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Abstract. This paper gives a systematic treatment of results about the 

existence of various types of nearly-optimal strategies (Markov, stationary) 

in countable state total reward Markov decision processes. For example 

the following questions are considered: do there exist optimal stationary 

strategies, uniformly nearly-optimal stationary strategies or uniformly 

nearly-optimal Markov strategies. 

1. r NTROVUCTION • 

This paper deals with the existence of certain types of (nearly-)optimal strategies 

for the total reward Markov decision process (MDP) with countable state space. 

Ever since SHAPLEY [1953J obtained the first result in this direction: 

the existence of 'an optimal stationary strategy for the contracting MDP 

with finite state and action spaces, there has been an almost continuous 

process of extending certain existence results to more general models 

(a.o. BLACKWELL [1965], STRAUCH [1966 J, ORNSTEIN [1969J). Here we will 

try to give a systematic treatment of the various results for the total 

reward MDP with countable state space. To be more precise: we consider 

the question of what kind of information about the history of the process 

is needed to take good decisions. For example, if stationary strategies 

AMS subject classification scheme (1979): 90C47. 
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are sufficient, then one only needs as information the present state, 

if however we have to consider Markov strategies then we need the present 

state and the time as information. 

The generalization to.uncountab1e state spaces involves techniques of a 

different nature (measure theory, selection theorems, analytic sets). We 

will not consider this topic here. 

Now let us introduce in a kind of semi-formal way some of the basic no

tations and definitions for the MDP. For a more extensive and formal 

introduction see e.g. VAN DER WAL [1981aJ. 80, consider a dynamic system 

with countable state space 8 and arbitrary action space A endowed with some 

a-field A containing all one-point sets. If in state i E S action a E A 

is taken, two things happen: a (possibly negative) reward r(i,a) is earned 

and a transition is made to state j, j E S, with probability p(i,a,j), 

where kj p(i,a,j) = 1. The functions r(i,.) and p(i,.,j) are assumed to 

be A-measurable. 

We will distinguish four sets of strategies, namely, the set IT of all 

randomized and history dependent strategies satisfying the usual measur

ability conditions with respect to the history of the process, the set 

RM of all randomized Markov strategies, the set M of all nonrandomized 

Markov strategies or shortly Markov strategies and F the set of all non

randomized stationary strategies, shortly stationary strategies. 80 

F c M c RM c IT. The elements of F will also be called policies and are 

treated as functions on S. A Markov strategy is often denoted by the 

sequence (fO,f1, ••• ) of functions from S into A specifying the action to 

be taken at each time. 
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For each strategy ~ € IT and each initial state i € S, we define in the 

"" usual way a probability measureP. on (S x A) and a stochastic process 
~,~ 

{(x ,A ), n'" a,l, ••• }, where X denotes the state of the system at time 
n n n 

n and An the action chosen at time n. Expectations with respect toP. 
~,~ 

will be denoted by E. • 
J.,~ 

Now, the total expected reward, when the process starts in state i and 

strategy ~ is used, can be defined by 

(l. 1) 
00 

v(i,~) :=E. r reX ,A), 
J.,~ ann n"" 

whenever the expectation at the right hand side is well-defined. To quaran-

tee this, the following assumption will be made. 

GENERAL CONVERGENCE CONDITION. For all i € S and all iT € IT 

(I.2) • co + 1) 
u(J.,~) :- E. I r (x ,A ) < co 

J.'~n=a n n 

A somewhat weaker condition would be 

(1. 3) E. ~ [r reX ,A )] + < co for all i € S , iT € IT. 
J., n=a n n 

Throughout this paper, however, we will assume the General Convergence 

Condition to hold. This condition allows for the interchange of expectation 

and summation in (1.1) and implies 

( 1.4) 

where 

(t .5) 

lim v (i,~) - v(i,~) , n 
n+<x> 

n-I 
v (i,iT) '=:IE I 

n • i,iT k=a 

For any real-valued function f the functions f+ and f are defined by 
f + -.,. max{O,f} and f .,. min{a,f}. 
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Note that under condition (1.3) the interchange need not be allowed. 

The value of the total rewardMDP is defined by 

(1.6) v*(i) :x sup v(i;~) • 
1l'eII 

Further, we will also consider the related MDP where the negative rewards 

are neglected, so r(i,a) is replaced by r+(i,a). For this MDP the value 

function is denoted by u*: 

(1.7) U*(J.·) = sup U(1' ~) , .. . 
1l'EII 

The rest of the paper is organized as follows. First, in section 2, some 

basic results and concepts are presented which will be frequently used in 

the following sections. Section 3 gives some results on the existence of 

stationary optimal strategies. Section 4 considers the existence of (uni-

formly) nearly-optimal stationary strategies. In section 5 the question 

whether the existence of an optimal strategy implies the existence of a 

stationary optimal one is considered. Section 6 deals with uniformly 

nearly-optimal Markov strategies. 

This introductory section is concluded with some notations and a remark. 

If the argument i corresponding to the state is deleted the function on S 

is meant. For example, v(1l') and v* are the functions with i-th coordinate 

v(i,1l') and v*(i) respectively. Frequently, these functions will be treated 

as columnvectors. 

The following notations for policies will be very useful. Let f be 

any policy, then the immediate reward function r(f) and the transition 
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probability function P(f), which will be treated as a columnvector and 

a matrix respectively, are defined by 

(1.8) r(f)(i) := r(i,f(i» , i E S • 

(1.9) P(f)(i,j) := p(i,f(i),j) , i,j E S. 

Further, we define on suitable subsets of the set of functions on S the 

operators L(f) and U by 

(1.10) 

(1.11) 

L(f)v := ref) + P(f)v • 

Uv :- sup L(f)v • 
fEF 

Finally, note that the most intensively studied total reward MDP, the 

discounted model (see e.g. BLACKWELL [1965J), can be made to fit in our 

model by the int~oduction of an extra absorbing state, * say, and rede-

finition of the transition probabilities by 

"" p(i,a,j) := 13p(i,a,j) , i,j E S 

p(i,a,*) :- 1 - (3 , i E S . 
With one-state rewards 

'" r(i,a) := r(i,a) , i E S 

~(*,a) := 0 . 

2. SOME BASI C RESULTS ANV CONCEPTS 

The general question we are interested in is: what kind of strategies 

do we have to consider, or, in different terms, what information about 
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past and present is relevant for a good control of the system. 

A first partial answer for the general case of a countable state space 

and arbitrary action space has been given by DERMAN an4 STRAUCH [1966J. 

LEMMA 2.1. Let ~ € IT be some arbitrary strategy and i € S be some 

arbitrary initial state, then there exists a strategy rr € RM such that 

v(i,1T) = v(i,~). 

So this lemma states that for each initial state you only need to con-

sider randomized Markov strategies. And thus the relevant information 

needed for choosing actions consists of the initial state, the present 

state and the time. 

The proof of the lemma is a construction of 1T and, actually, very simple. 

The strategy 1T is defined in such a way that ~ and 1T have the same mar-

ginal distributions at each time instant with respect to the state-action 

combination. 

A second result in this general setting has been obtained by VAN REE 

[1978J. He proved the following result. 

LEMMA 2.2. 

sup v(i,~) = v*(i) for all i € S. 
~€M 

So, again for a fixed initial state, Markov strategies are (almost) as 

good as any and using randomized actions is not necessary. The term 

"almost" refers to the fact that in principle it might still occur that 

an optimal strategy within RM exists whereas no optimal Markov strategy 

exists. As we will see in section 5, however, the term "almost" is 
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superfluous, since if there is an optimal strategy then there is also a 

~tationary one, so there is certainly a Markov strategy. 

Note that Derman and Strauch's as well as Van Hee's result is only point-

wise, Le. for fixed starting state. Lemma 2.1 certainly need not hold 

uniformly in the initial state. That Lemma 2.2 holds even uniformly, i.e. 

that for each e > a a strategy ~ E M exists satisfying 

vCrr) * 2: V - sf 

for some nonnegative function f on S,will be seen in section 6. 

A third basic result is the following. 

LEMMA 2.3. 

* v ... Uv*. 

* So v satisfies the optimality equation v = Uv. The solution to this 

* equation need not be unique, but the fact that v is a solution allows 

in some cases for simple proofs of the existence of uniformly (nearly-) 

optimal strategies of certain type. 

Nex, we will formulate two concepts which will play a crucial role in 

our analysis, particularly in analyzing whether some stationary strategy 

is optimal. Together these concepts, as will be seen in section 3, ex-

ploit Lemma 2.3. 

DEFINITION 2.4. A policy f is called c0n6~vin9 if L(f)v* = 

DEFINITION 2.5. A policy f is called equalizing if 

lim sup E f v* (Xn) ::;; a . 
n-+"'" 

* v • 
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One easily argues that L(f)v* and EfV*(Xn) are properly defined as for 

all E > 0 there exists a strategy n E IT such that v* ~ v(~) ~ v* - eel) 

* So, for example, L(f)v and L(f)v(~) are almost equal, and L(f)v(~), 

being the total expected reward for the strategy: play f first and then 

start with ~, is well-defined by the General Convergence Condition. 

The concepts conserving and equalizing have been first used by DUBINS 

and SAVAGE [1965J for gambling problems. For MDP's they have been intro-

duced by HORDIJK [1974J. For the relevance of these concepts in more 

general decision processes, see GROENEWEGEN [1981J or GROENEWEGEN and 

WESSELS [1980J. 

We will complete this section with the definition of various types of 

. (nearly-) optimality. 

A strategy ~ is called optimal if v(~) = v • 

A strategy n is called E-Optimal nO~ initial ~tate ~ if v(i,~) ~ v*(~) - E. 

A strategy ~ is called Ev-Optimal (where v is a nonnegative function 

on S) if v(n) ~ v* - ev. 

The latter definition describes some sort of uniform nearly-optimality. 

In the sequel various functions v will appear. 

3. OPTIMAL STATIONARY STRATEGIES 

For stationary strategies the only relevant information needed to choose 

the actions is the present state of the system. So it is important to 

have rather general conditions which allow for the consideration of 

l)e denotes the unitfunction on S: e(i) - 1 for all i E S • 
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stationary strategies only. This will be the subject of the sections 3 

and 4. The present section deals with optimal strategies, whereas section 4 

considers the existence of nearly-optimal stationary strategies. 

As remarked in the preceding section, the concepts "conserving" and 

lIequalizing" are very useful for proving the existence of optimal sta-

tionary strategies. The following theorem characterizes optimal stationary 

strategies. 

THEOREM 3.1. (HORDIJK [1974J). 

A stationary strategy f is optimal if and only if f is conserving and 

equalizing. 

PROOF. The if part of the proof follows immediately from vn(f) + v(f) 

(cf. formula (1.4» and 

o 

By specifying conditions quaranteeing conservingness and equalizingness, 

one obtains the following corollary. 

COROLLARY 3.2. For finite A, there exists in each of the following 4 cases 

an optimal stationary strategy 

(i) S finite and discounted rewards (SHAPLEY [1953J). 

(ii) r bounded and discounted rewards. 

(iii) v* ~ 0 (for example as a result of r ~ 0) (STRAUCH [1966J). 

(iv) There exists a system of Liapunov functions of order 2, i.e. a pair 

1 1,12 of nonnegative functions on S satisfying for all f 

11 ~ Ir(f)i + P(f)1 1 

12 ~ 11 + P(f)12 
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(see HORDIJK [1974J and VAN HEE, HORDIJK and VAN DER WAL [1977]); 

The condition "A if finite" can be replaced by any other condition 

* quaranteeing sup L(f)v = max L(f)v for functions v on S (or for v only). 

For example, IIA is compact and r(i,a) and p(i,a,j) are continuous in an. 

Note that various other contracting models, such as the models in 

HARRISON [J 972] , VAN NUNEN [1976] and VAN NUNEN and WESSELS [1 977] can 

be transformed into a IIstandard" discounted MOP (see e.g. VAN DER WAL 

[1981a, chapter-5]). So case (ii) extends to these models as well. 

The following result is not a direct application of Theorem 3.1, but 

requires a simple intermediate step. 

THEOREM 3.3. (see e.g. KALLEN BERG [1980] and VAN DER WAL [1981a]). If 

S and A are finite, then an optimal stationary strategy exists. 

PROOF. Let {Sn} be a sequence of discountfactors tending to 1. By Corollary 

3.2(i) there is for any S an optimal policy. Since the policy set F is 
n 

finite, there is a policy f and a subsequence of {Sn}' also tending to 1, 

for which f is optimal. As for any ~ the total expected a-discounted 

reward converges to the total expected (undiscounted) reward if S t 1, 

this policy is also optimal for the undiscounted MOP. o 

We will conclude this section with two examples in which optimal stationary 

strategies do no exist. 

The first example shows that in general finiteness of the action space 

does not quarantee the existence of optimal strategies. 
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EXAMPLE 3.4. (STRAUCH [1966, Example 4.2J). 

S == {O,1,2, ••• }, 

A • {1,2}. All rewards 

and transition probabi-

lities are zero except 

the following: 

p(n,l,n+l) == ,n=I,2 •••• 

p(n,2,O) == I , n == 1,2, ••• 

== 1 , a = 1,2 

r(n,2) -1 
== 1 - n , n = 1,2, ••• 

* Clearly v-(n) == for n = 1,2, ••• , but for all ~ we have v(n,~) < 1 for 

all n == 1,2, •••• 

The following example, due to Bather, shows that the condition "S and A 

are finite" in Theorem 3.3 can not be weakened to-,ItS is fiilite and A is com-

pact with continuity of rand pfl. 

EXAMPLE 3.5. (BATHER [1973J). 

S == {1,2,3,4}, A = [O,~J. All r(i,a) and p(i,a,j) are zero except for 

r(2,a) = 
p(l,a,l) == 

, p(1,a,2) 

2 - a - a 

2 
== a , p(l,a,3) == a 

p(2,a,4) == p(3,a,4) == p(4,a,4) == l,a E A. 

* Clearly v (1) == 1. But for any ~ € IT we have v(I,~) < 1. 
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4. UNIFORMLY NEARLY-OPT1MAL STATIONARY STRATEGIES 

In Theorem 3.1 we have seen that the conditions of conservingness and 

equalizingness together imply the optimality of a stationary strategy. 

In this section we consider the conservingness condition and a fairly 

strong kind of equalizingness condition separated. As we will see, each 

of these two conditions implies the existence of an, in a sense, uni-

formly nearly-optimal stationary strategy. These results will be given 

in Theorems 4.2 and 4.3. Before giving these results, first an example 

is presented which shows that finiteness of the state space is in general 

not sufficient for the existence of nearly-optimal stationary strategies. 

EXAMPLE 4. 1 • 

r=-l 

S = {1,2,3}, A = [0,1). All r(i,a) and p(i,a,j) are zero, except 

p(t,a,l) = a , p(l,a,2) = I-a, p(2,a,3) = p(3,a,3) = 1 

r(2,a) = ~1 , a € A. 

* Here v (1) = 0, but v(l,f) = -1 for all f € F. 

As the following theorem shows, conditions on the action space are far 

more useful. 

THEOREM 4.2. (VAN DER WAL [1981a]). 
. *.. . 1) If 1n each state i for which v (i) ~ 0 there eX1sts a conserv1ng act10n , then 

1An . act10n a in state i is called conserving, if r(i,a) + ~.p(i,a,j)v (j) = 
J 
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there exists an €u* -optimal stationary strategy, Le. there exists an f 

satisfying 

(4.1) v(f) * * <:: v - €u 

PROOF. Only a brief outline will be given. For details see VAN DER WAL 

[ 1981bJ. 

Define S- and S+ by S- := {i € Slv*(i) ~ OJ, S+ :- {i € Slv*(i) > OJ. 

By assumption, there exist conserving actions on S • As one may show, 

fixing a conserving policy on S does not affect the value. Next, the 

MOP is embedded on S+ (the policy on S- is held fixed). The embedded 

MOP now has v* > O. Then this positively valued MOP is transformed into 

an MOP with nonnegative immediate rewards. For this MOP a uniformly 

nearly-optimal stationary strategy exists in the sense of (4.1) (see 

ORNSTEIN [1969J and (4.3) below). Finally, it can be shown that this 

policy, combined with the fixed conserving actions on S-, satisfies 

(4.1) for the original MOP. 

This theorem generalizes the following two results. 

(4.2) If r s 0 (so u* = 0) and A is finite or compact, then an 

o 

optimal stationary strategy exists (cf. also Corollary 3.2(iii». 

(4.3) If r <:: 0, then an €v*-optimal strategy exists (see ORNSTEIN [1969J). 

The strong equalizingness condition which will be considered in Theorem 

4.3 is in fact a condition on the tail of the income streams. In order 

to be able to formulate this condition, some definitions are needed. 

Denote by ~ the set of nondecreasing sequences ~ = (~O'~l"") with 
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Z ('II') := Elf t Ijl j reX ,A ) I 
Ijl n=O n n n 

* z : = sup z ('11'). 
Ijl 'II' q> 

Now, an MDP is called ~nO~ 4tnongly conv~ent, if a sequence 

~ E ~ exists for which z* < =. (See for the introduction of this kind 
<p 

of conditions VAN BEE, HORDIJK. and VAN DER WAL [1977] or VAN DER WAL 

[1981a, chapter 4]). 

This condition' implies - and is actually equivalent to the condition - that the sum 

of the absolute rewards from time n onwards ~ends to zero in a uniform way if n + ~. 

THEOREM 4.3. (VAN HEE and VAN DER WAL [1977, Theorem 7] or VAN DER WAL 

[1981a, Theorem 4.11]). 

* Let the MDP be uniformly strongly convergent for q> E W, i.e. zIP < =, 

* . 1 then an ez -optJ.ma 
ql 

stationary strategy exists, i.e. there exists an f 

satisfying 

v(f) * * ~ v - ez 
<P 

The following results can be seen as special cases of this theorem. 

(i) r is bounded and rewards are discounted, then an ee-optimal sta-

tionary strategy exists (if the discountfactor S is incorporated 

in the transition probabilities, then take 'P ... sn with 1 < S < 8-1; 
n 

* -1 this implies z s (1 - ss) sup Ir(i,a)le). 
<P i, a 

(ii) --The:l:'e exists a nonnegative function II and constants C > 0 and 

o < <P < 1 satisfying for all f 

I ref) I s Cj.I and P(f)j.I S qql , 
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then an €~-optimal stationary strategy exists (cf. WESSELS [1977J~ 

VAN NUNEN [1976J and VAN NUMEN and WESSELS [1977J). 

As remarked before, model (ii) can be transformed into a standard 

discounted model. 

(iii) There exists a system of Liapunov functions (1 1,12) of order 2 

(cf. Corollary 3.2(iv», then an Ei2-optimal stationary strategy 

exists (cf. VAN HEE, HORDIJK and VAN DER WAL [1977, theorem 7.2J). 

Note that Theorems 4.2 and 4.3 imply that the relevant information consists 

of the starting state and the present state. If, moreover, u* in Theorem 

4.2 or z* in Theorem 4.3 is bounded, then an ee-optimal stationary stra-
cp 

tegy exists, and in that case the only relevant information is the present 

state. 

Also note that Theorems 4.2 and 4.3 show that for a finite set of initial 

states- always a uniformly e-optimal stationary strategy exis~s. 

5. OITlMAL STRATEGIES 

An interesting question is the following. Suppose an optimal strategy 

exists. Does there exist an optimal stationary strategy? 

This question has been considered by STRAUCH [1966J for the negative 

dynamic programming case and by ORNSTEIN [1969] for the positive case. 

They showed that in these two cases the answer is affirmative. 

Negative case; r ~ O. Here the argument is simple. If an optimal strategy 

exists, then certainly there are conserving actipns in each state, so a 

conserving policy exists. Since v* ~ 0, this policy is equalizing, whence 

by Theorem 3.1 also optimal. 
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Positive case; r ~ O. The optimal strategy uses essentially only conserving 

actions. So, eliminating all nonconserving actions in each state does not 

affect the value. By Ornstein's theorem (see (4.3), a stationary strategy 

* exists satisfying v(f) ~ av for some a > O. But, since f is also con-

* serving (the nonconserving actions being eliminated), even v(f) = v (see 

ORNSTEIN [1969J). 

Only recently these partial results have been extended to the case with 

both positive and negative immediate rewards. 

THEOREM 5.1. (see VAN DER WAL [1981b]). 

~f an optimal strategy exists. then also an optimal stationary strategy 

exists. 

~. The proof, which is heavily based on Ornstein's result for the posi-

tive case, can be found in VAN DER WAL [1981a]. 

So restricting the strategy set from RM to M or from M to F does not affect 

the existence of an optimal strategy. 

6. UNIFORMLY NEARLY-OPTIMAL MARKOV STRATEGIES 

Until now, we have been formulating conditions for the existence of sta-

tionary optimal or nearly-optimal strategies. If only stationary strategies 

need to be considered, then the information needed to choose the action 

consists only of the present state and in some cases the initial state. If 

one cannot restrict the attention to stationary strategies, then, given the 

initial state, Markov strategies are always sufficient(cf. Lemma 2.2). In 

this section, we are interested in the question whether the initial state 
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is important or, in different terms, whether a uniformly nearly-optimal 

Markov strategy exists. 

Therefore, let us first fix some e > a and define a sequence of policies 

{fn' n'" O,l, ••• } satisfying 

(6.1) * * -n L(f)v ~ v - e2 e. 
n 

Clearly such a sequence always exists. 

Now, let 'If be the Markov strategy (f 1,f2, ... ). 

Then 

(6.2) 

v('If) '" lim vn('If) '" lim L(f1)L(f2) ••• L(fn)O 
n-- ~ 

'" lim {L(f
t
)L(f2) ••• L(fn)v* - P(f l )P(f2) ••• P(fn)v*} 

~ 

~ v* - ee - lim sup E v*(X ) • 'If n 
~ 

The Markov strategy 'If might be called ee-conserving. And we see from (6.2) 

that if 'If is equalizing (cf. Definition 2.5), then 'If will be ee-optimal. 

So we have the following theorem. 

THEOREM 6.1. (cf. STRAUCH [1966, Theorem 8.1J). 

Let 'If '" (f 1,f2, ••• ) be a Markov strategy satisfying (6.1) and let 

lim supE v*(X ) ~ 0, then v('If) ~ v* - ee. 
~ 'If n 

Thus,. in the negative dynamic programming case ee-optimal Markov strategies 

exist. 

In general, however, ee-optimal Markov strategies need not exist, see 

e.g. Example 2.26 in VAN DER WAL [1981a]. In this example not even an 

ee-optimal randomized Markov strategy exists. Also eu*-optimal Markov 
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strategies do not exist in general as is immediate from negative dynamic 

programming. So, in the negative case €e-optimal, but not necessarily 

* * EU -optimal, MarkGvstrategies exist~ whereas in the positive case eu -op-

timal~ but not necessarily Ee-optimal, Markov strategies exist. 

For the case of both positive and negative immediate rewards these partial 

results can be combined into the following theorem. 

THEOREM 6. 2 • 

For each E > 0 a Markov strategy w exists satisfying 

v(w) * * ~ v - e(e + u ). 

PROOF. The proof uses the same ideas as the proof of Theorem 4.2 and can 

be found in VAN DER WAL [I98IcJ. o 

From this we see that the only relevant information needed to choose the 

decisions in the MOP are the time, the present state and, in case u* is not 

bounded, the initial state. 

7. SOME REMARKS 

In Theorems 4.2 and 6.2 the function u* indicates the type of near-optimality 

of the strategy. Is it possible to replace u* by an essentially smaller 

function? Consider the following example. 

EXAMPLE 7.1. (cf. VAN DER WAL [198Ia, Example 2.25J). 

s = {O,1,2, ••• }, A = {I,2}. 

All rewards and transition 

probabilities are 0 except 

for the following. For i ~ 

r ( i , 2) = 2 i, p ( i , 2 , 0) = I, P (i, 1 , 0) = I-a. , p ( i, I , i + 1 ) = (l. and p ( 0 , a , 0) == I, a E: A. 
1. ~ 



- 19 -

Now let Ct.. be equal to (1 + y.)/2(1 + Y'+l) with y. + o. 
~ 111 

Then for i ~ 1 

+ y. 
-:--___ 1_ 2 i 

+ Yi+l 

, ... } 

1 + y. 
1 

Any stationary strategy that is ~u*-optimal takes action 2 in infinitely 

many states. And in those states i where action 2 is taken roughly a fraction 

y. of v*(i) is lost. The slower y. tends to 0 the closer the loss function 
~ 1 

* comes to u in the sense that, if i + 00, the loss'goes to 00 almost as fast 

*(') . * d' 1 as u 1. So errors expressed 1n u seem to be about as goo as poss1b e. 

This covers the case of Theorem 4.2. Extending Example 7.1 in the same 

way as Example 2.25 is extended to 2.26 in VAN DER WAL [1981a], the argu-

ment can be extended to the case of Theorem 6.2. 

Our second remark concerns a special type of history dependent strategies, 

called ~eklng strategies. These strategies have been introduced in 

HILL [1979]. For tracking strategies the selection of the action may depend 

only on the present state and the number of times this state has been 

visited previously. 

When using Markov strategies, you can take a better action at each time 

you come back to a state. Intuitively this is the way time is used in a 

Markov strategy. Thinking of Markov strategies in this way if seems that 

also tracking st~ategies should be good. 

So we conjecture that Theorem 6.2 also holds for tracking strategies. 
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