developed by theoretical and experimental immunology, and abstract
certain properties which can be implemented in computational systems [3]. In
this paper, the abstraction we will consider is the hypersphere. This abstrac-
tion of hyperspheres has been used in many artificial immune system algorithms
which have been applied to many areas such as anomaly detection, pattern recog-
nition and clustering problems [4,5,6,7,8,9]. In this paper we describe mathemat-
ical properties of hyperspheres, which manifest themselves in high-dimensional
space, and we provide suggestions on the applicability of hyperspheres as recog-
nition units. Moreover we discuss the applicability of hyperspheres in the context
of real-valued negative selection and explain reported poor classification results
shown in [6].



The paper is organized as follows : In section 2 the real-valued shape-space
is outlined and the most commonly used Euclidean distance is presented. Sec-
tion 3 describes the abstraction of an antibody as a hypersphere. In section 3.1
the known hypersphere volume formula and the construction idea of that for-
mula is shown and properties of that formula are presented in section 4. Next,
the maximum volume of hyperspheres with respect to the dimension and the
radius is presented in section 4.1, and we highlight unexpected properties of
hyperspheres in high dimensions. In section 4.2, based on the mathematical
observations, implications on the use of hyperspheres as antibody recognition
regions are provided. We then present an algorithm for estimating, as opposed
to exactly calculating, the total space of overlapping hyperspheres (section 5).
Finally, results in sections 3.1, 4 and 5 are applied to explain in section 6 the
poor classification results shown in [6].

2 Real-Valued Shape-Space and Euclidean Distance

The notion of shape-space was introduced by Perelson and Oster [1] and al-
lows a quantitative affinity description between antibodies and antigens. More
precisely, a shape-space is a metric space with an associated distance (affinity)
function. The real-valued shape-space is the n-dimensional Euclidean space R

n,
where every element is represented as a n-dimensional point or simply as a vec-
tor represented by a list of n real numbers. The Euclidean distance3 d is the
(standard) distance between any two vectors x,y ∈ R

n and is defined as :

d(x,y) =
√

(x1 − y1)2 + . . . + (xn − yn)2 (1)

Moreover, the Euclidean distance d satisfies the metric properties :

non-negativity : d(x,y) ≥ 0

reflexivity : d(x,y) = 0 iff x = y

symmetry : d(x,y) = d(y,x)

triangle inequality : d(x,y) + d(y, z) ≥ d(x, z)

for all vectors x,y, z ∈ R
n

and therefore is frequently applied as a distance measurement in AIS algorithms.

3 Hyperspheres as Antibody Recognition Regions

In the original work by Perelson and Oster [1], real-valued shape-space is in-
troduced for estimating the probability that a randomly encountered antigen is
recognized by at least one of the antibodies. An antibody is specified by n param-
eters, e.g. the length, width, charge, etc. and can be described as a n-dimensional

3 also termed Euclidean norm



point in the shape-space R
n. Furthermore, an antibody recognizes not only one

specific antigen, but several similar antigens which have a certain specificity —
this property is called cross-reactivity4. In [1] each antibody is represented as a
n-dimensional point and its (cross-reactivity) recognition space is modeled as a
hypersphere — called an antibody recognition region. Antigens which lie within
the hypersphere are recognized by the associated antibody. From an immuno-
logical point of view, antibodies recognize antigens which have a complementary
binding site instead of similar binding regions (see Fig. 1(a)). This inspired Hart
et al. [10] to develop a simulation to investigate empirically complementary bind-
ing properties in a immune network, with regard to emerging recognition regions.
Hart et al. reported that the resultant immune network depended very much on
the affinity metric employed (see [10] for further details).

h
h

h

ab

ab ab1

2

3

2 3

1

(a) Complementary antibod-
ies recognition regions. Anti-
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(b) Non-complementary an-
tibodies recognition regions.
Antibodies abi recognize all
antigens which lie within the
hyperspheres hi

Fig. 1. Real-valued Shape-Space with complementer and non-complementer antibody
recognition regions (modeling cross-reactivity)

For solving information processing problems, like pattern recognition, anomaly
detection and clustering problems, the complementary recognition approach is
possibly less appropriate, as it less obvious how one might employ such an
idea. For such problems, it is useful to recognize points which are similar in-
stead of complementary and therefore, similarity antibody-antigen recognition
approaches are typically applied (see Fig. 1(b)). More precisely, an antibody
can be represented as a hypersphere with center ab ∈ R

n and a radius r ∈ R.
An antigen ag ∈ R

n is recognized by an antibody ab, when it lies within the
hypersphere, i.e. d(ab,ag) ≤ r.

4 a well described explanation of the difference between cross-reactivity and multi-
specificity is provided in [1], page 661



3.1 Volume of Hyperspheres

The volume of a n-dimensional hypersphere with radius r can be calculated as
follows :

V (n, r) = rn · πn/2

Γ
(

n
2 + 1

)

where

Γ (n + 1) = n! for n ∈ N and

Γ (n + 1
2 ) =

1 · 3 · 5 · 7 · . . . · (2n− 1)

2n

√
π for half-integer arguments.

We briefly show the construction idea5 behind the the volume calculation of
hyperspheres. For a in-depth description see [11], where the complete construc-
tion and a proof is shown.

The volume V (n) of a n-dimensional unit sphere can be constructed inductively

V (2) = π

V (3) =
4

3
π

...

V (n) =







πn/2

(n/2)!
, n even

2nπ(n−1)/2 ((n− 1)/2)!
n!

, n odd

Given a 2-dimensional unit circle

C2 = {(x1, x2) ∈ R
2 | x2

1 + x2
2 ≤ 1}

The volume V (C2) can be calculated as a summation of infinitely thin “stripes”.

V (C2) = 2 ·
∫ 1

−1

√

1− x2
2 dx2

= 2 ·
∫ π

0

√

1− cos2(t) sin(t) dt

= 2 ·
∫ π

0

sin2(t) dt

=

∫ π

0

dt = π

5 taken from [11]



V (C2)→ V (C3)

V (C3) =

∫ 1

−1

π

(√

1− x2
3

)2

dx3

= π

∫ 1

−1

(1 − x2
3) dx3

=
4

3
π

...

V (Cn−1)→ V (Cn)

V (Cn) = V (Cn−1) ·
∫ 1

−1

(1− x2
n)(n−1)/2 dxn

=
πn/2

Γ (n
2 + 1)

Proposition 1. The volume of a n-dimensional hypersphere with radius r is

V (n, r) = rn · πn/2

Γ
(

n
2 + 1

) (2)

Proof. see [11]

4 Curse of Dimensionality

The phenomenon “curse of dimensionality” was first mentioned by Bellman [13]
during his study of optimizing a function of a few dozen variables in an exhaus-
tive search space. For example, given a function defined on a unitary hypercube
of dimension n, in each dimension 10 discrete points are considered for evaluat-
ing the function. In dimension n = 2, this results in 100 evaluations, whereas in
dimension n = 10, 1010 function evaluations are required. In general, an exponen-
tial number of (1/ǫ)n function evaluations are required to obtain an optimization
error of ǫ and therefore is computationally infeasible, even for a moderate n.

This simple example shows how problems like function optimization, which
are computationally feasible in lower dimensions, transform to computation-
ally infeasible problems in higher dimensions. A similar phenomenon (but not
from the perspective of computational complexity) can be observed with hyper-
spheres in high-dimensional spaces, where they loose their familiar properties. In
high-dimensions R

n, i.e. n > 3, hyperspheres have undesirable properties. These
properties (the following corollaries) can be derived directly from proposition (1).

Corollary 1. The volume of hyperspheres converges to 0 for n→∞.

lim
n→∞

V (n, r) = 0



Proof.

limn→∞











rn · πn/2

Γ
(n

2
+ 1
)

︸ ︷︷ ︸

≈
√

2πe−n n
n+1

2











= 1√
2π

limn→∞






(

c
︷ ︸︸ ︷

r e
√

π)n

nn+1
2




 = 1√

2π
limn→∞

(
cn

nn+ 1
2

)

= 0

⊓⊔
Corollary 2. The fraction of the volume which lies at values of the radius be-

tween r − ǫ and r, where 0 < ǫ < r is

Vfraction(n, r, ǫ) = 1−
(

1− ǫ

r

)n

Proof.

1− V (n, r − ǫ)

V (n, r)
= 1−






(r−ǫ)n·πn/2

Γ( n
2
+1)

rn·πn/2

Γ( n
2
+1)




 = 1−

(

1− ǫ

r

)n

⊓⊔
Corollary (1) implies that the higher the dimension the smaller the volume of a
hypersphere for a fixed radii. This property is investigated in more detail, in the
following section.
Corollary (2) reveals that in high-dimensional spaces, points which are uniformly
randomly distributed inside the hypersphere, are predominately concentrated in
a thin shell close to the surface or, in other words, at very high dimensions the
entire volume of a hypersphere is concentrated immediately below the surface.

Example 1. Given a hypersphere with radius r = 1, ǫ = 0.1 and n = 50 and
k points which are uniformly randomly distributed inside the hypersphere, ap-

proximately 1 −
(
1− 0.1

1

)50 ≈ 99, 5 % of the k points lie within the thin ǫ-shell
close to the surface.

4.1 Volume Extrema

By keeping the radius fixed and differentiating the volume V (n, r) with respect
to n, one obtains the dimension6 where the volume is maximal :

∂

∂n

(

rn · πn/2

Γ
(

n
2 + 1

)

)

=
rn ln (r) πn/2

Γ
(

n
2 + 1

) +
rnπn/2 ln (π)

2 Γ
(

n
2 + 1

) − rnπn/2 Ψ
(

n
2 + 1

)

2 Γ
(

n
2 + 1

) (3)

6 The dimension is obviously a nonnegative integer, however we consider term (3)
analytically as a real-valued function



where Ψ(n) =
∂

∂n
lnΓ (n)

Vice versa, keeping the dimension fixed and differentiate term (2) with respect
to r, it is not solvable in roots, i.e. no extrema exists :

∂

∂r

(

rn · πn/2

Γ
(

n
2 + 1

)

)

=
rn n πn/2

r Γ
(

n
2 + 1

) (4)

For instance a hypersphere with radius r = 1 reaches its maximum volume in
dimension 5 and looses volume in lower and higher dimensions. In figure 2 this
property is visualized for different radius lengths r = {0.9, 1.0, 1.1, 1.2}. One can
see that for each radius length in dimension from n = 0 to n = 25, the associated
hypersphere reaches a maximal volume in a certain dimension and looses volume
asymptotically in higher and lower dimensions.
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Fig. 2. Hypersphere volume plot for radius lengths r = {0.9, 1.0, 1.1, 1.2} and dimen-
sion n = 0, . . . , 25. Obviously, n is a nonnegative integer, but the graph is drawn
treating n as continuously varying.

Table 1 presents the dimension where a hypersphere reaches its maximum
volume for different radius lengths. Surprisingly, for radius lengths r = 0.05 and
r = 0.1 the maximum volume lies in negative real-valued numbers. Hence, a vol-
ume maximization for such small radius lengths is not feasible, as the dimension
is a nonnegative integer.



Table 1. Dimension where a hypersphere reaches the maximum volume for radius
lengths r = {0.05, 0.1, 0.2, . . . , 1.0}. Results are obtained by considering term (3) as a
real-valued function.

Radius r 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Dimension ⌊n⌋ -9.17 ·107 -88.94 1.59 1.12 1.0 1.03 1.20 1.53 2.14 3.23 5.27

4.2 Using Hyperspheres as Antibody Recognition Regions in

Artificial Immune Systems

The results and observations presented in sections 3.1, 4 and 4.1 indicate that
high-dimensional real-valued shape-spaces strongly bias the volume (recognition
space) of hyperspheres. A hypersphere, for example with radius r = 1 has a high
volume in relation to its radius length, up to dimension 15 (see Fig. 2). In higher
dimensions (n > 15), for r = 1 the volume is nearly 0. This means that the
recognition space — or in the context of antibody recognition region (covered
space) — is nearly 0. In contrast, a radius that is too large (r > 2) in high
dimensional spaces (n > 10) will imply an exponential volume. This exponential
volume behavior, in combination with an unprecise volume estimation of over-
lapping hyperspheres, is the reason for the poor classification results reported in
the paper [6] and is discussed in the subsequent sections.

5 Estimating Volume of Overlapping Hyperspheres

In section 3.1 a formula for calculating the exact volume of a hypersphere given
by the dimension and the radius was shown. However, many proposed arti-
ficial immune system algorithms for solving pattern recognition, anomaly de-
tection and clustering problems using not only one but multiple overlapping
hyperspheres for classifying points [4,5,6,7,8,9]. Calculating analytically the to-
tal volume of overlapping hyperspheres is a very difficult task. Just the simple
2-dimensional case of three overlapping circles with different radii is a mathe-
matical challenge. In the following section we describe a method to estimate the
volume of (overlapping) hyperspheres.

5.1 Monte Carlo Integration

The Monte Carlo Integration is a method to integrate a function over a com-
plicated domain, where analytical expressions are very difficult to apply – e.g.
the calculation of the volume of overlapping hyperspheres in higher dimensions.
Given integrals of the form I =

∫

X h(x)f(x)dx, where h(x) and f(x) are func-
tions for which h(x)f(x) is integrable over the space X , and f(x) is a non-
negative valued, integrable function satisfying

∫

X f(x)dx = 1. The Monte Carlo
integration picks N random points x1,x2, . . . ,xN , over X and approximates the
integral as

I ≈ 1

N

N∑

n=1

h(xn) (5)



The absolute error of this method is independent of the dimension of the space X
and decreases as 1/

√
N . By applying this integration method, two fundamental

questions arise :

– How many observations should one collect to ensure a specified statistical
accuracy ?

– Given N observations from a Monte Carlo Experiment, how accurate is the
estimated solution ?

Both question are answered and discussed in [15]. Using the Chebyshev’s inequal-
ity and specifying a confidence level 1−δ, one can determine the smallest sample
size N that guarantees an integration error no larger than ǫ. In [15] this spec-
ification is called the (ǫ, δ) absolute error criterion and leads to the worst-case
sample size

N := ⌈1/4δǫ2⌉ (6)

5.2 Monte Carlo Hyperspheres Volume Integration

Using equations (5) and (6) a simple algorithm can be developed which esti-
mates the total space (volume) covered by the hyperspheres inside the unitary
hypercube [0, 1]n.

Algorithm 1: Monte Carlo Hyperspheres Volume Integration

input : H = set of hyperspheres, ǫ = absolute error of the estimated
volume, δ = confidence level

output: total volume of H
begin1

inside←− 02

// calculate required worst-case

// sample size N
N ←− ⌈1/4δǫ2⌉3

for i← 1 to N do4

x←− random point from [0, 1]n5

foreach h ∈ H do6

if dist(ch,x) ≤ rh then7

// ch is center of h, rh is radius of h
inside←− inside + 18

goto 5:9

return (inside/N)10

end11



6 Limitation of Real-Valued Negative Selection in Higher

Dimensions

In [6] an immune inspired real-valued negative selection algorithm was compared
to different statistical anomaly detection techniques7 for a high-dimensional
anomaly detection problem. The investigations observed that the poorest clas-
sification results were real-valued negative selection, when compared to the sta-
tistical anomaly detection techniques on a 41-dimensional problem set (see [6]
for further details). In this section, we attempt to explain this observation.

6.1 Real-Valued Negative Selection

The real-valued negative selection is an immune-inspired algorithm applied for
anomaly detection. Roughly speaking, immune negative selection is a process
which eliminates self-reactive lymphocytes and ensures that only those lympho-
cytes enter the blood stream that do not recognize self-cells8. As a consequence,
lymphocytes which survive the negative selection process, are capable of recog-
nizing nearly all foreign substances (like viruses, bacteria, etc.) which do not
belong to the body. Abstracting this principle and modeling immune compo-
nents according to the AIS framework [3] one obtains a technique for anomaly
detection :

– Input : S = set of points ∈ [0, 1]n gathered from normal behavior of a system.
– Output : D = set of hyperspheres, which recognizing a proportion c0 of the

total space [0, 1]n, except the normal points.
– Detector generation : While covered proportion c0 is not reached, generate

hyperspheres.
– Classification : If unseen point lies within a hypersphere, it does not belong

to the normal behavior of the system and is classified as an anomaly.

A formal algorithmic description of real-valued negative selection is provided
in [6].

6.2 Poor Classification Results

In [6] the real-valued negative selection technique (see section 6.1) was bench-
marked by means of ROC analysis on a high-dimensional anomaly detection
problem. The authors reported a detection rate of approximately 1 %− 2 % and
a false alarm rate of 0 % when applying the real-valued negative selection algo-
rithm. The false alarm rate of 0 % can be explained by learning 100 % of the
training data and benchmarking with the training and testing data — similar
false alarm rates results on other benchmarked data sets are reported in [5,16].
Benchmarking with 100 % training and testing data should be avoided, as in

7 Parzen-Window, one class SVM
8 Cells which belongs to the body



general it results in a high overfitted learning model and no representative (clas-
sification) results on the generalization performance will be obtained.

Moreover, the authors in [6] reported steady space coverage problems: these
can be explained also by lack of precision when estimating the volume integra-
tion. Using term (6), which gives the worst-case sample size when given ǫ, δ, and
applying the inequality

N + 1 >
1

4δǫ2
⇐⇒ ǫ >

(
1

4δ(N + 1)

)1/2

(7)

one can easily see why the authors in [6] reported such steady space coverage
problems for the estimated hyperspheres coverage of c0 = 80 %. For the parame-
ter c0 which was originally proposed in [5] one obtains according to [5,6] a sample
size of N = 1/(1− c0) = 5. Evaluating term (7) with a given confidence level of
90 %, one obtains an integration error ǫ of greater than 65 %. Inequality (7) can
be used to explain the reported steady space coverage problems, however it does
not explain thoroughly the poor classification results described in [6] — this is
now explained by means of the results shown in sections 4 and 5.

Investigating the 41-dimensional data set [17], one can statistically verify9,
that the whole normalized non-anomalous class is concentrated at one place in-
side the unitary hypercube U = [0, 1]41. In [18] this characteristic is called“empty
space phenomenon” and arises in any data set that does not grow exponentially
with the dimension of the space.

In [6] the authors additionally reported, that the real-valued negative selec-
tion algorithm terminated when (on average) 1.4 detectors were generated. By
generating only one detector (hypersphere) with, for example, a radius r = 3
and a detector center which does not necessarily lie inside U , the volume of that
hypersphere amounts 5.11 · 1010. The unitary hypercube U = [0, 1]41 has a total
volume of 1, however most of the volume of a hypercube is concentrated in the
large corners, which themselves become very long “spikes” [12]. This can be veri-
fied by comparing the ratio of the distance

√
n from the center of the hypercube

to one of the edges to the perpendicular distance a/2 to one of the edges (see
Fig. 3).

(∑n
i=1(

a
2 )2
)1/2

a
2

=

(

n a2

4

)1/2

a
2

=
√

n where n is the dimension (8)

For n→∞, the term (8) goes to ∞ and therefore the volume is concentrated in
very long “spikes” of U .

As a consequence, the hypersphere covers some of those (high-volume) spikes
which are lying within the Vfraction proportion of the hypersphere. Hence, the
real-valued negative selection algorithm terminates with only a very small num-
ber of large radii detectors (hyperspheres) which are covering a limited number
of spikes. As a result a large proportion of the volume of the hypercube does

9 by means of covariance matrix



not lie within the hyperspheres — it lies in the remaining (high-volume) spikes,
though the hypersphere volume is far higher than the hypercube volume.

These observations in combination with the unprecise volume integration of
overlapping hyperspheres results in the poor classification results reported in [6].

From our point of view, the real-valued negative selection would appear to
be a technique that is not well suited for high-dimensional data sets, i.e. data
dimensions far higher than 41 — a well established benchmark in the field of
pattern classification is for instance the problem of handwritten digit recognition,
the dimensionality of this problem domain is 256 [19,20]. We propose this is
in part because it makes more sense to formulate a classification model with
regard to the given training elements, instead of complementary space. The
complementary (anomalous) space is exponentially large when compared to the
“normal” space in high dimensions. The real-valued negative selection technique
attempts to cover this high-dimensional space with hyperspheres, but as we have
shown, these have adverse properties in such high-dimensional spaces.

a

√
n

a
2

Fig. 3. Distance ratio
√

n
a/2

between a line from center to a corner and a perpendicular
line from center to an edge

In [18] Verleysen discusses in detail, this curse of dimensionality problem,
with respect to artificial neural networks. He suggests in general to change the
distance measure function for high-dimensional problems, for instance by apply-
ing a higher-order norm (h > 2)

dh(x,y) = h

√

| x1 − y1 |h + . . .+ | xn − yn |h (9)

instead of the standard Euclidean norm. In the context of inductive biases10,
Freitas and Timmis [21] discussed different affinity measures in artificial im-
mune systems. They illustrated the advantages and disadvantages of the 1-norm
and 2-norm (see term (9)) and showed how one of these norm when compared
to the other norm can lead to an overemphasizing of the distance. As a final
summarizing sentence, the authors suggested that when developing an AIS, one
should make a careful choice of the norm, as the norm should take into account

10 effectiveness in problem domains



the characteristics (in our case the dimension) of the data being analyzed. Un-
fortunately, there seems to be no theoretical results, for correctly choosing the
value h with regard to the data dimension [18].

7 Conclusion

The immune system is an impressive recognition system with many appealing
properties for the construction of artificial immune system algorithms. Abstract-
ing antibodies as hyperspheres and applying the Euclidean distance metric for
quantifying binding strengths, is an established method for modeling and simu-
lating the immune systems.

For developing competitive immune-inspired algorithms the antibody-antigen
representation and affinity metric is a crucial parameter. We have found that
applying the abstraction of these hyperspheres for immune-inspired algorithms
can lead to poor results, especially for high-dimensional classification problems.

In this paper, we have shown that these hypersphere have undesirable prop-
erties in high dimensions — the volume tends to zero and nearly all uniformly
randomly distributed points are close to the hypersphere surface. We have pre-
sented these hypersphere properties and have provided an explanation for poor
classification results reported in [6]. In addition, we have now explained the lim-
itations of the real-valued negative selection for high-dimensional classification
problems, when employing hyperspheres. There is no reason to suggest that the
hypersphere properties we have discussed in this paper, are not valid obser-
vations for all high-dimensional classification problems where hyperspheres are
applied as recognition regions. Therefore, as a result, these adverse hypersphere
properties could bias all (artificial immune system) algorithms, which employ
hyperspheres as recognition units.
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