
Oikonomou, P., Karanika, A., Anagnostopoulos, C. and Kolomvatsos, K.

(2021) On the use of intelligent models towards meeting the challenges of

the edge mesh. ACM Computing Surveys, 54(6), 125. (doi:

10.1145/3456630)

There may be differences between this version and the published version.

You are advised to consult the publisher’s version if you wish to cite from
it.

© Association of Computer Machinery 2021. This is the author's version of

the work. It is posted here for your personal use. Not for redistribution. The

definitive Version of Record was published in Oikonomou, P., Karanika,

A., Anagnostopoulos, C. and Kolomvatsos, K. (2021) On the use of

intelligent models towards meeting the challenges of the edge mesh. ACM

Computing Surveys, 54(6), 125. (doi: 10.1145/3456630)

http://eprints.gla.ac.uk/236454/

Deposited on: 15 March 2021

Enlighten – Research publications by members of the University of

Glasgow

http://eprints.gla.ac.uk

http://dx.doi.org/10.1145/3456630
http://dx.doi.org/10.1145/3456630
http://eprints.gla.ac.uk/236454/
http://eprints.gla.ac.uk/236454/
http://eprints.gla.ac.uk/

On the Use of Intelligent Models towards Meeting the Challenges

of the Edge Mesh

Panagiotis Oikonomou1, Anna Karanika1, Christos Anagnostopoulos2, Kostas Kolomvatsos1

1 Department of Computer Science and Telecommunications, University of Thessaly, Papasiopoulou

2-4, 35131, Lamia Greece

emails: {paikonom, ankaranika, kostasks}@uth.gr

2 School of Computing Science, University of Glasgow, Lilybank Gardens 17, G12 8RZ, Glasgow UK

Email: christos.anagnostopoulos@glasgow.ac.uk

Abstract

Nowadays, we are witnessing the advent of the Internet of Things (IoT) with numerous devices

performing interactions between them or with their environment. The huge number of devices leads

to huge volumes of data that demand the appropriate processing. The ‘legacy’ approach is to rely on

Cloud where increased computational resources can realize any desired processing. However, the

need for supporting real time applications requires a reduced latency in the provision of outcomes.

Edge Computing (EC) comes as the ‘solver’ of the latency problem. Various processing activities can

be performed at EC nodes having direct connection with IoT devices. A number of challenges should

be met before we conclude a fully automated ecosystem where nodes can cooperate or understand

their status to efficiently serve applications. In this paper, we perform a survey of the relevant

research activities towards the vision of Edge Mesh (EM), i.e., a ‘cover’ of intelligence upon the EC.

We present the necessary hardware and discuss research outcomes in every aspect of EC/EM nodes

functioning. We present technologies and theories adopted for data, tasks and resource

management while discussing how machine learning and optimization can be adopted in the domain

Keywords: Internet of Things; Edge Computing; Edge Mesh; Machine Learning; Data Management;

Tasks Management; Resources Management

CCS: Human-centered computing - Ubiquitous and mobile computing - Empirical studies in

ubiquitous and mobile computing; Computing methodologies - Distributed computing

Methodologies

1. Introduction

Nowadays, we are witnessing the huge evolution of the Internet of Things (IoT) that incorporates

numerous devices interconnected into the same infrastructure [84]. This vast infrastructure gives

the opportunity to build/support novel applications in close distance with end users. It is estimated

that the potential impact of IoT will be close to $11.1 trillion by 2025 [88] exhibiting its value for all

the stakeholders active in various application domains. IoT devices are in the position of interacting

with end users and their environment to collect data and perform simple processing activities. IoT

has evolved into a network of devices of all types and sizes, e.g., vehicles, smart phones, home

appliances, toys, cameras, medical instruments and industrial systems [106]. Data or the outcome of

any lightweight processing can be transferred through the adoption of wireless communications to

other ‘peer’ devices or to the Cloud infrastructure where more advanced processing can take place.

Such transfer of data is regulated by the appropriate models and protocols for sharing information

and achieving the necessary detection, positioning and control.

Researchers have focused on terms like ‘smart’ or ‘intelligent’ associated with IoT, however, it is not
clearly defined what intelligence is in this context and who provides it. Such questions motivated the

research community to study the data-centric IoT, data mining in IoT, the interaction of Artificial

Intelligent (AI) with IoT etc. The majority of the current IoT systems build on a centralized entity

(e.g., a server), usually place at the Cloud infrastructure, for achieving their computational targets.

Low-level IoT devices are used only for sensing purposes and the collection of data while the final

decision-making is performed by the central entity. IoT enables innovation upon a vast infrastructure

that involves numerous sensors and devices (e.g., wearables) able to interact with their environment

and users. The adoption of AI in IoT facilitates the proposed systems to be autonomous and react in

the ambient contextual information. For instance, those systems can be predictive and capable of

selecting the appropriate line of actions to efficiently support applications for end users. In the

future, AI and IoT will be inseparable as AI applications will open up the room for concluding smarter

applications than before to impact various domains like manufacturing, retail, healthcare,

telecommunication, transportation, etc. The strength of the AI is that enhances applications with

intelligence and combined the orientation of the IoT, i.e., to support the connection of numerous

devices, will lead to a new world of fully autonomous systems.

The forthcoming emergence of the Internet over Everything (IoE) [91] will extend the capabilities of

the ‘legacy’ IoT, the number of devices and the volumes of data. This explosion will be driven by the

evolution of 5G technology, advances in the Cloud infrastructure, the extended use of social media,

advances in mobile computing and the new trends of data science. It becomes obvious that such an

evolution will impose new requirements related to the storage of huge volumes of data as well as

the management of numerous devices. Eventually, the aforementioned centralized model will be

affected by the bottleneck in the processing of the collected data that will increase the latency in the

provision of responses as well as by the need for an increased bandwidth. Additionally, Cloud may

face accessibility challenges, e.g., unstable connections between Cloud and IoT devices. In any case,

these problems negatively affect the performance of real-time applications where latency is critical.

It becomes obvious that IoT devices are, usually, lightweight nodes with constrained resources, thus,

no advanced processing can take place on them. Consequently, data and the ‘light’ local knowledge
should be transferred to Cloud where increased computational resources are present. However, the

transfer of huge volumes of data in the network can have negative effects on the scalability aspect

and the required bandwidth [39]. Edge Computing (EC) comes into scene to limit the amount of data

transported back to the Cloud [100]. EC provides an intermediate infrastructure upon the IoT and

below the Cloud that can support services towards reducing the latency in the provision of

responses to end users. If we build novel services at the EC, we can limit the connectivity cost and

add a layer for storage and processing. Currently, the majority of the collected data in the IoT

infrastructure are not used even they could contribute in the production of new knowledge.

Considering EC to rely at the middle between the IoT and the Cloud creates multiple challenges. The

first challenge deals with interoperability issues, i.e., we need a novel approach to ‘aggregate’ data
coming from various devices. Additionally, we need advanced methodologies and algorithms for the

management of data, EC nodes, IoT devices and so on and so forth.

Currently, we are at the early stages of far-reaching and consequential EC revolution to prepare the

aforementioned infrastructure for the new, modern, Edge Mesh (EM). EM provides a ‘virtual’ layer
(a computational/processing overlay) that enables the cooperation between EC nodes of different

types to conclude a cooperative infrastructure close to end users [118]. Operators can/should/will

open the EC to third-parties, allowing them to rapidly deploy innovative applications and content

towards mobile subscribers, enterprisers, and other vertical segments [37]. As things stand today,

‘there is no edge’ and ‘if there is, everything is centralized’, Karri Kuoppamaki, VP of T-Mobile US

said1. In the near future, with the advent of 5G networks, we will be surrounded by a high number of

network ‘hubs’ moving from 4G macrocells to 5G microcells. The future networks may be as

ubiquitous as electricity networks while their capacity is exploding to ‘host’ and process all the data

1
 https://www.sdxcentral.com/articles/news/operators-strike-realistic-edge-computing-balance/2019/09/

reported by IoT devices, thus, giving the opportunity for ‘tiered’ data management and limited
latency.

The EM gives the opportunity to build innovative applications upon the so-called Edge Intelligence

(EI). EI refers to the EC/EM infrastructure where a set of connected systems and devices can be

utilized to cooperatively collect, cache, process and analyze data adopting AI technologies [145]. EI

provides the following advantages [110]: (a) it improves time-to-action and reduces latency down to

milliseconds; (b) it minimizes the bandwidth of the network; (c) it can easily allow greater control

over the generated data. EI can provide various means for data processing at different stages (e.g.,

pre-processing, post-processing) and their protection in terms of privacy and security. Example

applications of EI can be: (i) development of wearable cognitive assistance for recognition tasks in a

cloudlet [50]; (ii) development of constrained AI models on smartphones for activity recognition

[72]; (iii) development of AI models for recognition tasks on wearables [113] and embedded devices

[71]; (iv) computer vision applications for commercial aerial unmanned vehicles [110]; (v) face

recognition through the ‘cooperation’ of smartphones and edge servers [149]. The estimation is that

EI will be at the core of the processing performed at 6G networks where intelligence should be

provided upon small cells [107].

EC and EM are organically connected (see Figure 1) as the presence of both should be realized in

order to support intelligence and innovative applications at the edge of the network. EC provides the

necessary infrastructure upon which the EM functionalities will open up the pathway for applying AI

algorithms, i.e., EI, and pursue the best possible performance. In the new era of EC/EM, multiple

research questions should be answered like the following: How to define the network and

computing model? How to manage/distribute data processing? How to jointly optimize

computation? etc. Currently, the distributed processing can be realized in the available EC nodes,

however, these nodes are heterogeneous, resource-constraint (compared to the Cloud), and have

direct communication with a high number of IoT devices. In particular, EC nodes are characterized by

diverse computational resources, runtime environments and hardware equipment [155]. The

discussed heterogeneity makes difficult the orchestration of nodes and the adoption of cooperative

approaches to process the desired tasks. According to [155], the unique technical challenges related

to the heterogeneity of EC nodes are: (i) applications cannot manage nodes in a fully controlled

manner; (ii) the degree of heterogeneity in EC is much more significant than systems present at the

Cloud (there, it is assumed the presence of homogeneous architecture or tasks); (iii) existing

resource management techniques should be re-designed to deal with the discussed heterogeneity.

Figure 1 The connection between EC and EM

Other open research issues like the reliability, fault tolerance, Quality of Service (QoS) management,

security and privacy etc should also be considered. QoS is a significant metric that depicts the degree

of satisfaction of various performance criteria and is classified into the following categories [150]:

connectivity, reliability, capacity (or network bandwidth), and delay. An example of QoS

management and, more specifically, capacity management is provided by [54] where the authors

propose a model for administrating QoS over virtualized resources. The motivation behind the work

is that containers exhibit a weakness in the control of network bandwidth for outbound traffic.

Security is also a concern especially if we consider that a high number of devices are spread in the EC

infrastructure. Problems may arise upon this distributed approach where data and devices are

located far away from companies’ premises. Every device may be a potential vulnerable endpoint
where advanced security and privacy models should be invoked. In general, EC nodes are not

designed having security at the core point of research. Hence, any gaps or risks should be managed

in the most efficient way in order to avoid jeopardizing the stability of the entire network.

Machine Learning & Deep Learning (ML/DL) and optimization techniques can assist in many aspects

for the provision of the appropriate services that will give a boost to the performance of applications

with positive impact in end users activities. ML/DL can setup the basis for covering multiple axes of

the EC/EM functioning. Nodes placed at the EC/EM can have a ‘logical’ connection over the physical
infrastructure adopting distributed intelligence to conclude a fully automated framework close to

IoT devices, thus, to end users. In the intelligent EM, we need a type of ‘cooperative computing’ for
handling the unbalanced computation distribution and lead to better usage of resources, reduced

latency and better services as nodes cooperate with each other.

This survey targets to expose the current efforts in creating the new form of the EC, i.e., the EM. We

focus on the EC, instead of Fog Computing (FC), due to its limited distance with the IoT devices and,

thus, end users. Before the data are transferred to the Cloud back end, they can be the subject of

various processing activities to apply EI close to their sources. Obviously, this EC/EM approach can

provide the infrastructure and the intelligent cover to support innovative applications. EC nodes can

become the host of distributed datasets and intelligent algorithms towards the provision of the

aforementioned applications. Our focus is on the creation of the necessary intelligence to realize an

ecosystem of autonomous devices in the EC. The axes of this study are as follows: (i) the necessary

hardware to support the envisioned processing; (ii) the ML/DL and optimization models adopted for

realizing the EM; (iii) models for data management at the EC; (iv) tasks management at the EM; (v)

autonomous nodes management. We depart from other surveys and focus only on the

aforementioned axes. Actually, we provide a survey on the necessary technologies to support

intelligence in the EC/EM starting from the hardware and elaborating on the adoption of smart

models for the management of the contextual data related to nodes participating in the EC/EM.

Other similar efforts in the domain focus on different approaches when performing their review of

the relevant efforts. In [145], the authors elaborate on edge caching, the training of intelligent

models, models compression & inference acceleration and edge offloading. The authors of [147]

report on a survey on federated learning, i.e., its architecture and applications. In [136], the subject

is on training and inference of ML/DL models as in [145], while in [92], the training of ML/DL models

is studied through the adoption of a cooperative approach between edge devices and edge servers.

The survey of big data analytics adopting ML/DL approaches is the subject of [92] and the use of

ML/DL in Wireless networks (e.g., spectrum resource allocation) is studied in [154]. The overlapping

of our work with past efforts can be detected only in the study of the task offloading actions,

however, we consider the problem in a generic way instead of focusing to the offloading of

inference models like other surveys do. We do not focus on ‘low’ level information putting our
efforts in the discussion of the challenges, open issues and the algorithms/models proposed to

process data, tasks and nodes at the EC/EM. We try to reveal to the interested readers the minimum

setup and the required technologies for supporting an intelligent EC/EM and innovative applications.

Through this approach, we pay attention on the creation of the EC/EM ecosystem where numerous

smart nodes can communicate each other, with the Cloud and with the IoT infrastructure to deliver

novel applications. We devote a separate section for each axis and provide a description of the

relevant efforts in each sub-field. Our aim is to expose the progress related to the management of

the aforementioned ‘logical’ layer that covers the EC physical infrastructure. Finally, we conclude our

paper by giving some future directions.

2. Edge Computing and Internet of Things

2.1 A Layered Architecture

Figure 2 (retrieved from [21]) shows the generic architecture of the layered approach moving from

the IoT infrastructure to the Cloud datacenters. At every layer, a high number of devices can be

present capable of supporting the envisioned processing of the collected data and offering a wide

set of services. EC relies upon the IoT infrastructure and refers to the data processing that happens

close to where data are collected/produced, i.e. ‘at the edge’ of the IoT network. Both EC and IoT

are a perfect match exposing their complementarity related to the collection, transfer and

processing of data. EC nodes are located in a close distance with end users, thus, the latency in the

provision of responses is limited. As a result, IoT devices are no longer dependent on the connection

with the network resulting an autonomous infrastructure. In any case, EC nodes cannot quickly and

efficiently perform the processing demanded by complex and computational intensive applications

compared to Cloud due to their limit capabilities. For instance, it will not be efficient to train a huge

DL neural network upon large volumes of data and expect the outcome in limited time. EC is mainly

adopted to perform processing activities that can be concluded in (near) real time in order to meet

the challenges of data streams processing and the immediate provision of responses to end users.

Many times, EC is confused with FC [14]. The research community sees various definitions of EC and

FC making us to allege that a consensus may be not present. For instance, in [17], FC is presented as

a subset of the EC and multiple technologies, e.g., Micro Data Centers (MDC), Cloudlet, etc, may co-

exist and interact resulting the FC/EC infrastructure. In the aforementioned work, FC is considered as

a platform that brings Cloud computing in close distance with end users. On the other hand, in [119],

the authors state that EC and FC are the same. The FC/EC infrastructure is defined as a highly

virtualized platform that offers computational resources, storage and control functionalities to

connect end-users requests with the Cloud datacenters. In any case, FC exhibits the following

differences when compared with EC [6], [95]:

 FC is device independent and aware of the entire fog domain while EC is aware only for every

device and a few services;

 FC controls all devices in the domain while EC exhibits limited control;

 FC extends Cloud as a continuum while EC is Cloud unaware;

 FC supports for multiple IoT verticals while EC exhibits no IoT vertical awareness;

 FC nodes are versatile and capable of performing a variety of functionalities while EC nodes are

focused on device command and control;

 FC supports end-to-end security while, in the EC, the security scope is limited to devices;

 FC supports analytics from multiple devices while EC analytics are oriented to individual devices.

Furthermore, Table 1 depicts a high level comparison by exposing the main differences/similarities

between FC and EC [151].

Table 1 Comparison between FC and EC

Attribute FC EC

Devices Small scale with virtualization

capabilities

Small scale with virtualization

capabilities

Devices Location Dedicated/Edge Edge

Resources Moderate Low/Moderate

Distance form Users Moderate Low

Availability High Moderate

Security Node oriented Infrastructure oriented

Applications Decentralized / Hierarchical Distributed

Latency Low Low

Heterogeneity Support Yes No

Mobility Support Yes Yes

Real Time Applications Support Yes Yes

Standards Yes Yes

Both, EC and FC, try to keep the processing of data very close to the IoT infrastructure to speed up

the provision of responses. The speed in data processing and the immediate provision of analytics

are essential in many application domains but they are also the key for transforming industrial

processes in many ways. The final target is to automate the industrial processing adopting control

software, actuators and intelligent decision making.

Figure 2 Edge-Fog-Cloud Architecture

EC also provides a better alternative for the efficient management of computational resources

compared to Cloud. This leaves the room for Cloud administrators to efficiently manage their

resources as a set of functionalities are decoupled. The control of the resources is shifted from Cloud

to the edge of the network creating a new layer of administration. Hence, we can place a number of

management activities close to the source of data giving the opportunity to our systems to be

aligned with the real time requirements for the provision of responses. A specific example is Edge

Analytics [28] adopted by vendors like Intel2 or Cisco3 allowing the interested stakeholders to

perform a set of pre-processing activities just after the reception of data. The significant aspect is

that such an approach can be ‘distributed’ in the entire ecosystem of EC nodes opening up the path
for high quality and novel services. EC nodes can be considered as points where distributed datasets

2
 https://www.intel.com/content/www/us/en/edge-computing/overview.html

3
 https://blogs.cisco.com/tag/edge-analytics

are formulated hosting any desired, however feasible, functionality. Consequently, we are enjoying,

compared to Cloud, more storage, additional processing points, a fault tolerant approach and

enhanced analytics capabilities as we can employ as many EC nodes as we desire.

Additionally, in Cloud, processing is realized at the central datacenter with the response returning

back to end users after its conclusion. This processing, usually, will not take too long (e.g., a couple

of seconds for a high number of applications), however, in some cases, the provision of the final

response could be jeopardized due to, e.g., a network glitch, weak network communications, a high

distance between the receiver of the response and the datacenter [111]. It becomes obvious that

the processing ‘pressure’ is taken away from the Cloud infrastructure, however, we have to secure
the role of each framework. Cloud technologies face some accessibility challenges when providing

services to end-users. An example concerns mobile clients who can move among different places,

yet require Cloud services with minimum cost and limited response time. It becomes obvious that

mobile communications can be heavily affected by problems in the communication channel. This, in

a sequential order, can create severe problems in real-time applications where the latency is critical.

Hence, the research community proposes the combination of EC/EM. i.e., the ecosystem of EC nodes

enhanced with EI capabilities, for supporting such kind of applications. Several EC/EM technologies,

originating in different backgrounds, have emerged to decrease latency and support the massive

machine type of communication. However, there is an intense need to support the EC/EM nodes

with intelligent services to overcome all the aforementioned challenges.

2.2 Data & Processing Activities at the Layered Architecture

In this layered architecture, EC nodes can formulate an ecosystem of processing points upon the

collected data. As we have multiple locations where data can be stored, a significant research aspect

is the opportunity to replicate data in multiple EC nodes and create a fully fault tolerant

infrastructure. The following list reports on the advantages of replicating data in multiple distributed

datasets at the EC as well as at the FC (as they exhibit similar characteristic in data storage):

 Efficiency: It is not necessary to always access the ‘master’ data at the Cloud with positive
impact on the performance of applications.

 Low latency: If we have direct access on the local data, we can reduce the latency for accessing

them in a distant location.

 Fault tolerance: By distributing the data across multiple locations, we can easily support fault

tolerance being able to recover from any disaster. However, this approach requires the efficient

management of replicas and the adoption of mechanisms that manage possible redundancies.

 Scalability: Complex processing can be distributed in multiple nodes to benefit from the

‘collective’ power of the infrastructure. Recall that the available nodes can be provided by
different vendors, thus, a powerful model for consistency and heterogeneity management as

well as resilience is necessary.

The EM virtually relies upon the EC ecosystem to overcome the disadvantages of the EC

infrastructure, i.e., to facilitate the management of resources and tasks applying the necessary

intelligence. It targets to a cooperative model where EC nodes can exchange data, tasks or

knowledge in order to perform the desired processing. Eventually, EM acts as an overlay virtual

network over EC nodes trying to overcome the problem of constrained resources through a

collective intelligence approach. EM is proposed to deal with a computing paradigm that uses a

mesh network of EC nodes to enable distributed decision-making, exchange of data and

computation among the available nodes. This differs from the existing EC paradigm which usually

considers EC nodes as ‘simple’ nodes responsible to collect and transmit data to the Cloud

infrastructure. EM ‘imposes’ the idea of using EC nodes to enable distributed intelligence in IoT
[114], i.e., the cooperation between autonomous entities, intermediate communication

infrastructures (local networks, access networks, global networks) and/or Cloud systems to optimally

support IoT communication and applications.

Under this rationale, EC/EM and IoT can have a close cooperation to host business processes and

support a strong computing paradigm for the future. If we apply intelligence in both, the EC/EM and

IoT, we can easily go beyond the state of the art and support the autonomous behaviour of

numerous nodes. The envisioned interconnection can be holistically realized either in the horizontal

axis or in the vertical one. The vertical approach will refer in the communication between the IoT,

the EC/EM, the FC and the Cloud. Hence, we will be able to integrate and distribute the processing

activities and power in any direction at will. Eventually, this will lead to the optimization of the use of

resources and the ability to dynamically react to end users dynamic requirements. For instance, we

can easily control the data flow and the processing needs from one location to another. In any case,

such an approach will open up the road for having third parties involved in the provision of advanced

services in the discussed ecosystem. Businesses will find more opportunities to expand their

portfolios or invest on new services that will increase their revenues and the quality of their

products.

Finally, Multi-access Edge Computing (MEC), formerly mobile edge computing, is an emerging 5G

network edge-cloud architecture. MEC enables data processing at the edge of a cellular network

where data are generated. This architecture reduces the latency in the provision of responses to

various requests and brings real-time performance to demanding applications (e.g., applications

demanding for a high bandwidth). Such applications include video analytics and video streaming4,5

[80], [115], [120], augmented-virtual reality [2], [27], [127], [87], [55] and autonomous connected

vehicles [15], [42], [146], [94].

2.3 Technologies for the EC/EM

Currently, there is a number of companies providing EC/EM services. For instance, Foghorn6, Swim7,

Juniper8, Crosser9, Mutable10, AlefEdge11, CLearBlade12, SSAS13, Eurotech14, Edge Intelligence15 and

many others support ML algorithms and analytics for EC/EM. Additional companies like Zededa16,

Edgeworx17, Affirmed Networks18, Ori19, Packet20, EdgeConneX21 offer virtualization and

orchestration services for EC. Of course the lists are not exhaustive but they just present indicative

examples. The aim of all these companies is to have their services interacting with IoT and Cloud

while applying specific algorithms and models upon the collected data. They become the first point

of expansion for companies working at the provision of IoT platforms. Example companies are:

4
 https://support.hpe.com/hpesc/public/docDisplay?docId=c05336736

5
 https://software.intel.com/content/www/us/en/develop/articles/video-analytics-at-the-edge-deliver-

immediate-actionable-insights.html
6
 https://www.foghorn.io/

7
 https://www.swim.ai/

8
 https://www.juniper.net/us/en/

9
 https://crosser.io/

10
 http://www.mutable.io

11
 http://www.alefedge.com

12
 http://www.clearblade.com

13
 https://www.sas.com/en_us/home.html

14
 https://www.eurotech.com/en

15
 https://www.edgeintelligence.com/

16
 https://zededa.com/

17
 https://edgeworx.io/

18
 http://www.affirmednetworks.com

19
 http://www.ori.co

20
 http://www.packet.com

21
 http://www.edgeconnex.com

Software22, QIO23, Altizon24, IBM25, Litmus Automation26, Exosite27, Oracle28, Atos29. Dell is the leader

of the EdgeX open source project for edge computing30. Eurotech offers Everywhere Software

Framework31 for building edge computing applications. ADLINK develops Vortex Edge32 and Vortex

DDS33 to facilitate the deployment of software on edge gateways.

The aforementioned solutions target to facilitate the incorporation of IoT devices and the collected

data to the infrastructure present at higher layers. These solutions try to offer to customers an

integrated approach that includes device to edge, then, to Cloud. The deployment of any software or

hardware will be facilitated due to the automatic detection of the requirements and the inclusion of

advanced software to realize it. Significant Key Performance Indicators (KPIs) deal with the time

required to perform any action (e.g., the provision of analytics, the conclusion of the incorporation

of any devices) as well as the quality of the final outcome. The challenge here deals with the

heterogeneity of products that have to be integrated and communicated in short time. For this, the

appropriate APIs and protocols should be implemented together with the necessary wrappers.

Already present models (i.e., APIs and protocols offered by Cloud providers) should be also adopted

to secure the smooth integration of novel solutions. Example solutions are the initiatives of

Amazon34, Microsoft35 and Google36. The aforementioned companies propose edge solutions

connected with their respective IoT platform. Additionally, the majority of the IoT platform vendors

(some example are already given above) are also proposing their own edge solutions to expand their

portfolio. All of them target to expose a holistic, bottom up, approach to, finally, be able to support

intelligent analytics upon the collected data. Of special attention is to facilitate the execution of

advanced ML algorithms over huge volumes of data.

Apart from commercial products, one can detect an increased number of efforts to provide open

source tools. Such tools avoid the direct connection with a specific vendor, i.e., they offer solutions

to avoid the vendor lock-in problem. However, this does not mean that the above discussed

companies do not provide open source tools (e.g., IBM). Some open source initiatives are as follows

(the list is not exhaustive).

LF Edge Community37 is an umbrella organization that aims to establish an open, interoperable

framework for edge computing independent of hardware, silicon, Cloud, or operating system. The

community brings together leaders in the relevant industry and aims to create a common framework

for hardware and software standards. Additionally, it aims to expose the best practices that are

significant to sustain current and future generations of IoT and edge devices. The community fosters

collaboration and innovation across the multiple industries, i.e., industrial manufacturing, cities and

government, energy, transportation, retail, home and building automation, automotive, logistics and

health care — all of which stand to be transformed by edge computing. A high number of companies

active in the EC/EM domain are members of the effort (see https://www.lfedge.org/members/).

22

 https://www.softwareag.com/corporate/default.html
23

 https://qio.io/
24

 https://altizon.com/
25

 https://www.ibm.com/ie-en
26

 https://www.ibm.com/ie-en
27

 https://exosite.com/
28

 https://www.oracle.com/
29

 https://atos.net/
30

 https://www.edgexfoundry.org/
31

 https://www.eurotech.com/en
32

 https://www.adlinktech.com/en/Edge-IoT-Solutions-and-Technology
33

 https://www.adlinktech.com/Products/IoT_solutions/Vortex_DDS/Vortex_DDS?lang=en
34

 https://aws.amazon.com/iot/
35

 https://azure.microsoft.com/en-us/overview/iot/
36

 https://cloud.google.com/solutions/iot
37

 https://www.lfedge.org/#

Akraino Edge Stack38 is a set of open infrastructures and application blueprints for the EC, spanning

a broad variety of use cases, including 5G, AI, Edge IaaS/PaaS, IoT, for both provider and enterprise

edge domains. These blueprints are proposed by the Akraino community (part of the LF Edge) and

focus exclusively on the edge in all of its different forms. Hence, the community tries to setup the

basis for defining blueprints for all the aspects of the edge infrastructure. The connection between

the blueprints is secured by the community and the testing procedures to deliver solutions that can

be adopted as-is.

Eclipse ioFog Project39 is a complete edge computing platform that provides all of the pieces needed

to build and run applications at the edge at enterprise scale. The project provides abstractions to

manage the diversity and complexity of edge hardware. Hence, a ‘cover’ of software is adopted to

support the necessary functionalities to avoid problems related with the underlying heterogeneity of

devices and software. The project also targets to the management and orchestration of edge

microservices performed by the dedicated ioFog Controller and its supporting set of components.

The OSF Edge Computing Group40 targets to define infrastructure systems required to support

applications distributed over a broad geographic area, with potentially thousands of sites, located as

close as possible to discrete data sources, physical elements or end users. All these applications can

communicate over wireless communications. Another goal of the group is to detect use cases,

develop requirements, and produce viable architecture options for evaluating new and existing

solutions, across different industries and global constituencies, to enable development activities for

Open Infrastructure and other Open Source community projects to support EC use cases.

StarlingX41 is a complete Cloud infrastructure software stack for the edge used by the most

demanding applications in industrial IoT, telecom, video delivery and other ultra-low latency use

cases. The approach proposed by the StarlingX is oriented around the provision of a container-based

infrastructure for edge implementations in scalable solutions that is ready for production. The focus

is on easy deployments, low touch manageability, rapid response to events and fast recovery. The

solution is tested and released as a complete stack, thus, it ensures the compatibility among diverse

open source components.

CORD (Central Office Re-architected as a Datacenter) 42 is a project that intents the transformation

of EC into an Agile service delivery platform enabling the operator to deliver the best end-user

experience along with innovative next-generation services. The proposed platform builds upon

Software Defined Networks (SDNs), Network Functions Virtualization (NFV) and Cloud technologies

to build agile datacenters for the network edge. Integrating multiple open source projects, CORD

delivers a cloud-native, open, programmable, Agile platform for network operators to create

innovative services.

EdgeX Foundry43 is a vendor-neutral open source project hosted by the Linux Foundation and builds

a common open framework for IoT edge computing. The main focus of the project is the provision of

an interoperability framework hosted within a full hardware and OS-agnostic reference software

platform to enable an ecosystem of plug-and-play components that unifies the marketplace and

accelerates the deployment of IoT solutions.

KubeEdge44 is an open source system for extending native containerized application orchestration

capabilities to hosts at Edge. It adopts Kubernetes45 (an open-source system for automating

38

 https://www.lfedge.org/projects/akraino/
39

 https://iofog.org/
40

 https://www.openstack.org/edge-computing/
41

 https://www.starlingx.io/
42

 https://www.opennetworking.org/cord/
43

 https://www.edgexfoundry.org/
44

 https://kubeedge.io/en/
45

 https://kubernetes.io/

deployment, scaling, and management of containerized applications) and provides a fundamental

infrastructure support for network, application deployment and metadata synchronization between

Cloud and edge. KubeEdge is licensed under Apache 2.0 and free for personal or commercial use.

Table 2 & Table 3 summarize the main characteristics of the above described technologies.

Table 2 Commercial tools characteristics

C
o

m
m

e
rc

ia
l

to
o

l

E
d

g
e

 S
o

ft
w

a
re

IT
 P

la
tf

o
rm

V
e

n
d

o
rs

T
e

ch
n

o
lo

g
y

S
o

lu
ti

o
n

P
ro

v
id

e
rs

E
d

g
e

 A
n

a
ly

ti
cs

E
d

g
e

 S
e

cu
ri

ty

H
a

rd
w

a
re

P
ro

v
id

e
rs

E
a

a
S

M
u

lt
i-

A
cc

e
ss

E
d

g
e

P
ro

v
id

e
rs

T
ri

a
l

O
rc

h
e

st
ra

ti
o

n

-

v
ir

tu
a

li
za

ti
o

n

Foghorn
6
 √ √ √ √ √

Swim
7
 √ √ √

Juniper
8
 √ √ √ √

Crosser
9
 √ √ √

Mutable
10

 √ √ √

AlefEdge
11

 √ √ √

CLearBlade
12

 √ √ √

SSAS
13

 √ √ √ √

Eurotech
14

 √ √

Edge Intelligence
15

 √ √ √ √ √

Zededa
16

 √ √ √ √ √

Edgeworx
17

 √ √ √ √

Affirmed

Networks
18

√ √ √ √ √

Ori
19

 √ √ √ √

Packet
20

 √ √ √

EdgeConneX
21

 √ √ √

Table 3 Open source tools characteristics

Open source

tool
Foundation

Service

model
Architecture

C
o

n
ta

in
e

rs

M
ic

ro
se

rv
ic

e
s

Indicative partners

(not an exhaustive list)

Akraino Edge

Stack
38

Linux IaaS IoT, EC, MEC √ √ Arm, HP, Huawei, IBM, Intel, Tencent

Eclipse ioFog

Project
39

Eclipse PaaS IoT, EC √ Edgeworx

StarlingX
41

 OpenStack IaaS IoT, EC, MEC √
China Telecom-Unicom, Dell, SUSE,

Tencent, Ubuntu

CORD
42

 Linux IaaS EC, MEC √
AT&T, China Unicom, Edge-core, Google,

Intel, NTT

EdgeX

Foundry
43

Linux PaaS IoT √ Dell, HP, IBM, Intel, Ubuntu, wipro

KubeEdge
44

 Linux PaaS EC √
Amazon, Apple, Alibaba, Microsoft,

Huawei, Cisco, Google

2.4 Intelligence at the Edge of the Network

The development of intelligent applications in IoT has gained significant attention in recent years.

Smart devices/sensors can be interconnected each other or with the back end systems to enable

various services in multiple domains. Several intelligent technologies have emerged to ensure the

proper functioning of IoT devices and their incorporation into the above discussed ecosystem. For

instance, the efficient management of software updates of IoT devices aiming at the minimization of

the conclusion time and the maximization of their and network’s performance is the subject of some

recent studies [62], [63], [68]. Cloud provides many benefits to the IoT infrastructure, e.g., high-

performance computing, storage resources, processing and analysis of huge volumes of data. Hence,

the IoT can be robust, smart and self-configuring. The forthcoming IoE will extend the capabilities of

the ‘legacy’ IoT focusing on the intelligent communication between people, process, data and things

[6]. Based on the above, we can easily identify the need for transformation of the interactions

between all these ‘entities’ leading to new types of communications like Machine to Machine

(M2M) and Person to Machine (P2M). In this new environment, we can detect new requirements

for concluding an intelligent ecosystem, e.g., (i) advanced models for devices management; (ii)

intelligent schemes for supporting communications; (iii) smart frameworks for the management,

processing and storage of humongous volumes of heterogeneous data generated at the network

edges.

IoT devices will, now, communicate with EC nodes in short distance relying on them to enjoy

advanced services and efficiently serve end users. This means that EC nodes should ‘convey’ the
necessary knowledge, processing and decision making mechanisms to serve IoT devices and the

Cloud infrastructure. In any case, EC/EM technologies face various challenges and open research

issues. The following paragraphs report on a set of challenges that are critical for the transformation

and the delivery of the new EC/EM.

The future intelligent EC/EM (coined here as the ‘new edge’) will involve numerous autonomous

entities capable of understanding their status, the status of the environment and their peers taking

actions on the fly to efficiently serve the desired applications. This ecosystem targets to secure the

efficient execution of any application learning how to: behave, collaborate, exchange data and tasks,

process data and tasks, forecast abnormal situations, select the best strategy to work, react in

potential errors or demands in an autonomous manner. It is the appropriate time to provide AI-

enhanced autonomous entities at the edge of the network that future applications demand. We

have to combine and adapt already present solutions, currently lying isolated, together with new

models, algorithms, methods and technologies to holistically target to autonomous entities capable

of efficiently serving end users & applications. Apart from the latency minimization (a pivotal aspect

in provision of real time services), we should also deal with the QoS and, more importantly, the

Quality of Experience (QoE). Future applications will take seriously into consideration the latency

combined with the efficiency and the quality of the delivered services. It is not enough to deal only

with the latency but QoS and QoE should be also taken into consideration at the same time. Various

KPIs will be adopted to depict QoS and QoE, thus, intelligent monitoring modules should be created

to decide upon these KPIs. Decisions will be related to the configuration, the cooperation and, in

general, the management of EC/EM nodes. KPIs will cover all the aspects of EC/EM nodes

functioning being related to the performance of the network, users’ satisfaction and potential
overheads associated with deployment/migration/replication of the required processing tasks and

data. An efficient edge infrastructure is the key challenge for the envisioned IoT applications; it is

critical with the growing demand for energy-hungry applications, such as video streaming,

Augmented Reality (AR) and 3D gaming.

3. Hardware Requirements

EC/EM functionalities are provided upon the relevant hardware to perform the desired processing or

communication. A survey on ‘low’ level characteristics of the necessary hardware is presented in

[22]. In this section, we perform a ‘high’ level review with limited technicalities to setup the basis for

understanding what we need to efficiently support EC/EM and deploy solutions from the hardware

perspective. Table 4 reports on the comparative assessment of a list of representative hardware.

The difference of the EC/EM (compared to Cloud) is that it is distributed across a high number of

devices in different locations. This adds a burden on the connection with all the appropriate devices

together with their configuration and management. Additional requirements deal with the data

present at the distributed locations, e.g., there should be an efficient storage mechanism across

different devices, advanced replication and consistency checking models as well as efficient

strategies for baking up the available data. In any case, a strong scheme for implementing the

coordination with the Cloud back end for data management could increase the performance and

assist in solving the aforementioned problems. However, the EC/EM hardware infrastructure should

be efficiently connected with the Cloud ‘premises’ to facilitate the easy communication between the
two frameworks when executing the proposed algorithms/models.

The first key component of EC/EM is the communication support. EC/EM should support the

connection with the IoT devices (e.g., sensors, actuators) based on already proposed technologies

and protocols. The most common protocols for communication are as follows: Bluetooth46, ONVIF47,

Z-Wave48, ZigBee49, LoRa50, KNX51, Siemens S752, HomeConnect53, Modbus54, EnOcean55, BACnet56,

OPC57. Apart from that, EC/EM nodes should support data and device management protocols like

MQTT58, CoAP59, AMQP60, Websockets61, TR-06962, OMA-DM63. This way, IoT devices will be

facilitated to transfer data in an upwards mode and cooperate in processing activities.

The processing at the EC/EM can be performed by dedicated hardware in various forms, e.g.,

gateways, routers, microservers, etc (see Figure 3). Currently, various companies propose the use of

a set of high quality hardware with small size, however, with increased computational resources.

The aim is to efficiently support advanced processing at the edge of the network upon the large

scale data streams. The first example deals with the Graphical Processing Unit (GPU) [105]. A GPU is

a chip dedicated to perform advanced calculations very quickly. Usually, GPUs are adopted for

rendering images alleviating the main processor from these activities. For instance, NVIDIA offers

multiple solutions for incorporating GPUs in other devices64.

Field Programmable Gate Arrays (FPGAs)65 are semiconductors IC where the majority of the

electrical functionality in the device can be altered by the design engineer, during the PCB assembly

process, or after the adoption of the equipment. FPGAs offer many advantages like reducing the

latency in the computation, they can be directly connected to inputs and offer a high bandwidth.

FPGAs exhibit worse compatibility than the GPUs, however, they require limited programming skills.

46

 https://www.bluetooth.com/
47

 https://www.onvif.org/
48

 https://www.z-wave.com/
49

 https://zigbeealliance.org/
50

 https://lora-alliance.org/
51

 https://www.knx.org/knx-en/for-professionals/index.php
52

 https://wiki.wireshark.org/S7comm
53

 https://www.home-connect.com/global
54

 https://modbus.org/
55

 https://www.enocean.com/en/
56

 http://www.bacnet.org/
57

 https://opcfoundation.org/
58

 http://mqtt.org/
59

 https://coap.technology/
60

 https://www.amqp.org/
61

 https://tools.ietf.org/html/rfc6455
62

 https://www.broadband-forum.org/download/TR-069_Amendment-6.pdf
63

 https://www.openmobilealliance.org/wp/Overviews/dm_overview.html
64

 https://www.nvidia.com/en-gb/graphics-cards/
65

 https://www.xilinx.com/products/silicon-devices/fpga/what-is-an-fpga.html

Coral Edge TPUs66 are the proposal of Google for edge computing. More specifically, the Dev Board

is a single-board computer that is ideal for performing fast ML/DL inferencing. TPUs/Dev Boards can

be adopted to prototype embedded systems and scale them to production using the on-board Coral

System-on-Module (SoM) combined with a custom PCB hardware. The Edge TPU coprocessor is

capable of performing 4 trillion operations (tera-operations) per second (TOPS), using 0.5 watts for

each TOPS (2 TOPS per watt).

The EGX Edge Computing Platform67 is proposed by NVIDIA to deliver accelerated AI computing to

the edge with an easy-to-deploy Cloud native software stack, a range of validated servers and

devices, and a vast ecosystem of partners who offer EGX through their products and services. The

EGX hardware portfolio starts with the power-efficient NVIDIA Jetson Family, which includes the

small but mighty Jetson Nano and Xavier NX providing between 0.5 to 21 trillion operations per

second (TOPS) for tasks such as image recognition and sensor fusion. Additionally, the hardware

scales to a full rack of NVIDIA T4 servers, delivering more than 10,000 TOPS to serve hundreds of

users with real-time speech recognition and other complex AI experiences.

The Raspberry Pi68 is a series of small single-board computers to, initially, promote teaching of basic

Computer Science. It is widely used in applications developed for various research domains because

of its low cost and portability. Several implementations of Raspberry Pis have been released so far.

Pis feature a Broadcom System on a chip (SoC) with an integrated ARM-compatible CPU and on-chip

GPU. CPU speed ranges from 700 MHz to 1.4 GHz for the Pi 3 Model B+ or 1.5 GHz for the Pi 4; on-

board memory ranges from 256 MB to 1 GB random-access memory (RAM), with up to 8 GB

available on the Pi 4. Secure Digital (SD) cards in MicroSDHC form factor (SDHC on early models) are

used to store the operating system and program memory.

Micro servers can be also adopted for hosting the collected data and performing the desired

processing for delivering analytics. According to [93], the micro server market was valued at USD

39.71 billion in 2019 and is expected to reach USD 67 billion by 2025, at a CAGR of 9.11% over the

forecast period 2020 - 2025. This growth will be driven by the expansion of EC/EM and the

applications it hosts. The market will be enhanced by the adoption of M2M learning and IoT-enabled

devices that create the need for more advanced services. Micro servers will be able to host services

related to the management of huge volumes of structured and unstructured data or trivial

workloads. The presence of a pre-installed operating system in micro servers will facilitate the

deployment of new services and expose the infrastructure to small and medium size enterprises.

However, the lack of standardization requires more intensive efforts towards the easiness of the

integration of multiple heterogeneous models and algorithms.

Table 4 AI & ML solutions comparison
69

 NVIDIA® Jetson™ TX270
 TPU Dev Board

71
 Raspberry Pi

72

AI Accelerator 256 CUDA Maxwell Cores EDGE TPU K210 (Extra)

66

 https://coral.ai/
67

 https://www.nvidia.com/en-us/data-center/products/egx-edge-computing/
68

 https://www.raspberrypi.org/
69

 Characteristics and prices depend on the specific model retrieved at January 2021. This table presents only indicative

values for each characteristic for comparison purposes

Kit size 87 mm x 50 mm 88 mm x 60 mm x 22 mm 85.6mm × 56.5mm

SOM size 69.6 mm x 45 mm 48 mm x 40 mm x 5 mm 55 mm × 40 mm × 4.5mm

Operating

System
Ubuntu Debian Raspberry Pi OS (Debian)

GPU
NVIDIA with 256 NVIDIA CUDA

cores 1.3 TFLOPS (FP16)

Integrated GC7000 Lite

Graphics

Broadcom VideoCore VI (32-

bit)

CPU

Dual-core Denver 2 64-bit CPU

and quad-core ARM A57

complex

NXP i.MX 8M SoC (quad

Cortex-A53, Cortex-M4F)

Quad-core ARM Cortex-A72

64-bit @ 1.5 Ghz

Memory
8 GB 128-bit LPDDR4

1866MHz - 59.7 GB/s
4 GB LPDDR4 4-8 GB LPDDR4

Storage 32 GB eMMC 5.1 8 GB eMMC, MicroSD slot 8 GB eMMC, MicroSD slot

Video encode H.264/H.265 (4Kp30) 4Kp60 HEVC/H.265
H.264/H.265 (4Kp60, 2x

4Kp30)

Video decode
H.265(4Kp60),

H.264(1080p60)

4Kp60 VP9

4Kp30 AVC/H.264 1080p60

MPEG-2, MPEG-4p2

VC-1, VP8, RV9, AVS, MJPEG

H.263

H264(1080p30)

Wi-Fi √ √ √

LAN √ √ √

Bluetooth √ √

Audio √ √

USB3 √ √ √

Camera √ √ √

Display HDMI 2.0 HDMI 2.0 micro-HDMI

Average Cost ($) ~450 ~150 ~70

4. (Deep) Machine Learning Models

Machine Learning (ML) refers to the process that a machine has to go through in order to learn a

certain behavior and then recognize it, replicate it, or predict new ones without needing to be

explicitly programmed on how to do that. ML algorithms receive a considerable amount of data from

which they try to extract information. The extraction, also known as training of the algorithm,

involves the use of mathematical models or mechanisms that focus on eliminating the errors made

by the final model. Some algorithms take into consideration statistics about the dataset to produce

the final model, whereas others start with a guess and improve the model incrementally as they

process each of the provided dataset’s entries. Traditional ML methods are not computationally

efficient or scalable enough to handle both the characteristics of big data (e.g., large volumes, high

speeds, varying types, low value density, incompleteness) and uncertainty [41]. In this Section, we

present ‘traditional’ ML models together with DL approaches to have a complete view on the types

of algorithms that can be adopted to support intelligent applications at the EC/EM.

Communication support

Transmitter

Concentrator

Gateway

Wireless Term. Unit

FPGA / GPU

EDGE Spartan 6 FPGA70

Intel Aria 10 FPGA71

NVIDIA EGX™ A100 GPU72

AI & Machine Learning solutions / Dev boards

NVIDIA® Jetson™ TX273

TPU Dev Board74

Raspberry Pi75

Servers

Intel Fog Reference Design unit76

Azure IoT Edge77

Lenovo Edge Server78

Extensions

Tracking module

Energy Harvester

Camera

Environmental Sensor Board

Figure 3. Hardware examples per processing category

70

 https://allaboutfpga.com/product/edge-spartan-6-fpga-development-board/
71

 https://www.intel.com/content/www/us/en/products/programmable/fpga/arria-10.html
72

 https://www.nvidia.com/en-au/data-center/products/egx-converged-accelerator/
73

 https://developer.nvidia.com/embedded/jetson-tx2
74

 https://coral.ai/products/
75

 https://www.raspberrypi.org/
76

 https://www.reflexces.com/wp-content/uploads/2018/11/fog-reference-design-overview-guide.pdf
77

 https://azure.microsoft.com/en-us/services/iot-edge/
78

 https://www.lenovo.com/us/en/data-center/servers/edge/thinksystem-se350/p/77XX6DSSE35

 Machine Learning Models 4.1.

There are various types of machine learning algorithms, such as supervised, unsupervised, and semi-

supervised learning, reinforcement learning, feature learning and association rules algorithms.

4.1.1 Supervised Learning

Supervised learning algorithms take as input a training dataset whose every entry consists of a

vector of features along with a target value or label. Based on the dataset, a mathematical model is

built that works as follows; when receiving as input the feature values of an instance of the dataset,

it attempts to produce the corresponding value or label. In essence, a function is created that

receives as input the values for specific features and produces a value or decision as its output. The

discussed function’s error rate has been minimized to be congruous to the training dataset.
Supervised learning can be performed with regression and classification algorithms.

A linear regression algorithm models the target value of the training dataset as the linear

combination of its features that predicts an output value based on the input feature values. More

specifically, every feature is assigned a coefficient and there is also a bias, such that , where represents the target value of an

instance, is a vector containing the features of the instance, is the vector containing the

coefficients corresponding to the features and is the bias. The problem is finding the right

coefficients and bias that result in the most accurate predictions of the output value given the input

values; this is achieved by minimizing the Mean Squared Error (MSE) of the predicted values against

the true values of the dataset instances.

Classification, on the other hand, is the process of categorizing an instance of data to the most

appropriate of a number of available classes. Classification can be performed after the training of a

Support Vector Machine (SVM), a logistic regression classifier, a Naïve Bayes classifier, a decision
tree, a k-nearest neighbours algorithm, a neural network, or other algorithms. Support vector

machines depict all the instances of a training dataset in a multi-dimensional space and then try to

create one or more hyperplanes that divide the instances into the two or more separate classes. A

Naïve Bayes classifier depends on the Bayes theorem, i.e., (|) (|) () () , to predict the class

label of an instance. In particular, the application of the Bayes theorem is the following: (|) (|) () () , meaning that the probability of an instance’s class to be given that the feature vector

is is equal to the probability of the feature vector occurring in class multiplied by the

probability of an instance belonging to class and divided by the probability of an instance being

described by the feature vector . A decision tree is created from the root all the way down to the

leaves by dividing the dataset based on the criteria that divide it most efficiently; all leaves are

affiliated with a class and when a prediction needs to be made an instance starting from the root

follows the path to the appropriate leaf based on its feature values and node rules. The k-nearest

neighbours (k-NN) algorithm predicts an instance’s class by taking into consideration its k (specified)
closest neighbours in the multi-dimensional space; the instance’s distance from all other instances of
the training dataset is computed to choose the k nearest ones and come to a decision about its class.

A logistic regression classifier works very similarly to the linear regression algorithm, with the only

difference being that at the end it classifies the instance to a class based on the computed linear

combination of the feature values.

4.1.2 Unsupervised Learning

Unsupervised learning, also known as self-organization, is a process which takes as input a dataset

that is unlabelled and tries to discover its underlying structure. Unsupervised learning can be

achieved through the use of clustering, anomaly detection and other algorithms.

A clustering algorithm receives a set of unlabelled data and attempts to divide them into groups.

Maybe the most well-known clustering algorithm, the k-Means clustering algorithm sets a specified

number of cluster centroids based on random data entries and then classifies each of the rest of the

data entries to the cluster whose centroid is closest to it. After all the entries have been classified,

the cluster centroids are recomputed based on their members and all the data are classified once

again. This process goes on until the cluster centroids become stable or a maximum number of

iterations, also known as epochs, is reached. Hierarchical clustering attempts to form a hierarchy of

clusters, and there are two different methods of achieving that: agglomerative or divisive

hierarchical clustering. The former strategy constitutes a bottom-up approach; it begins with all of

the data entries making up their own cluster and the hierarchy is created by the merge of pairs of

clusters, until the top layer is reached where all clusters have been merged into one. The latter

strategy is a top-down approach; in the beginning, all data entries make up a single cluster and the

hierarchy is created by recursively splitting a cluster until all clusters contain only one entry. The

resulting tree is depicted in a dendrogram. Cutting it at a specified height gives one the

corresponding clusters. Another popular clustering algorithm is DBSCAN; it divides data points into

clusters based on the density of the different groups of points. In particular, groups of data points

that are close enough to a specified number of other points, along with any other points in their

reach, form clusters; the rest of the points are classified as noise points. OPTICS is an algorithm that

combines hierarchical clustering with density-based clustering.

Anomaly detection involves the training of an algorithm to recognize a set of patterns or behaviours

as normal and the rest as outliers. Anomalous items are also called novelties, deviations, noise, or

exceptions. Density-based techniques, such as k-nearest neighbour, local outlier factor, and isolation

forest are very popular in the literature; data points that are not members of high-concentration

clusters, are by default anomalous. One-class SVMs are another option, seeing as they form a

hyperplane that divides most of the data from the noise. In general, cluster analysis methods can

also be used to perform outlier detection. Bayesian networks and Hidden Markov models, as well as,

many more algorithms also provide solutions to the anomaly detection problem.

4.1.3 Reinforcement Learning

Reinforcement learning (RL) involves the existence of an environment and an agent. Unlike

supervised learning, RL does not need a labelled dataset to train an agent; it rather attempts to find

a balance between exploring the uncharted territory and exploiting the current knowledge. In

particular, the environment has a state while the agent repeatedly takes actions in order to reach an

objective. Every time the agent takes an action, the environment gives back a reward along with its

next state; the reward reflects the agent’s progress towards its goal. This happens until the
environment reaches a final state; either that the agent has achieved its objective or not. RL utilizes

dynamic programming — breaking down a problem into sub-problems and recursively solving them

— in combination with the Markov Decision Process (MDP), having the agent’s actions be dictated
by the probability that they will lead to a successful outcome, all the while trying to maximize its

cumulative reward. The aforementioned probability is determined by a policy that the agent

employs and is dependent on the agent’s current state. Furthermore, a value is defined as the long-

term expected return of a state given a policy and a Q-value, also known as action-value, is defined

as the long-term expected return of a state-action pair given a policy.

The most well-known algorithm to implement RL is Q-learning, which is based on the Bellman

equation [1] and gives no guarantee that a solution will be found. Applying the Bellman equation to

the agent-environment system, we have: () ()| where () is the

value of a state , refers to the immediate reward, is the discounting factor of future state

values and depicts the expectation. In the form of Q-value, the equation is transformed to () () | , where () is the action-value of a state-action

pair. The goal is to find the optimal/maximum Q-value; Q-Learning uses a greedy policy to achieve

that. Another algorithm is State-Action-Reward-State-Action (SARSA), which is quite similar to Q-

learning. Their difference is that SARSA computes the optimal Q-value given the action that is

performed based on the current policy instead of the greedy policy. Lastly, the policy gradient

method relies upon the optimization of the agent’s policy in relation to the long-term cumulative

reward by performing gradient ascent, using the REINFORCE algorithm as well as the actor-critic

architecture. This approach avoids the lack of guarantee of a value function, as well as, the

complexity that the previous approach entails.

4.1.4 Algorithms Categorization

In Table 5, we provide a categorization of the above discussed algorithms and present their

characteristics. For each category, we also provide representative models together with their

implementation complexity and usage.

Table 5 Machine Learning models

ML Models Supervised Learning Unsupervised Learning Reinforcement Learning

Type of data Labelled Unlabelled No predefined data

Training External supervision No supervision No supervision

Complexity Simple High High

Usage Predict outcome/future by

mapping labelled data inputs

to known outputs

Find hidden structure in

data and discovers the

output

Learn series of actions

using trial-and-error

method

Algorithms Regression

 Logistic Regression

 Decision Tree Regression

 LASSO Regression

 Ridge Regression

 ElasticNet regression

Classification

 support-vector machine

(SVM),

 logistic regression

classifier,

 Naïve Bayes classifier,
 decision tree,

 k-nearest neighbors

 Neural network

Clustering

 K-means clustering

 Hierarchical clustering

 DBSCAN

 OPTICS

Anomaly detection

1. K-NN (k nearest

neighbors)

2. local outlier factor

3. isolation forest

4. One-class SVMs

5. Bayesian networks

6. Hidden Markov models

 Q-learning

 State-Action-Reward-

State-Action

 QV

 ACLA

4.2 Deep Learning Models

Another way to approach ML algorithms is to form topologies of nodes, also known as neurons that

collaborate to achieve learning. Neural network algorithms are characterized as DL algorithms

because they can model especially complex behaviours and patterns, in contrast to other models.

Their setting enables them to delve deep into the available data and extract comprehensive and

accurate knowledge.

4.2.1 Supervised Learning

Neural networks provide a more sophisticated approach to linear regression. In fact, neural

networks have an input layer, an output layer, and a number of hidden layers; the input layer has as

many nodes as the features of the dataset and the output layer has as many nodes as the output

values we want to predict. Had there been no hidden layers, a neural network would seem like a

simple linear regressor; now, the nodes of each layer receive as input the output of the previous

layer and compute their own output which propagates in a forward direction until the outcomes of

the output layer are computed. In the training phase, an instance’s prediction error is computed at
the output layer and is gradually ‘back-propagated’ until all the layers’ weights and biases are
optimized, each node optimizing its coefficients quite similarly to how a single linear regressor does.

This kind of neural network is called a multi-layer adaptive linear element (MADALINE).

Apart from the basic neural network manner of training, there are also the radial basis function

(RBF) neural networks. A node in such a network behaves a lot like the k-NN algorithm, in that it

receives as input the distance from a set of points in the multi-dimensional space. It essentially

functions based on the idea that similar inputs produce similar output values. Another entirely

different approach to neural networks is the one presented by convolutional neural networks

(CNNs). In their case, the input has three (3) dimensions and usually represents the pixels of an

image. One type of layer in CNNs consists of filters being convoluted with the output table of the

previous layer. Pooling is another type of layer in CNNs; it produces a smaller table that condenses

the contents of the previous layer’s output table. Furthermore, another layer may contain an
activation function being applied to the previous layer’s output table. Lastly, a final set of layers is
often fully connected, resembling a multi-perceptron layer.

Neural network classifiers also work in a similar fashion to their regression counterparts; just like

with the logistic regression algorithm, an activation function decides what class the input instance

belongs to, based on the output value of the neural network. An appropriate activation function can

also be applied to the output of any one node, before that is used for further computation in the

next layer. Some activation functions are rectifier linear unit (ReLU), the hyperbolic tangent, the

logistic/sigmoid function, the softplus function and more.

All the previous networks can be either static or dynamic. Static networks depend only on the

current input to the network to compute its output. In contrast, dynamic networks depend not only

on the current input to the network but also on the network’s past inputs, outputs, or states.
Dynamic networks contain delay lines that have a forward or backward (recurrent) direction or both.

Therefore, the order in which the inputs enter the network can make a huge difference to the

output. One of the most well-known recurrent networks is the long short-term memory (LSTM).

4.2.2 Unsupervised Learning

Neural network topologies have been designed to perform unsupervised learning. First off, auto

encoders are neural networks that receive a set of data and (learn to) encode them without

following a specific preprogramed algorithm. Their main advantage is their ability to perform

efficient dimensionality reduction, keeping only the useful information and discarding of the rest.

Deep belief networks are trained to reconstruct an input to their topology given an output result;

they consist of visible and hidden units where the former represent the training dataset features and

the latter an output vector. To train such a network, each of the layers serves as input to the other;

the two vectors are computed back and forth until the weights are trained to turn information from

one format to the other, quite similarly to auto encoders. Hebbian Learning is based on Hebb’s rule
which states that when one cell A repeatedly fires another cell B, then A’s efficiency is increased [52]

or else ‘neurons that fire together wire together’ [20]. Applying this rule to artificial neural networks,

a specified number of clusters can be created by sequentially combining each entry of a dataset with

the representative of the cluster that is closest to it, until all cluster representatives reach their final

form. A generative adversarial network (GAN) can produce a dataset that has the same statistics as

its training dataset. It consists of two neural networks that are adversaries to one another; the

generative and the adversarial network. The former generates candidate data, while the latter

evaluates their plausibility and/or fitness into the distribution of the original data; candidates that

are classified as real data are saved to the new dataset. A self-organizing map (SOM) is trained to

create a low-dimensional (generally two-dimensional) representation of a high-dimensional dataset,

essentially performing dimensionality reduction. A SOM’s training is carried out with the use of

competitive learning - a variant to Hebbian learning - instead of back propagation, and a

neighbourhood function that helps maintain the input data’s properties.

4.2.3 Deep Reinforcement Learning

In RL, neural networks are not typically the main attraction. On the contrary, they are used to

estimate the optimal Q-value for an agent that would otherwise have to be computed. The deep Q

network (DQN) algorithm, for instance, trains a neural network consisting of two (2) convolutional

and two (2) fully connected layers on the target Q-value based on the Q-learning update equation.

Subsequently, the DQN’s complexity is much lower than that of the original Q-learning algorithm.

Moreover, deep deterministic policy gradient (DDPG) is the classic policy gradient algorithm taken a

step further to include a neural network, thus, becoming faster to train.

4.2.4 DL Algorithms Categorization

In Table 6, we provide a categorization of the above discussed algorithms and present their

characteristics. For each category, we also provide representative models together with their usage.

Table 6 Deep Neural Networks characteristics

Deep Neural

Networks

Activation

function

Dataflow Usage

Supervised Learning

MADALINE Sign Feed forward Classification, Regression

Radial basis

functions

Radial basis Feed forward function approximation, time series prediction,

classification

Recurrent Sigmoid

Hyperbolic tangent

Any direction language modelling, Long short-term memory

Convolutional ReLU Feed forward computer vision, speech recognition

Unsupervised Learning

Auto

encoders

Sigmoid function

ReLU

Softplus

Feed forward dimensionality reduction, structured prediction,

anomaly detection

GAN ReLU Feed

forward,

Adversarial

process

Fashion, art and advertising, Video games

SOM None Feed forward dimensionality reduction

Deep belief

networks

Hyperbolic tangent Any direction Motion-capture, Image/video recognition

Reinforcement Learning

Deep QN ReLU Feed forward Q-value approximation

4.3 Discussion

The above described algorithms can become the key enabling factors for bringing intelligence at the

EC/EM. ML can be adopted by EC/EM nodes to facilitate the local processing of the collected data as

well as the processing of the surrounding contextual information to lead to better decision making

for every aspect of their behavior. Currently, the advent of new computationally enhanced edge

devices (see Section 3) in small sizes opens up the path for training, running and aggregating

https://en.wikipedia.org/wiki/Deep_belief_network
https://en.wikipedia.org/wiki/Deep_belief_network

multiple ML models at the edge of the network. Various companies have started to propose

solutions for bringing these algorithms in the constrained devices present at the EC and support the

vision of the EM. A representative example is Microsoft’s effort79 where a library of ML algorithms

designed to work off the grid on severely resource constrained scenarios is provided. As described in

[156], the first step towards having intelligence at the edge is to collect the data from various

sources. There are two options for data storage and the training of ML models, i.e., at the Cloud or

directly at the EC/EM. The first option is selected when we want to train complex ML/DL models

(e.g., deep learning models) upon large scale data. The second option is preferable when our ML/DL

model is simple enough to be concluded in the minimum possible time upon a limited amount of

data (e.g., a simple linear regression scheme). The same approach can be adopted for the inference

process. We can perform the inference directly at the EC/EM leading to increased edge intelligence

as it enhances the autonomous nature of nodes present at the edge. Data can be also used to retrain

the model on the edge by taking advantage of transfer learning [143]. This action will lead to a

‘personalized’ model fully aligned with the data and the contextual needs of each node. Other

activities can be also adopted at the EC/EM like the federated learning [3], i.e., the aggregation of

multiple ‘personalized’ models in order to produce a ‘global’ model. This gives the opportunity to
have nodes taking decisions on the fly related to their preferences for receiving ML/DL models from

peers and aggregate them in order to incorporate their view into the local decision making

mechanism. Form this discussion, it becomes obvious the organic relation between the EC/EM and

the Cloud and the need for realizing nodes that are capable of deciding type of the processing and

the places where this processing should be realized. The future edge ecosystem of numerous nodes

with advanced capabilities (as the computational resources at the edge increase) will blur the

‘traditional’ model where the Cloud data centers are devoted to train ML/DL models and the

inference is performed at the EC/EM. The advent of the EM and the incorporation of EI will give the

opportunity to keep some training and management tasks at the edge with positive impact in the

latency on the provision of responses. Hence, complex DL activities can be kept in the Cloud while

the remaining ML/DL models can be trained and adopted at the EC/EM infrastructure opening up

the space for edge to edge collaborations. Finally, the distributed DL frameworks could also be

executed on the edge, however, there is an increased complexity required by the aggregation of the

distributed models when this is necessary.

5. Data Management at the Edge

5.1 High Level Description

In recent years, data are continuously being collected by sensors and end users, amounting to huge

volumes which were traditionally pulled to the Cloud. Today, the edge of the network can assist to

alleviate the traffic by playing the role of the mediator. As [112] proposes, the edge can pull the data

at first, then, send them to the Cloud at an acceptable rate. The more advanced alternative would be

to store data at the edge and have them be closer to users or store them both at the edge and the

Cloud for security reasons.

Data management models are essential in an EC/EM environment. EC/EM can only be efficient if

data are stored at an appropriate node with respect to their popularity. Accordingly, the data

provision latency will usually be low if users requesting them are close to the node that they are

79

 https://www.microsoft.com/en-us/research/project/resource-efficient-ml-for-the-edge-and-endpoint-iot-

devices/#!publications

stored at. Nevertheless, data have to be distributed in a uniform manner as much as possible. If not,

the danger of creating big data centers that start to resemble Cloud infrastructures arises.

The authors of [49] propose a fitting solution to the problem by taking into consideration four

important factors; the spatio-temporal locality of range queries, the corresponding information and

type of data, the incessant creation and collection of data, as well as the requirements for increased

availability of stored data. More specifically, (i) they index data by their spatio-temporal features and

place them close to the interested clients, while also (ii) creating replicas on other edge nodes and

Cloud, (iii) allowing application developers to define groups of nodes which can balance their loads

among each other, and (iv) applying a time-to-live eviction policy, data aggregation and compression

to the incoming data. Therefore, this system decreases data latency, is fault-tolerant, strives for load

balance and de-escalation of data hotspots, and keeps resource requirements at a minimum,

presenting an efficient approach to data management at the edge.

In [117], an architecture for the distributed storage of real-time machine vision data at the edge is

proposed. The authors argue that data storage architectures for the edge of the network should be

designed keeping in mind the application that uses the specific data. Feature vectors that describe

the objects in an image are transferred to the edge at a high rate, whereas images (100x larger in

size) whose primary purpose is to be archived and can afford to lose some accuracy are transferred

less often, and in case they are similar enough to previous ones they are discarded. The

architecture’s main idea is to take the advantage of the difference between the data types’ latency
requirements and the tolerance in images’ accuracy loss. Such architecture allows for the efficient

management of data related to machine vision at the edge, seeing as it avoids placing useless data at

an edge node’s storage units.

The authors of [125] provide a polynomial-time greedy algorithm as a solution to the problem of

data allocation in a group of heterogeneous mobile edge nodes. Their model takes into

consideration the size of data, the storage capacity of the available nodes, a node-to-data demand

matrix, as well as a corresponding transportation cost matrix. The result of the proposed model is an

optimal decision for the data allocation and is computed at a (1-1/e)-approximation factor. This work

presents an option that can easily be implemented at the edge of the network, owing to its

efficiency and minimal demand of resources.

Moreover, the use of a system called Greedy Routing for Edge Data (GRED) is suggested by [144] for

the efficient management of data storage and subsequent recovery. Data items and edge servers are

mapped in a virtual space according to their IDs; afterwards, a data item is assigned to the closest

edge server in the virtual space for storage. Data retrieval is implemented through the utilization of

distributed hash tables (DHTs) for data stored at one-hop-away neighboring edge nodes in

combination with SDN for query routing. Its experimental evaluation yields less than 30% routing

cost and balances the load of data better than Chord [132], a popular DHT.

ECS (Edge-side Cooperative Storage) [59] constitutes a graph-based iterative algorithm that aims to

place data that is required by an edge node to perform its tasks at its corresponding storage unit.

The algorithm starts off by assigning to each edge server its most preferred data block and then

continues by repetitively updating every node’s assignment taking into consideration the other
nodes’ assignments. This framework can easily be implemented in a distributed manner and is not
necessarily dependent on a centralized manager. One drawback is that an edge server is assigned

with only one specific data block, whose size and content is predetermined, removing the possibility

of an edge server storing a list of unrelated data items. Surely, that poses no problem unless an edge

node performs many tasks at a time.

GAPSO [26] combines the best characteristics of the Genetic Algorithm (GA) and Particle Swarm

Optimization (PSO) to distribute accordingly the data that are required from each edge node that

participates in a scientific workflow. In particular, GA’s crossover and mutation functions are
integrated into PSO, whose ability to quickly converge to a solution is exploited. The decision is

made considering the restrictions placed on the transmission costs. This algorithm involves little to

no difficulty in implementation, while also achieving efficiency in performance.

Another approach to data management at the edge is represented in [60]; data can be stored at

different edge nodes according to criteria like data solidity, which ensures that all data allocated to a

specific node have a bounded standard deviation. This paper’s authors utilize interpretable machine
learning to compute the most important of an incoming data entry’s features, and only based on
them decide whether it will be stored locally or offloaded to a peer or the cloud. The importance of

each feature is calculated with three different metrics and finalized by a neural network. Then, the

most important features are imported to a Naïve Bayes model that determines the data entry’s final
location. Such a model can improve the time of retrieval for a range query, since data are stored in a

quite sorted manner, hence proving itself valuable for an appropriate application setting.

5.2 Replica placement

A variety of models (like [8], [123]) are proposed for the prediction of data items’ future demand and
subsequent caching on edge nodes, should the corresponding demands be high. These frameworks

allow for quick retrieval of requested data that are primarily stored on the Cloud. The authors of [78]

suggest the use of two centralized algorithms for the allocation of data block replicas; DRC-GM is

responsible for dynamically adjusting the number of replicas given the frequency of access to a

specified data block, and RP-FNSG’s goal is to find the optimal location for the aforementioned
replicas in this problem of distributed placement. In [126], the authors introduce a model that

combines the cloud and edge computing paradigms to place data replicas on both of the two

infrastructures, thus delivering a time- and power-efficient solution for IoT scenarios that involve

large datasets. More specifically, the problem is modeled as a 0-1 integer programming model and

makes decisions through a variant of intelligent swarm optimization based on dependencies

between data and the reliability of the storage hardware, among others. A content centric approach

is the focus of [128] where a scheme is described around four complementary to each other

algorithms for data caching at the edge. Each of these algorithms focuses on one of the following

features to make latency minimum: data popularity, data heterogeneity, user mobility, and resource

availability. Combining all these metrics to derive the final allocation makes for a powerful

framework that can make effective decisions very fast. Indeed, the model was designed for use in a

smart city, which requires efficient real-time decision-making above all else.

These approaches deliver positive results, seeing data in close proximity to a number of edge nodes

that request them; however, replication techniques seem to be costlier than offloading models in

terms of computational resources and latency. This is due to the involvement of Cloud, which makes

computations more complicated and communications slow.

5.3 Joint Data and Tasks Allocation

Data and tasks allocation/placement at the EC/EM is a significant research field. A number of

research activities try to detect the optimal location where data and tasks are distributed (e.g., [67]).

The aim is to eliminate the time for delivering the final analytics while keeping maximized the

‘matching’ between requests and the available data. In [38], the authors focus on joint tasks and

data placement over the edge of the network for data-intensive services. They suggest the use of a

polynomial-time algorithm that solves their problem by treating it as a set function optimization. The

solution takes into consideration resource constraints in computation, storage, communication, and

cost. In [18], a scheme that allocates data to edge nodes and, then, if possible, allocates tasks to

edge nodes that have in their storage the data they require. Specifically, the scheduler’s data
placement kernel can function in four ways: (i) no replication, where no data are replicated to an

edge node before a request for them arrives, (ii) 1-replication, where each data block is replicated to

only one edge node, (iii) full replication, where all data blocks are replicated and stored at each edge

node in the network, and (iv) context-aware replication, where a strategy much like the one

introduced in [78] is activated. Furthermore, the scheduler’s task allocation component operates
through (i) random task scheduling, (ii) data aware-scheduling, where a task is randomly placed on

one of the edge nodes that possess a replica of the data required for the task’s execution, and (iii)
performance-aware scheduling, which places a task at the fastest edge node without a job that also

possesses the required data at that moment. Such an approach is very appealing, but if the network

it is applied to is large enough, transmission latencies risk exceeding the avoided cost of not having

to communicate data very often. An additional research effort [75] proposes a scheme that seems

superior to the previous two. First, data blocks are allocated to edge nodes based on (i) the value of

the data, which depends on their popularity, the edge node’s storage capacity and replacement
ratio, denoting the data block’s size in relation to the node’s storage capacity, (ii) the transmission
cost, and (iii) the replacement cost. The assignments are determined through the use of the Tabu

search algorithm [43], [44]. After that comes the tasks allocation part, which is based on the

allocated data blocks. A variant of the Kuhn-Munkres Hungarian method [138] is employed to find

the optimal solution, given (i) the tasks’ priorities, (ii) the relevance between tasks and data, and (iii)
the transmission costs. This framework combines the two functionalities and, as experimental

results show, achieves low response times, high hit rates and a low number of replacements, making

it an ideal solution for a generic joint data-and-task allocation scheme.

6. Tasks Management at the Edge

Since the number of owned personal devices has immensely increased these last few years, so have

requests for services. The rise in the number of devices has made possible people’s access to existing
services and to new ones created to satiate the population’s new needs. Service requests are now
numerous and require much more processing power than before to be responded. EC/EM intends to

bring the request processing closer to end users and reduce the bandwidth overload which restricts

the performance of the Web, thus, lowering the related latency. However, executing tasks at the

edge is not as simple as it sounds, owing to the heterogeneity of EC nodes and service requests at

different locations. Placement/offloading techniques have to be employed to ensure the smooth

operation of edge computing. We have to notice that, in this survey, we consider the research

efforts dealing with services/tasks management in two ‘sub-layers’, i.e., the EC infrastructure and
the intelligent cover that EM offers. Hence, services and workflow management are usually

combined with actions adopted in the EC infrastructure for supporting the processing tasks

demanded by users or applications.

DCTA (Data-driven Cooperative Task Allocation) [23] was designed to manage multi-task transfer

learning. It exploits the fact that each task has its own importance so as to produce an effective task

allocation solution. In particular, the authors have observed that only a few of the requested tasks

are actually important and, thus, DCTA assigns those tasks to the most powerful available edge

nodes. To achieve that, at first, Clustered Reinforcement Learning (CRL), which is a combination of k-

NN and Deep Q-learning, was created. However, due to simulation limitations that CRL poses, a

cooperative learning approach that uses both CRL and SVM is finally proposed. Ultimately, even

though the algorithm was developed to solve a quite specific problem, it can certainly be applied to

the generic problem of tasks allocation, since the main idea of task importance applies to all tasks.

MobMig [108], a mobility-aware and migration-enabled approach, is a framework that consists of

two algorithms for mobile edge computing tasks allocation. The first, mobility-aware allocation, is

responsible of detecting incoming users in the range of an edge node that have unallocated task

requests and then allocating them to edge nodes, based on a fitness function. The second, mobility-

aware migration, aims to find overloaded edge nodes and relieve them by offloading tasks to nearby

under loaded nodes. This scheme takes care of incoming tasks and redistributes existing tasks to

reflect user mobility and solve node overloading, which can be a big problem if left untreated.

6.1 Placement of Containers

In general, containers and virtualized resources management should be dictated by a number of

parameters that deal with the environment where these resources are placed. Such a decision is

significant as the desired services will be uploaded and executed on them towards supporting the

processing activities that end users or applications demand. The discussed management mainly

refers in the EC infrastructure exhibiting a very close connection with the hardware and the

operating software that is present in EC nodes. The authors of [83] focus on the migration of services

to nearby edge nodes as the user is moving and approaching different nodes in a wide area network.

They propose the use and migration of Docker containers, which they have studied extensively, and

have been able to utilize their hierarchical file system to shorten the cost of its synchronization, all

the while not depending on the distributed file system. The authors present experimental results

that show an extensive decrease in service migration time, which renders this technique suitable for

integration to any container allocation method. Further, the authors of [31] present two placement

algorithms, KCBP (k-Center-Based Placement) and KCBP-WC (KCBP-Without Conflict), whose aim is

to allocate container images to edge nodes while reducing the maximum transmission time of

containers. To achieve that, it also exploits the hierarchical structure of containers and

communicates only the layers that are not already in the receiving node’s storage. The first

algorithm, KCBP sorts layers by their size and places them at edge nodes so that the distance sum is

minimized. KCBP-WC is an extension that avoids placing two large layers at the same node, so that

there is no extra overhead. Experimental results show a very large reduction in recovery time

compared to other algorithms, supporting the proposed scheme’s effectiveness.

In [130], the authors study the frequent handover problem with the objective to maximize the

availability of resources at fog domains. To do so, they propose a resource placement algorithm

leveraging RL and apply it in vehicular networks. The presented results point-out that RL solutions

can learn the underline resources and result in fewer live migrations. In [40], migration strategies for

virtual machines and containers are studied based on the concept of community relationship of the

devices of a distributed system. The base idea is to migrate applications if the overall benefit is

greater than the generated overhead by migrating applications between nodes. Fog nodes are

partitioned into a hierarchical dendrogram using topological features of graphs. The latter is used to

assign virtual machines to DCs. An extension of iFogSim [48], a simulator is presented in [81].

MyiFogSim supports mobility as it enables virtual machine migration policies for users based on

user’s position, direction and speed.

6.2 Greedy Approaches

A lot of work has been performed in the management of workflows and the corresponding tasks

placement at the EC or the Cloud infrastructures (e.g., [102]). Usually, high level tasks may be

‘transformed’ to a workflow, i.e., a sequence of dependent or independent tasks that should be

executed in the available nodes. For instance, when a node in the EM receives a request for the

delivery of the regression coefficients upon the available data, it may separate the high level task to

a set of sub-tasks and allocate them to the available resources for execution. The authors of [5] have

developed a greedy heuristic algorithm that assigns tasks to resources on the edge or the Cloud for

execution. Its criteria for the allocation include the deadline or other constraints connected to a task,

the network distance between a task and a resource, and hence the latency it results in, a node’s
load of work and its capacity concerning energy. The algorithm’s main objective is to produce a
mapping of services to resources, while also minimizing the overall execution times and costs. The

algorithm’s time complexity equals Θ(nm), where n is the number of tasks and m the number of

nodes, which is a quite reasonable and expected value for a greedy algorithm. In [9], a number of

algorithms for autonomous (re)placement of services in an edge node are described and compared

to a centralized optimal Mixed Integer Linear Problem (MILP) based algorithm which minimizes the

number of services that are delegated to Cloud for execution. In particular, the authors propose the

admission and scheduling of service requests by an edge node only if the deadlines of already

scheduled tasks as well as the new task are not violated; otherwise, the service request that the

node denied is propagated to the cloud through the fog network, where it can also be admitted and

executed by a fog node. The admitted requests are scheduled based on non-preemptive polices,

such as Earliest Deadline First (EDF) and First-In-First-Out (FIFO). In addition, as a general rule, an

edge cannot be running all services it receives requests. For that reason, it maintains a running set of

services which is updated upon request arrival, periodically or at random intervals. The paper

recommends the following ranking policies for the selection of running services: (i) Strictest Deadline

First (SDF), where the requests of the services that are chosen have the least average amount of

remaining time towards the deadline, (ii) Least Frequently Used (LFU), employed as an eviction

policy for unpopular services, (iii) Hybrid, a mix of SDF and LFU, where services with distant-deadline

requests are sent to the fog/cloud and the remaining are ranked based on popularity to the users,

and (iv) Least Recently Used (LRU), which is also used as an eviction policy for services that have not

been requested in a while. Out of the four, the Hybrid algorithm seems to be the best and closest in

performance to the optimal. Such an approach presents an interesting option due to its autonomy,

seeing as a node does not need to communicate with any other entity in order to make a decision.

This results in an increased rate of decision-making and, generally, processing of requests, along with

the improvement of the users’ quality of service, which is the ultimate goal in any network.

A more specific approach to tasks management with respect to a single edge node is to just decide

on whether it is best for a particular task to be executed locally or offloaded to a peer node or the

cloud [61]. The central idea involves building an incremental kernel density estimator for every task’s
requests as time progresses that allows for the calculation of the probability of high request rates in

the immediate future. Having exchanged this information among themselves, each edge node

computes the probability of each task being popular generally in the group of nodes that does not

include themself. Through a set of rules implemented by a fuzzy logic controller, an offloading value

is calculated for each task by a node, and it indicates whether a task should remain for local

execution or be offloaded elsewhere, where it is more popular to reduce the average latency for end

users. The paper does not include the allocation of the task to a new edge node or the cloud, but the

authors do refer to another work of theirs that does [65]. There, the Utility Theory is exploited to

produce aggregated ranked lists of nodes where each task can be offloaded to, and if no node’s
related values exceed a certain threshold then the task is sent to the fog/cloud for execution that

will not respect the task’s deadline. Both of the proposed approaches’ results are promising, as well
as better compared to other distributed algorithms.

Overall, greedy approaches are dependent on the performance of each edge node. They work most

efficiently if they require little to no interaction among them and certainly if interaction with the

cloud is avoided. They can reduce the end user’s waiting time since heavy computation is not
employed to manage tasks. However, since an optimal solution is not usually possible, waiting time

might sometimes reach very high values.

6.3 Energy-Saving Approaches

The authors of [79] study the placement problem from an IoT perspective and strive to develop an

algorithm that finds the optimal solution to tasks management while also respecting edge servers’
low energy reserve. They model the problem at hand as a multi-objective optimization problem and

employ Particle Swarm Optimization (PSO) to solve it and achieve the goal. Indeed, the algorithm

does decrease the required energy, in comparison to other algorithms, but a centralized scheme

such as the aforementioned can never accomplish optimal performance and energy consumption. In

[121], it is proposed that the processing of heavy computations generated in an IoT environment be

offloaded to other devices in their network once a specified level is reached. Instead of setting a

universal offloading level for all devices, the authors suggest that each device has its own. In doing

so, a network’s devices’ resources are utilized to a satisfactory extent and, at the same time, a

bandwidth overload is avoided. Furthermore, experimental results show that this approach

increases battery life, which is precious to IoT devices. This work is of the utmost importance to IoT

networks which collect a large amount of data in need of aggregation or, in general, run applications

requiring many computations.

DART (DAta tRansportation neTwork) [34] treats the tasks allocation problem as a stochastic mixed-

integer optimization problem and attempts to solve it with an advanced coarse-grained offloading

mechanism. The idea is to visualize IoT as a network of points of connection, which can

communicate, compute tasks as well as store data and exploit the advantages of spectrum allocation

in their model. Therefore, the devices in the network spend as little as possible of their much-

needed energy for precise communication activities and save the rest for executing and offloading

tasks. The authors of [82] strive to propose a model that utilizes data compression and task

offloading to minimize a task’s execution latency and the requesting device’s energy consumption in
a mobile edge computing environment. The problem is modeled as a non-convex one at first, but

through conversion to a quadratically constrained quadratic program and then through a

semidefinite relaxation approach, it is rendered solvable in polynomial time. Cooperatively

optimizing task latencies and device energy exhaustion is a novel idea that seems quite suitable for

devices with energy constraints.

6.4 Placement of Interacting Tasks

The Edge Orchestrator (EO) described in [109] is tasked with splitting a workflow into several parts

to be executed across a number of devices and resources, as well as assigning tasks to be executed

on an edge node or offloading the process for execution on a cloud. Furthermore, after a task has

been performed at the edge, the EO must aggregate the resulting data before forwarding them to a

cloud, and vice versa. As with most other models, the purpose is performance optimization with

regard to latency and quality of service. The fact that this scheme offers a lot of alternatives for the

allocation of requested tasks is positive since, out of all the possible solutions, the best one should

be quite close to the optimal one. Having said that, the same feature must render the model slower

to decide than others precisely because of the abundance of options.

Poster [56] aims to optimize communication costs between interacting tasks. To achieve that, it

mines users’ cookies with PISMine, an algorithm the authors have developed. PISMine finds the

most common 2-itemsets of services based on an interestingness measure and places those that are

a part of the same 2-itemset on the same edge node for execution, or as close as possible. Such a

placement allows for the minimization of inter-service communication costs, thus minimizing the

overall latency of a service and maximizing the users’ QoS. This approach is quite original and easy to

implement, making it a very interesting choice for tasks management at the edge of the network.

The effort presented in [12] models the problem as a joint allocation of the multiple tasks an

application might request. Similarly to [34], the problem is also modeled as a MILP that takes into

consideration user mobility and network capacity at a given moment. The authors present an

effective heuristic online algorithm as a solution that is based on the Hungarian method [70].

Experiments show that the proposed approach is quick and makes virtually optimal decisions,

making this scheme a very strong option for solving the tasks management problem at the edge.

DATA (Dependency-Aware Task Allocation) [73] is another approach at multi-component application

allocation at the edge. This particular method is comprised of three sub-algorithms. The first one

produces a graph that shows the order in which the tasks of a request must be processed, making

sure that the all tasks in the graph are divided into sub-tasks which have the same maximum

workload. This allows for the design of a pipeline of events, which is vital for the efficient operation

of the next sub-algorithm. The second sub-algorithm aims to assign each sub-task to a container in

the pool of available edge nodes in a manner that minimizes dependency-related transmission costs.

Lastly, the third sub-algorithm is responsible of scheduling a sub-task’s execution in the chosen
container, by computing the maximum time that the inputs will have arrived at and respecting

dependencies.

In addition, the authors of [142] suggest a scheme that utilizes RL, specifically Q-learning, to solve

the problem of service request placement at the edge. A request is modeled as a set of sub-tasks, all

of whom have to be allocated to edge nodes for processing. This paper introduces a strategy that

allocates all the involved sub-tasks jointly, by treating them as a service tree with sub-trees which

respect the order of events to take place. The model recursively allocates an edge node for every

sub-tree using Q-learning, and eventually develops an efficient system that has learnt from its

mistakes and can maximize the resource utility while minimizing the network congestion. This

approach has favorable prospects as it can always evolve by adapting to changes in the network and

maintain a high performance until a change occurs and it adapts to it again.

The services that are offered nowadays are complex and involve many components more often than

not. Utilizing service placement methods which recognize that and strive for the minimization of

inter-component latencies is an integral part of achieving overall efficiency in all networks, and

especially a vast one like the world-wide web is.

Table 7 shows the optimization goals of each algorithm as well as the metrics that are taken into

consideration. Symbol ↑ refers to the maximization of a goal, symbol ↓ to the minimization of a

goal while symbol ↔ depicts that algorithm accounts the specific metric for the final decisions. To

avoid cluttering, we merge the optimization goals and the accountable metrics for the first three

columns. The first column (Resource Management) contains the following optimization parameters:

(a) resource utilization, (b) recovery time, (c) execution cost, (d) load balancing and (e) energy. The

second column (Network Parameters) contains the following optimization parameters: (a)

bandwidth, (b) topology, (c) network cost, (d) transmission time and (e) network traffic. Finally,

column Data & Users Management contains: (a) data-users locality, (b) type of data, (c) data

availability, (d) data solidity and (e) mobility. Consider the case of the algorithm presented in [49]. It

can be easily revealed that the optimization goals of this algorithm are to minimize latency (↓) and
to maximize load balancing (↑d) and fault-tolerance (↑). To do that, it considers the topology (↔b

)

of the network, the locality, the type and the availability of the data (↔a ↔b ↔c
) and the storage

capacity of nodes (↔).

Table 8 depicts the classification of algorithms for the following distinct perspectives: (a) the

optimization strategy, (b) the appliance of replication methodologies, (c) the use of containers, (d)

tasks dependencies (workflows), (e) the evaluation strategy and (f) the type of workloads used in the

experimental evaluation. Consider again the case of the algorithm presented in [49]. This algorithm

implements a heuristic approach to the SUMO simulator on real-world workloads.

Table 7 Algorithms classification of optimization goals and accountable metrics

Algorithm

R
e

so
u

rc
e

M
a

n
a

g
e

m
e

n
t

N
e

tw
o

rk

P
a

ra
m

e
te

rs

D
a

ta
 &

 U
se

rs

M
a

n
a

g
e

m
e

n
t

Q
o

S

E
xe

cu
ti

o
n

T
im

e

Fa
u

lt
-t

o
le

ra
n

t

La
te

n
cy

S
to

ra
g

e

C
a

ch
e

-h
it

s

T
a

sk

im
p

o
rt

a
n

ce

Gupta et al [49] ↑d
 ↔b

 ↔a ↔b ↔c
 ↑ ↓ ↔

Ravindran et al [117] ↔b
 ↑ ↓

Shao et al [125] ↔c
 ↔b

 ↔ ↑

GRED [144] ↑d
 ↔a ↔b ↓c

 ↓

ECS [59] ↔a
 ↔ ↑

GAPSO [26] ↓c
 ↔c

 ↓ ↓

Karanika et al [60] ↔b ↑d
 ↔d

 ↓

Li et al [78] ↔d
 ↔c

 ↔c
 ↔ ↓

Shao et al [126] ↓c ↔d
 ↔c

 ↑c
 ↔c ↔d

 ↔ ↑

Sinky et al [128] ↓e
 ↔b ↔c

 ↑ ↔ ↓ ↑

Farhadi et al [38] ↔c
 ↔c

 ↑ ↓ ↔

Breitbach et al [18] ↓a ↔e
 ↓ ↓

Li et al [75] ↓a ↔c
 ↔b

 ↑ ↓ ↔ ↑

DCTA [23] ↓ ↔

MobMig [108] ↔b
 ↔e

Ma et al [83] ↔c
 ↑e

 ↓ ↔ ↔

KCBP [31] ↓b
 ↔b ↓d

Alqahtani et al [5] ↓c ↔e
 ↔b ↓e

 ↔ ↓

Ascigil et al [9] ↔b
 ↑↔ ↓

Karanika et al [61] ↔b
 ↓ ↔

Kolomvatsos [65] ↔e
 ↔b

 ↔ ↓ ↔

Li et al [79] ↑a ↓e
 ↔e

 ↔b

Samie, et al [121] ↑a ↓e
 ↔e

 ↔a

DART [34] ↓e
 ↔e

 ↔b
 ↔

Ly et al [82] ↓e
 ↔e

 ↓d
 ↔d

 ↔ ↓

Petri et al [109] ↔ ↓ ↔

PISMine [56] ↓c
 ↔d

 ↑ ↓

Bahreini et al [12] ↔a
 ↔a

DATA [73] ↔d
 ↓↔

Wang et al [142] ↑a
 ↓e

 ↔

Table 8 Algorithms classification for the scheduling and the application model

Algorithm Strategy

R
e

p
li

ca
ti

o
n

C
o

n
ta

in
e

rs

D
e

p
e

n
d

e
n

cy

Evaluation Workloads

Simulation Real Synthetic Real

Gupta et al [49] Heuristic √ √ SUMO √

Ravindran et al [117] Heuristic √ √ NS3 √

Shao et al [125] DP √ √

GRED [144] Heuristic √ P4 √

ECS [59] LP/IP √ BRITE √

GAPSO [26] GA/PSO √ √CloudSim √

Karanika et al [60] Ensemble ML √ √

Li et al [78] GA √ √Alibaba √

Shao et al [126] 0-1 IP/PSO √ √ √ √

Sinky et al [128] Hierarchical

Clustering

√ √ √

Farhadi et al [38] MILP √ √ √

Breitbach et al [18] Heuristic √ √ √Tasklet √

Li et al [75] Metaheuristic √ ↓ √ √ √

DCTA [23] Heuristic, TL √ √

MobMig [108] Heuristic, DM √ √

Ma et al [83] Heuristic √ √ √

KCBP [31] Heuristic √ √ √ √ √

Alqahtani et al [5] Heuristic √ √iFogSim √

Ascigil et al [9] Heuristic √ √ √ √

Karanika et al [61] Heuristic, FL √ √

Kolomvatsos at al [65] k-NN √ √

Li et al [79] PSO √

Samie, et al [121] Heuristic √DART √

DART [34] MILP √ √

Ly et al [82] QCQP √ √

Petri et al [109] Heuristic √ √CometCloud √

PISMine [56] FP-tree √ √

Bahreini et al [12] Heuristic √ √

DATA [73] Heuristic √ √ √

Wang et al [142] RL √ √ √

7. Resources Management at the Edge

This section is devoted to the presentation of the most significant efforts that deal with the

management of resources (e.g., processing nodes) at the EC/EM. Our aim is to reveal the axes that

dictate the research implementations to deal with the requirements of the fully autonomous EC/EM

infrastructure. Table 9 reports on the classification of the relevant research efforts according to the

sub-domain.

Table 9. Categorization of research activities related to the management of EC/EM nodes.

Research Subject Research Efforts

Tasks Offloading [24], [66], [137]

Nodes reconfiguration
[7], [19], [30], [57], [62], [64], [68], [69], [74], [77], [85], [104],

[131], [133], [152]

Resources Scaling
[4], [33], [35], [36], [53], [58], [89], [90], [116], [122], [129], [134],

[135], [140], [148], [153]

Load balancing [10], [25], [51], [76], [96], [97], [98], [99], [141]

Caching [1], [45], [46], [47], [86], [124]

Monitoring [11], [13], [29], [32], [103]

The subject of [24] is the intelligent computational offloading of mobile devices towards edge nodes,

specifically at the edge of radio access networks. Task offloading to the available nodes is a

significant research issue that demands for efficient solutions to increase the performance of the

EC/EM. Tasks offloading should take into consideration nodes characteristics and the data present

on them before the final decision. The activity can be coordinated by a multitude of EC/EM nodes

accompanied by admission control and a specific scheduling scheme [101], [137]. Additional efforts

like [66] focus on the adoption of multiple criteria and try to ‘match’ tasks with EC/EM nodes

characteristics before an allocation takes place. The discussed paper deals with the dynamic update

of tasks and nodes characteristics due to the changes in the demand and the availability of nodes.

Nodes’ reconfiguration is also very significant to keep the firmware and the pre-installed

applications updated. Relevant efforts in the field [7], [62], [64], [68], [69] are mainly oriented to the

IoT domain, however, the proposed algorithms can be easily adopted in EC/EM. A survey on the

adopted methodologies is presented in [19]. Updates can affect the firmware of a device or have the

form a ‘generic’ reprogramming activity. This means that an update server is adopted to deliver the

updates that can be software patches, security modules, new functionalities/modules, etc. All the

proposed algorithms try to minimize the effect in the network while targeting to limit the time for

concluding the update. Incremental updates and data compression could be adopted to reduce the

size of messages [133]. In any case, the separation of the updates imposes additional requirements

for the number of messages transferred through the network and the algorithm adopted to

conclude the aggregation of messages and installation of the update. The incremental management

of the updates does not eliminate the necessary process for maintaining updates history and the

aforementioned aggregation. Some widely cited research efforts in the domain are as follows.

Trickle [74] disseminates and, accordingly, maintains software updates in a set of nodes through an

epidemic approach with scalable multicasting. Based on this scheme, updates are periodically

transferred to nodes. Epidemic approaches, in general, may involve the transmission of several

copies to random nodes, thus, there is an increased cost for the management of the received

messages. DHV [30] reports on a code consistency maintenance protocol that ensures that nodes

will, eventually, have the same code. The Multicast-based Code redistribution Protocol (MCP) [77] is

another protocol that performs code maintenance. MCP requires a table that depicts the

information of applications present in a node. The table is adopted for the ‘coordination’ of the

delivery of multicast-based code dissemination requests. However, the use of additional data

structures increases the storage complexity of the corresponding models. The Multi-hop, Over-the-

Air code distribution Protocol (MOAP) [131] adopts a store-and-forward approach upon patterns of

updates. Updates are broadcasted in a neighbour-per-neighbour basis forcing nodes to disseminate

the incoming code to reduce the latency. Deluge [57] proposes a protocol over algorithms related to

density-aware, epidemic maintenance models. It is built upon Trickle for the advertisement of

updates and separates the code into a set of fixed-size pages. Through this approach, the time

required for the propagation of large components is reduced. However, the adoption of multiple

optimization activities increases the complexity of the proposed solution especially for the

recreation of the updates. Stream [104]adopts Deluge and optimizes the code parts transferred

through the network. It deals with pre-installations of the re-programming application. This way,

Stream transmits the minimal support (approximately one page) required for the activation of the

re-programming image. Resource-awareness, time-efficiency, and the integration of security

solutions are involved in the model presented in [85]. A multi-hop propagation scheme is proposed

enhanced by security codes and means from fuzzy control theory. MELETE [152] is designed to

support multiple concurrent applications. It assumes that the network is a set of groups of nodes

that execute different tasks. The framework adopts a group-keyed model to selectively distribute

the code to only the interested nodes, and reactively distribute the code only when it is required.

The dynamic scaling of activities adopted by EC/EM nodes is another significant resources topic.

Scaling activities can be performed either horizontally [4] or vertically [129]. Horizontal scaling refers

in adding/removing infrastructure capacity in pre-packaged blocks of resources while vertical scaling

refers in scale-up/scale-down, i.e., add/remove resources to an existing system [129], [140]. Scaling

activities can deal with the management of Virtual Machines (VMs) [148] or containers [122], [153].

Activities adopted to be aligned with the real demand can also involve the migration of services or

data to different VMs/containers [89]. ENORM [140] proposes a framework for integrating the

EC/EM in the computing ecosystem to realize FC. The framework builds on a provisioning and

deployment model to integrate an EC/EM node with a Cloud server. Additionally, it supports an

auto-scaling mechanism to dynamically manage edge resources to be fully aligned with the real

demand. DYVERSE [139] is a light-weight and dynamic vertical scaling mechanism for managing

resources allocated to applications for facilitating multi-tenancy in EC/EM. DYVERSE proposes the

use of a static and three dynamic priority management scheme being workload-, community- and

system-aware. Thoth [122] proposes a dynamic resource management system using Docker

container technology. It automatically monitors resource usage and dynamically adjusts appropriate

amount of resources for each application based on ML models, i.e., a Neural Network, a Q-Learning

scheme and a rule-based algorithm. Other efforts that adopt reinforcement learning for predicting

the demand and align the available resources are discussed in [35], [116]. A fuzzy logic approach is

proposed in [58]. The fuzzy controller is adopted to result the scaling actions based on demand

prediction estimated by a reinforcement learning scheme. In [36], the authors present a queuing

mathematical and analytical model to study and analyze the performance of fog computing system.

The discussed model determines under any workload the number of nodes required to keep the QoS

at the desired levels. In [135], the proposed scheme integrates hypervisors and virtualization based

on containers to construct an integrated virtualization platform for industrial applications. The

adopted model is a fuzzy-based real-time auto scaling mechanism that provides a dynamic, rapid,

lightweight, and low-cost solution.

The authors of [53] study the technical challenges for managing the resource-limited nodes in

EC/EM. They present three architectures, i.e., dataflow, control, and tenancy. The infrastructure is

seen in three axes, i.e., hardware, software, and middleware. They also discuss algorithms for load

balancing, discovery, benchmarking, and placement. Another effort studying the resources

continuity is provided in [90]. The study focuses on the management of resource continuity from the

EC/EM to Cloud and depicts a layered architecture for continuity provisioning, effective resources

selection and service execution mechanisms. We have to notice that resources should be able to be

aligned with the needs of streams as coming from the IoT infrastructure. The authors of [33] provide

a survey on stream processing techniques for supporting resource elasticity features. The review

focuses on ongoing efforts dealing with the deployment on EC/EM environments and insights of

future directions. A taxonomy of resource management at the EC/EM is provided by [134]. The

authors categorize the relevant efforts according to their resource type, the objective of the

management, resource location, and resource use.

Load balancing is another significant research subject in EC/EM. The research community proposes

two main types of load balancing strategies: static and dynamic [76]. Static load balancing deals with

a ‘stateless’ approach (models that do not consider the previous state of the node). The load is

efficiently distributed when nodes do not exhibit significant variations in their activities. Dynamic

strategies involve a ‘statefull’ model, i.e., they take into consideration the dynamic changes in nodes’
behavior (the state of each node). Intermediary nodes can be also adopted for performing load

balancing activities [10]. In [76], the authors propose an architecture for load balancing based on

intermediary nodes that obtain the state information of the network. Intermediaries classify the

status of each node by using a set of attributes. Based on this information, the framework is capable

of performing the final allocation. In [51], the authors propose an improved constrained particle

swarm optimization algorithm based on SDN. The algorithm improves the performance by adopting

the opposite property of the mutated particles and reducing the inertia weight linearly. In [25], a

task allocation model is provided for load balancing. The algorithm calculates the completion time

for each task and formulates the load balancing optimization problem. The authors of [141] present

a distributed traffic management system adopting an offloading algorithm for real-time traffic

management in fog-based internet of vehicle systems. The ultimate goal is to minimize the average

response time of the traffic management server. In [99], the authors investigate a joint computation

offloading, power allocation, and channel assignment scheme for 5G-enabled traffic management

systems. The satisfaction of heterogeneous requirements for communications,, computation and

storage are studied in [98]. The authors propose an energy-efficient scheduling framework taking

into consideration task latency constraints. In [97], a deep learning model is presented for data

transmission. The use cases involve the communication of vehicles with the EC/EM infrastructure. In

[96] another deep leaning model is presented. More specifically, the authors focus on a deep

reinforcement learning method integrated with vehicular edge computing.

Caching is a key mechanism that aims to reduce the traffic of the network and increase the response

time of a system. MEC enables Cloud computing capabilities at the edge of the network using a

multi-layered architecture that consists of IoT/users’ devices, FC nodes, cellular base stations and

other edge nodes. Thus, apart from caching policies, the location where caching will be deployed is

important in mobile networks. Caching at users’ devices can exploit storage resources in a D2D
communication; caching at the edge is a good choice since edge nodes are closer to end users;

caching at the upper levels i.e., FC and cellular base stations, may result to increased hit ratios as the

coverage area is larger than in the remaining setups.

Caching in users’ devices has been studied in conjunction with D2D communication. D2D offers a

decentralized opportunistic short-range communication by utilization the air-interface resources in

5G networks. In [46], the authors propose a scheme to increase the throughput of video files in D2D

communication. Popular video files that might be requested by other users, are cached in individual

users’ devices. Caching content based on its popularity is also the subject of [45]. Authors optimize

the D2D collaboration distance assuming that requests are modelled using the Zipf distribution. The

authors of [86] use a homogeneous PPP model with realistic noise and interference to decide on the

best distribution of user requests that maximize the number of hit ratios. The idea of a small base

station (BSs) with a low-rate backhaul link and high storage capabilities to cache popular video files

has been studied in [124]. Femtocaching avoids frequent replication of similar content by caching

them at small base stations that are located close to the end users. In [1], the authors study the

distributed caching of videos at the BS of Radio Access Network (RAN) in order to improve the

quality of service that users enjoy. Both proactive and reactive policies are proposed based on

videos global popularity (cities) instead of local popularity (campus). Authors in [47] investigate the

storage allocation of macro BS. The problem of minimizing the total occupied storage space of

macro BSs is transformed into a multiple knapsack problem and subsequently solved using linear

programming.

A monitoring tool is a key component in resource allocation in more than one respect. It provides

performance KPIs and statistics for the virtualized resources (CPU, memory, disk, network usage,

etc.) and for the applications that are being served. It can detect over- or under-utilized resources

and perform load balancing, auto scaling or the dynamic reallocation of resources. Also, it certifies

SLAs compliance in case of failure, revocation (e.g., spot virtual machines) and delays to increase the

QoS offered through Cloud. Monitoring tools like Lattice [29], PCMONS [32], Amazon Cloud Watch80,

CloudMonix81 and IBM Tivoli82 are effective to monitor virtualizes resources, however, they are

limited to monitor applications and services that are deployed in federated Clouds, private Clouds,

AWS, Azure Cloud, and IBM Cloud, respectively. In MEC, apart from monitoring virtualized resources,

it is also important to consider other levels of monitoring like the network, applications, services and

sensors. Zenoss [11], Nagios [13] and Zabbix [103] are three open source monitoring tools that

support multi-level and end-to-end link quality monitoring. This type of monitoring includes virtual

machines, containers (except Nagios), network traffic/delays and throughput that are essential in a

MEC environment. Some of the fundamental services provided by the former tools are a) the ability

to monitor all critical infrastructures of a MEC environment, including applications, services,

operating systems and network protocols, b) notifications/alerts upon potential resources

unavailability; and c) the provision of a detailed picture of network traffic and potential security

threats.

8. Conclusions

The Edge Computing (EC) and the Edge Mesh (EM) target to support an intelligent infrastructure

close to end users realizing services that can be applied upon the huge volumes of data collected by

numerous devices. The ultimate (and first) goal is the minimization of the latency that

users/applications enjoy when requesting the execution of various processing activities. The

challenges that should be met before we arrive at a fully automated EC/EM infrastructure are many.

The research community has already started to provide solutions to a wide set of problems relevant

to this vision. Our paper serves the goal of presenting such efforts working mainly around the data,

80

 https://aws.amazon.com/cloudwatch/
81

 https://cloudmonix.com/
82

 https://www.ibm.com/support/knowledgecenter/SSGSG7_7.1.11/tsm/welcome.html

tasks and resources management. We want to reveal the paths for supporting additional services

and models starting from a concrete basis. We discuss and classify a high number of models while

categorizing them upon their research target. We present how legacy and advanced ML as well as

optimization techniques are adopted to support novel solutions while reporting on the pros and

cons of the discussed algorithms. We argue that all these aspects are parts of the same picture, i.e.,

to conclude an intelligent edge node that is capable of learning the status of itself, its peers and the

environment before taking any decision about the upcoming line of actions. This means that we

want to reveal the need of an adaptive node that reasons upon the contextual information of

everything. If this becomes true, we will able to see a fully automated EC/EM ecosystem that is not a

science fiction but a reality with huge benefits for services provided to end users.

References

[1] Ahlehagh, H., & Dey, S. (2014). Video-aware scheduling and caching in the radio access network.

IEEE/ACM Transactions on Networking, 22(5), 1444-1462.

[2] Ahn, J., Lee, J., Niyato, D., & Park, H. S., ‘Novel QoS-Guaranteed Orchestration Scheme for Energy-

Efficient Mobile Augmented Reality Applications in Multi-Access Edge Computing’, IEEE
Transactions on Vehicular Technology, 69(11), 2020, pp. 13631-13645.

[3] Aledhari, M., et al., ‘Federated Learning: A Survey on Enabling Technologies, Protocols, and

Applications’, IEEE Access, 8:1-1, 2020.

[4] Ali-Eldin, A., Tordsson, J., Elmroth, E., ‘An adaptive hybrid elasticity controller for cloud
infrastructures’, in IEEE Network Operations and Management Symposium, 2012, pp. 204–212.

[5] Alqahtani, D. N. Jha, P. Patel, E. Solaiman and R. Ranjan, "SLA-aware Approach for IoT Workflow

Activities Placement based on Collaboration between Cloud and Edge," in 1st Workshop on

Cyber-Physical Social Systems (CPSS) 2019, Newcastle, UK, 2019.

[6] Al-Qamash, A., Soliman, I., Abulibdesh, R., Moutaz, S., ‘Cloud, Fog, and Edge Computing: A
Software Engineering Perspective’, International Conference on Computer and Applications
(ICCA), 2018.

[7] Anagnostopoulos, C., Kolomvatsos, K., 'An Intelligent, Time-Optimized Monitoring Scheme for

Edge Nodes', Journal of Network and Computer Applications, Elsevier, vol. 148, 2019.

[8] Aral and T. Ovatman, "A decentralized replica placement algorithm for edge computing," IEEE

transactions on network and service management, vol. 15, no. 2, pp. 516-529, 2018.

[9] Ascigil, O., et al., "On Uncoordinated Service Placement in Edge-Clouds," in 2017 IEEE

International Conference on Cloud Computing Technology and Science (CloudCom), Hong Kong,

China, 2017.

[10] Babu, R., Joy, A., Samuel, P., ‘Load balancing of tasks in cloud computing environment based
on bee colony algorithm’, 5th International Conference on Advances in Computing and
Communications (ICACC), 2015, pp. 89–93.

[11] Badger, M., ‘Zenoss core network and system monitoring’, Packt Publishing Ltd, 2008.
[12] Bahreini, T., Grosu, D., "Efficient placement of multi-component applications in edge

computing systems," in SEC '17: Proceedings of the Second ACM/IEEE Symposium on Edge

Computing, San Jose, CA, USA, 2017, October.

[13] Barth, W., ‘Nagios: System and network monitoring’, No Starch Press, 2008.
[14] Basir, R., et al., ‘Fog Computing Enabling Industrial Internet of Things: State-of-the-Art and

Research Challenges’, Sensors, MDPI, 19, 2019.
[15] Behrisch, M., Bieker, L., Erdmann, J., & Krajzewicz, D., ‘SUMO–simulation of urban mobility: an

overview’, In Proceedings of SIMUL 2011, The Third International Conference on Advances in
System Simulation, 2011.

[16] Bellman, R., "Dynamic programming and stochastic control processes," Information and

control, vol. 1, no. 3, pp. 228-239, 1958.

[17] Bilal, K., et al., "Potentials, trends, and prospects in edge technologies: Fog, cloudlet, mobile

edge, and micro data centers," Computer Networks, 2018.

[18] Breitbach, M. et al., "Context-Aware Data and Task Placement in Edge Computing

Environments," in 2019 IEEE International Conference on Pervasive Computing and

Communications (PerCom), Kyoto, Japan, 2019.

[19] Brown, S., Sreenan, C., 'Software Updating in Wireless Sensor Networks: A Survey and

Lacunae', Journal of Sensor and Actuators, vol. 2, 2013, pp. 717-760.

[20] Buhmann, J., Kuhnel, H., "Unsupervised and supervised data clustering with competitive

neural networks," in IJCNN International Joint Conference on Neural Networks, 1992.

[21] Cao, H. et al., ‘Analytics Everywhere: Generating Insights From the Internet of Things’, IEEE
Access, vol. 7, 2019, pp. 71749 – 71769.

[22] Carpa, M., et al., ‘Edge Computing: A Survey on the Hardware Requirements in the Internet of
Things World’, Future Internet, MDPI, 11, 2019.

[23] Chen, Q., et al., "Data-driven task allocation for multi-task transfer learning on the edge," in

2019 IEEE 39th International Conference on Distributed Computing Systems (ICDCS), Dallas, TX,

USA, 2019.

[24] Chen, X., Jiao, L., Li W., Fu, X., ‘Efficient Multi-User Computation Offloading for Mobile-Edge

Cloud Computing’, IEEE/ACM Transactions on Networks, 2016, 24, 2795–2808.

[25] Chen, Y. A., Walters, J., Crago, S., ‘Load balancing for minimizing deadline misses and
totalruntime for connected car systems in fog computing’, IEEE International Symposium on

Parallel and Distributed Processing with Applications, 2017.

[26] Chen, Z., et al., "Effective data placement for scientific workflows in mobile edge computing

using genetic particle swarm optimization," Concurrency and Computation: Practice and

Experience, p. e5413, 2019.

[27] Chen, Z., Jiang, L., Hu, W., Ha, K., Amos, B., Pillai, P., & Satyanarayanan, M., ‘Early
implementation experience with wearable cognitive assistance applications’, In Proceedings of
the 2015 workshop on Wearable Systems and Applications, 2015, pp. 33-38.

[28] Cisco, ‘The Cisco Edge Analytics Fabric System’, White paper, 2016

[29] Clayman, S., Galis, A., & Mamatas, L., ‘Monitoring virtual networks with lattice’, In 2010
IEEE/IFIP Network Operations and Management Symposium Workshops, 2010, pp. 239-246.

[30] Dang, T., Bulusu, N., Feng, W., Park, S., 'DHV: A Code Consistency Maintenance Protocol for

Wireless Sensor Networks', In Proceedings of the 6th European Conference on Wireless Sensor

Networks, Cork, Ireland, 2009.

[31] Darrous, J., Lambert, T., Ibrahim, S., "On the Importance of Container Image Placement for

Service Provisioning in the Edge," in 2019 28th International Conference on Computer

Communication and Networks (ICCCN), Valencia, Spain, 2019.

[32] De Chaves, S. A., Uriarte, R. B., & Westphall, C. B., ‘Toward an architecture for monitoring
private clouds’, IEEE Communications Magazine, 49(12), 2011, pp. 130-137.

[33] Dias de Assunção, M., da Silva Veith, A., Buyya, R., ‘Distributed data stream processing and
edge computing: A survey on resource elasticity and future directions;, Journal of Networks

Computing Applications, 103, 1–17, 2018.

[34] Ding, H., et al., "Beef Up the Edge: Spectrum-Aware Placement of Edge Computing Services for

the Internet of Things," IEEE Transactions on Mobile Computing, vol. 18, no. 12, pp. 2783-2795,

2019.

[35] Dutreilh, X., Kirgizov, S., Melekhova O., Malenfant, J., Rivierre, N. and Truck, I., ‘Using
Reinforcement Learning for Autonomic Resource Allocation in Clouds: Toward a Fully Automated

Workflow’, 7th International Conference on Autonomic and Autonomous Systems, 2011, pp.67-

74.

[36] El Kafhali, S., Salah, K., ‘Efficient and dynamic scaling of fog nodes for IoT devices’, Journal of
Supercomputing, 73(12), 2017, 5261–5284.

[37] ETSI, Mobile-edge Computing Introductory Technical White Paper, White Paper, Mobile-edge

Computing Industry Initiative, 2014.

[38] Farhadi, V., et al.,, "Service Placement and Request Scheduling for Data-intensive Applications

in Edge Clouds," in IEEE INFOCOM 2019-IEEE Conference on Computer Communications, Paris,

France, 2019.

[39] Farzad, S., Bauer, L., Henkel, J., ‘New Problems and Challenges in Bandwidth Allocation for
IoT’, Internet of Things Symposium, Amsterdam, Netherlands, 2015.

[40] Filiposka, S., Mishev, A., & Gilly, K., ‘Community-based allocation and migration strategies for

fog computing’, In 2018 IEEE Wireless Communications and Networking Conference (WCNC),
2018, pp. 1-6.

[41] Foukas, X., Patounas, G., Elmokashfi, A., Marina, M., ‘Network slicing in 5G: Survey and
challenges’, IEEE Communications Magazine, 55(5): 94-100, May 2017.

[42] Giust, F., Sciancalepore, V., Sabella, D., Filippou, M. C., Mangiante, S., Featherstone, W., &

Munaretto, D., ‘Multi-access Edge Computing: The driver behind the wheel of 5G-connected

cars;, IEEE Communications Standards Magazine, 2(3), 2018, pp. 66-73.

[43] Glover, F., "Tabu Search—Part I," ORSA Journal on Computing, vol. 1, no. 3, pp. 190-206, 1989.

[44] Glover, F., "Tabu search—part II," ORSA Journal on computing, vol. 2, no. 1, pp. 4-32, 1990.

[45] Golrezaei, N., Dimakis, A. G., & Molisch, A. F., ‘Wireless device-to-device communications with

distributed caching’, In 2012 IEEE International Symposium on Information Theory Proceedings,
2012, pp. 2781-2785.

[46] Golrezaei, N., Mansourifard, P., Molisch, A. F., & Dimakis, A. G., ‘Base-station assisted device-

to-device communications for high-throughput wireless video networks’, IEEE Transactions on
Wireless Communications, 13(7), 2014, pp. 3665-3676.

[47] Gu, J., Wang, W., Huang, A., & Shan, H., ‘Proactive storage at caching-enable base stations in

cellular networks’, In 2013 IEEE 24th Annual International Symposium on Personal, Indoor, and

Mobile Radio Communications (PIMRC), 2013, pp. 1543-1547.

[48] Gupta, H., Vahid Dastjerdi, A., Ghosh, S. K., & Buyya, R., ‘iFogSim: A toolkit for modeling and
simulation of resource management techniques in the Internet of Things, Edge and Fog

computing environments’, Software: Practice and Experience, 47(9), 2017, 1275-1296.

[49] Gupta, H., Xu, Z., Ramachandran, U., "DataFog: Towards a Holistic Data Management Platform

for the IoT Age at the Network Edge," in {USENIX} Workshop on Hot Topics in Edge Computing

(HotEdge 18), Boston, MA, USA, 2018.

[50] Ha, K., et al., ‘Towards wearable cognitive assistance’, in Proceedings of the 12th Annual

International Conference on Mobile systems, Applications, and Services, 2014, pp. 68–81.

[51] He, X., Ren, Z,. Shi, C., Jian, F., ‘A novel load balancing strategy of software-defined cloud/fog

networking in the internet of vehicles’, Chinese Communications, 13(S2), 145–154, 2016.

[52] Hebb, D. O.,The organization of behavior: a neuropsychological theory, New York, NY: Wiley,

1949.

[53] Hong, C.-H. and B. Varghese, ‘Resource Management in Fog/Edge Computing: A Survey’, arXiv
preprint arXiv:1810.00305, 2018.

[54] Hong, C.-H., et al., ‘qCon: QoS-Aware Network Resource Management for Fog Computing’,
Sensors, 18(10), 3444, 2018.

[55] Hou, X., Lu, Y., & Dey, S., ‘Wireless VR/AR with edge/cloud computing.’, In 2017 26th
International Conference on Computer Communication and Networks (ICCCN), 2017, pp. 1-8.

[56] Huang, Y., et al., "Poster: Interacting Data-Intensive Services Mining and Placement in Mobile

Edge Clouds," in Proceedings of the 23rd Annual International Conference on Mobile Computing

and Networking, London, United Kingdom, 2017.

[57] Hui, J. W., Culler, D., 'The dynamic behavior of a data dissemination protocol for network

programming at scale', in Procedings of the International Conference on Embedded networked

sensor systems, SenSys, 2004, pp. 81-94.

[58] Jamshidi, P., Sharifloo, A., Pahl, C., Arabnejad, H., Metzger, A. Estrada, G., ‘Fuzzy Self-Learning

Controllers for Elasticity Management in Dynamic Cloud Architectures’, 12th International ACM
SIGSOFT Conference on Quality of Software Architectures, 2016, pp. 70-79.

[59] Jin, J., Li, Y., Luo, J., "Cooperative storage by exploiting graph‐based data placement algorithm

for edge computing environment," Concurrency and Computation: Practice and Experience, vol.

30, no. 20, p. e4914, 2018.

[60] Karanika, P. Oikonomou, K. Kolomvatsos and C. Anagnostopoulos, "An Ensemble Interpretable

Machine Learning Scheme for Securing Data Quality at the Edge," in Cross Domain Conference for

Machine Learning and Knowledge Extraction (CD-MAKE 2020), 2020.

[61] Karanika, P. Oikonomou, K. Kolomvatsos and T. Loukopoulos, "A Demand-driven, Proactive

Tasks Management Model at the Edge," in IEEE International Conference on Fuzzy Systems, 2020.

[62] Kolomvatsos, K., 'An Efficient Scheme for Applying Software Updates in Pervasive Computing

Applications', Journal of Parallel and Distributed Computing, Elsevier, vol. 128, 2019, pp. 1-14.

[63] Kolomvatsos, K., 'An Intelligent, Uncertainty Driven Management Scheme for Software

Updates in Pervasive IoT Applications', Elsevier Future Generation Computer Systems, vol. 83, pp.

116-131, 2018.

[64] Kolomvatsos, K., 'An Intelligent, Uncertainty Driven Management Scheme for Software

Updates in Pervasive IoT Applications', Elsevier Future Generation Computer Systems, vol. 83, pp.

116-131, 2018.

[65] Kolomvatsos, K., Anagnostopoulos, C., "Multi-criteria optimal task allocation at the edge,"

Future Generation Computer Systems, vol. 93, pp. 358-372, 2019.

[66] Kolomvatsos, K., Anagnostopoulos, C., 'Multi-criteria Optimal Task Allocation at the Edge',

Elsevier Future Generation Computer Systems, vol. 93, 2019, pp. 358-372.

[67] Kolomvatsos, K., Oikonomou, P., Koziri, M., & Loukopoulos, T., ‘A distributed data allocation
scheme for autonomous nodes’, In IEEE SmartWorld, Ubiquitous Intelligence & Computing,
Advanced & Trusted Computing, Scalable Computing & Communications, Cloud & Big Data

Computing, Internet of People and Smart City Innovation

(SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI), 2018, pp. 1651-1658.

[68] Kolomvatsos, K., 'Time-Optimized Management of IoT Nodes', Elsevier Ad Hoc Networks, vol.

69, 2018, pp. 1-14.

[69] Kolomvatsos, K., 'Time-Optimized Management of Mobile IoT Nodes for Pervasive

Applications', Journal of Network and Computer Applications, Elsevier, vol. 125, 2019, pp. 155-

167.

[70] Kuhn, H. W., "The Hungarian method for the assignment problem," Naval research logistics

quarterly, vol. 2, no. 1-2, pp. 83-97, 1955.

[71] Lane, N. D., et al., ‘An early resource characterization of deep learning on wearables,
smartphones and internet-of-things devices’, in Proceedings of the ACM International Workshop
on Internet of Things towards Applications, 2015, pp. 7–12.

[72] Lane, N. D., et al., ‘Squeezing deep learning into mobile and embedded devices’, IEEE
Pervasive Computing, vol. 16, no. 3, pp. 82–88, 2017.

[73] Lee, J., et al., "DATA: Dependency-Aware Task Allocation Scheme in Distributed Edge Cloud,"

IEEE Transactions on Industrial Informatics, 2020.

[74] Levis, P, Patel, N., Culler, D., Shenker, S., 'Trickle: a self-regulating algorithm for code

propagation and maintenance in wireless sensor networks', in Proceedings of the Symposium on

Networked Systems Design and Implementation, vol. 1, 2004.

[75] Li, C., Bai, J., Tang, J., "Joint optimization of data placement and scheduling for improving user

experience in edge computing," Journal of Parallel and Distributed Computing, vol. 125, pp. 93-

105, 2019, March.

[76] Li, G., Yao, Y., Wu, J., Liu, X., Sheng, X., Lin, Q., ‘A new load balancing strategy by task

allocation in edge computing based on intermediary nodes’, EURASIP Journal on Wireless
Communications and Networking volume 2020.

[77] Li, W., Zhang, Y., Childers, B., 'MCP: an Energy-Efficient Code Distribution Protocol for Multi-

Application WSNs', in Proceedings of the 5th IEEE International Conference on Distributed

Computing in Sensor Systems, 2009.

[78] Li, Y. Wang, H. Tang, Y. Zhang, Y. Xin and Y. Luo, "Flexible replica placement for enhancing the

availability in edge computing environment," Computer Communications, vol. 146, pp. 1-14,

2019.

[79] Li, Y., Wang, S., "An energy-aware edge server placement algorithm in mobile edge

computing," in 2018 IEEE International Conference on Edge Computing (EDGE), San Francisco, CA,

USA, 2018, July.

[80] Liu, P., Qi, B., & Banerjee, S., ‘Edgeeye: An edge service framework for real-time intelligent

video analytics’, In Proceedings of the 1st International Workshop on Edge Systems, Analytics and
Networking, 2018, pp. 1-6.

[81] Lopes, M. M., Higashino, W. A., Capretz, M. A., & Bittencourt, L. F., ‘Myifogsim: A simulator for
virtual machine migration in fog computing’, In Companion Proceedings of the10th International
Conference on Utility and Cloud Computing, 2017, pp. 47-52.

[82] Ly, M. H., Dinh, T. Q., Kha, H. H., "Joint Optimization of Execution Latency and Energy

Consumption for Mobile Edge Computing with Data Compression and Task Allocation," in 2019

International Symposium on Electrical and Electronics Engineering (ISEE), Ho Chi Minh, Vietnam,

2019.

[83] Ma, L., Yi, S., Li, Q., "Efficient Service Handoff Across Edge Servers via Docker Container

Migration," in SEC '17: Proceedings of the Second ACM/IEEE Symposium on Edge Computing, San

Jose, CA, USA, 2017, October.

[84] Mahdavinejad, M. S., Rezvan, M., Barekatain, M., Adibi, P., Barnaghi, P., Sheth, A., ‘Machine
learning for internet of things data analysis: a survey’, Digital Communications and Networks,
4(3):161 – 175, 2018.

[85] Maier, K., Hessler, A., Ugus, O., Keller, J., Westhoff, D., 'Multi-Hop Over-The-Air

Reprogramming of Wireless Sensor Networks using Fuzzy Control and Fountain Codes', in Self-

Organising, Wireless Sensor and Communication Networks, 2009.

[86] Malak, D., Al-Shalash, M., & Andrews, J. G., ‘Optimizing content caching to maximize the
density of successful receptions in device-to-device networking’, IEEE Transactions on
Communications, 64(10), 2016, pp. 4365-4380.

[87] Mangiante, S., Klas, G., Navon, A., GuanHua, Z., Ran, J., & Silva, M. D., ‘Vr is on the edge: How
to deliver 360 videos in mobile networks’, In Proceedings of the Workshop on Virtual Reality and

Augmented Reality Network, 2017, pp. 30-35.

[88] Manyika, J., Chui, M., Bisson, P., Woetzel, J., Dobbs, R., Bughin, J., Aharon, D., ‘The Internet of
Things: Mapping the Value Behind the Hype’, Technical report, McKinsey Global Institute, 2015.

[89] Mao, M., Humphrey, M., ‘Auto-scaling to minimize cost and meet application deadlines in

cloud workflows’, International Conference on High Performance Computation, Networking,
Storage and Analysis, 2011, pp. 1–12.

[90] Masip-Bruin, X., Marin-Tordera, E., Jukan, A., Ren, G.J., ‘Managing resources continuity from
the edge to the cloud: architecture and performance’, Future Generation Computer Systems, 79,
777–785, 2018.

[91] Miraz, H. M., Ali, M., Picking, R., ‘A review on Internet of Things (IoT), Internet of Everything

(IoE) and Internet of Nano Things (IoNT)’, Internet Technologies and Applications (ITA), 2015.
[92] Mohammadi, M., et al., ‘Deep learning for IoT big data and streaming analytics: A survey;, IEEE

Communications Surveys & Tutorials, vol. 20, no. 4, pp. 2923–2960, 2018.

[93] Mordor Intelligence, ‘Micro Server Market – Growth, Trends, and Forecast (2020-2025)’,
Report, January 2020.

[94] Ndikumana, A., Tran, N. H., Kim, K. T., & Hong, C. S., ‘Deep Learning Based Caching for Self-
Driving Cars in Multi-Access Edge Computing’, IEEE Transactions on Intelligent Transportation
Systems, 2020.

[95] Nebbiolo Technologies Inc., ‘Fog vs Edge Computing’, White paper, retrieved July 2020 by
https://www.nebbiolo.tech/wp-content/uploads/whitepaper-fog-vs-edge.pdf

[96] Ning, Z, Dong, P., Wang, X., Rodrigues, J., Xia, F., ‘Deep reinforcement learning for vehicular
edge computing: an intelligent offloading system’, ACM Transactions on Intelligent Systems
Technology, 2019.

[97] Ning, Z., Feng, Y., Kong, X., Guo, L., Hu, X., Bin, H., ‘Deep learning in edge of vehicles: exploring
trirelationship for data transmission’, IEEE Transactions on Industrial Informatics, 2019.

[98] Ning, Z., Huang, J., Wang, X., Rodrigues, J., Guo, L., ‘Mobile edge computing-enabled internet

of vehicles: toward energy-efficient scheduling’, IEEE Networks, 2019

[99] Ning, Z., Wang, X., Xia, F., Rodrigues, J., ‘Joint computation offloading, power allocation, and
channel assignment for 5g-enabled traffic management systems’, IEEE Transactions on Industrial
Informatics, 2019.

[100] Odun-Ayo, I., Okereke, C., Orovwode, H., ‘Cloud Computing and Internet of Things: Issues and
Developments’, in World Congress on Engineering, London, UK, 2018.

[101] Oikonomou, P., et. Al., ‘Scheduling Video Transcoding Jobs in the Cloud’, In IEEE Green
Computing and Communications (GreenCom), 2018, pp. 442-449.

[102] Oikonomou, P., Kolomvatsos, K., Tziritas, N., Theodoropoulos, G., Loukopoulos, T., Stamoulis,

G., 'Uncertainty Driven Workflow Scheduling Using Unreliable Cloud Resources', in IEEE

International Symposium on Network Computing and Applications (NCA), November 24-27, 2020.

[103] Olups, R., ‘Zabbix 1.8 network monitoring’, Packt Publishing Ltd, 2010.
[104] Panta, R., Khalil, I., Bagchi, S., 'Stream: Low overhead wireless reprogramming for sensor

networks', in Proceedings of the International Conference on Computer Communications,

INFOCOM, 2007, pp. 928-936.

[105] Parker, M., ‘Implementation with GPUs’, Digital Signal Processing, 2017, pp. 387-393

[106] Patel, K. K., Patel, S. M., ‘Internet of Things-IoT: Definition, Characteristics, Architecture,

Enabling Technologies, Application & Future Challenges’, International Journal of Engineering
Science and Computing, vol. 6(5), 2016.

[107] Peltonen, E., et al., ‘6g white paper on edge intelligence’, arXiv preprint arXiv:2004.14850,
2020.

[108] Peng, Q., et al., "Mobility-Aware and Migration-Enabled Online Edge User Allocation in Mobile

Edge Computing," in 2019 IEEE International Conference on Web Services (ICWS), Milan, Italy,

2019.

[109] Petri, O. Rana, A. R. Zamani and Y. Rezgui, "Edge-Cloud Orchestration: Strategies for Service

Placement and Enactment," in 2019 IEEE International Conference on Cloud Engineering (IC2E),

Prague, Czech Republic, 2019.

[110] Plastiras, G., et al., ‘Edge Intelligence: Challenges and Opportunities of Near-Sensor Machine

Learning Applications’, IEEE 29th International Conference on Application-specific Systems,

Architectures and Processors (ASAP), 2018, 10.1109/ASAP.2018.8445118.

[111] Popescu, D., Zilberman, N., Moore, A. W., ‘Characterizing the Impact of Network Latency on
Cloud-based Applications Performance’, Computer Laboratory technical reports, UCAM-CL-TR-

914, 2017.

[112] Psaras, O. Ascigil, S. Rene, G. Pavlou, A. Afanasyev and L. Zhang, "Mobile Data Repositories at

the Edge," in {USENIX} Workshop on Hot Topics in Edge Computing (HotEdge 18), 2018.

[113] Radu, V., et al., ‘Multimodal deep learning for activity and context recognition’, in Proceedings
of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, vol. 1, no. 4, p. 157,

2018.

[114] Rahman, H., Rahmani, R., ‘Enabling Distributed Intelligence Assisted Future Internet of Things

Controller (FITC)’, Applied Computing and Informatics, 14(1), 2018, pp. 73-87.

[115] Ran, X., Chen, H., Zhu, X., Liu, Z., & Chen, J., ‘Deepdecision: A mobile deep learning framework
for edge video analytics;, In IEEE INFOCOM 2018-IEEE Conference on Computer Communications,

2018, pp. 1421-1429.

[116] Rao, J., Bu, X., Xu, C.Z., Wang, L., and Yin, G., ‘VCONF: a reinforcement learning approach to
virtual machine auto-configuration’, 6th International Conference on Autonomic Computing,

2009, pp. 137-146

[117] Ravindran and A. George, "An Edge Datastore Architecture For Latency-Critical Distributed

Machine Vision Applications," in {USENIX} Workshop on Hot Topics in Edge Computing (HotEdge

18), Boston, MA, USA, 2018.

[118] Sahni, Y., et al., ‘Edge Mesh: A New Paradigm to Enable Distributed Intelligence in Internet of
Things’, IEEE Access, 2017

[119] Salaht F.A., et al., "An overview of service placement problem in Fog and Edge Computing,"

ACM Computing Surveys, 2020.

[120] Salsano, S., Chiaraviglio, L., Blefari-Melazzi, N., Parada, C., Fontes, F., Mekuria, R., & Griffioen,

D., ‘Toward superfluid deployment of virtual functions: Exploiting mobile edge computing for
video streaming’, In 29th International Teletraffic Congress (ITC 29), 2017, vol. 2, pp. 48-53.

[121] Samie, F., et al., "Computation offloading and resource allocation for low-power IoT edge

devices," in 2016 IEEE 3rd World Forum on Internet of Things (WF-IoT), 2016.

[122] Sangpetch, A., Sangpetch, O., Juangmarisakul, N., Warodom, S., ‘Thoth: Automatic resource

management with machine learning for container-based cloud platform’, International
Conference on Cloud Computing and Services Science, 2017, pp. 103–111.

[123] Saputra, Y. M. et al., "Distributed deep learning at the edge: A novel proactive and cooperative

caching framework for mobile edge networks," IEEE Wireless Communications Letters, vol. 8, no.

4, pp. 1220-1223, 2019.

[124] Shanmugam, K., Golrezaei, N., Dimakis, A. G., Molisch, A. F., & Caire, G., ‘Femtocaching:
Wireless content delivery through distributed caching helpers’, IEEE Transactions on Information
Theory, 59(12), 2013, pp. 8402-8413.

[125] Shao, X., et al., "A Competitive Approximation Algorithm for Data Allocation Problem in

Heterogenous Mobile Edge Computing," in 2019 IEEE 89th Vehicular Technology Conference

(VTC2019-Spring), 2019.

[126] Shao, Y., Li, C., Tang, H., "A data replica placement strategy for IoT workflows in collaborative

edge and cloud environments," Computer Networks, vol. 148, p. 46–59, 2019.

[127] Shi, S., Gupta, V., Hwang, M., & Jana, R., ‘Mobile VR on edge cloud: a latency-driven design’, In
Proceedings of the 10th ACM Multimedia Systems Conference, 2019, pp. 222-231.

[128] Sinky, H., et al., "Adaptive Edge-Centric Cloud Content Placement for Responsive Smart Cities,"

IEEE Network, vol. 33, no. 3, pp. 177-183, 2019.

[129] Sotiriadis S., Bessis N., Amza C., Buyya R., ‘Vertical and horizontal elasticity for dynamic virtual
machine reconfiguration’, IEEE Transactions on Service Computing, vol. 99, 2016.

[130] Souza, V. B., Pereira, M. H., Lelis, L. H., & Masip-Bruin, X., Enhancing resource availability in

vehicular fog computing through smart inter-domain handover’, IEEE Global Communications
Conference, 2020.

[131] Stathopoulos, T., Heidemann, J., Estrin, D., 'A remote code update mechanism for wireless

sensor networks', Technical Report, Center for Embedded Networked Sensing, 2003.

[132] Stoica, R. Morris, D. Karger, M. F. Kaashoek and H. Balakrishnan, "Chord: A scalable peer-to-

peer lookup service for internet applications," ACM SIGCOMM Computer Communication Review,

vol. 31, no. 4, pp. 149-160, 2001.

[133] Stolikj, M., Cuijpers, P.,. Lukkien, J., 'Efficient Reprogramming of Wireless Sensor Networks

Using Incremental Updates and Data Compression', in Proceedings of the IEEE International

Conference on Pervasive Computing and Communications Workshops, 2013, pp. 584-589.

[134] Toczé, K., Nadjm-Tehrani, S., ‘A taxonomy for manage-ment and optimization of multiple

resources in edge computing’, Wireless Communications and Mobile Computing, 2018, 1–23.

[135] Tseng, F.-H., Tsai, M.S., Tseng, C.W., Yang, Y.T., Liu, C.C., Chou, L.D., ‘A lightweight auto-scaling

mechanism for fog computing in industrial applications’, IEEE Transactions on Industrial
Informatics, 14(10), 2018, 4529–4537.

[136] Wang, J., et al., ‘Deep learning towards mobile applications’, in IEEE 38th International
Conference on Distributed Computing Systems (ICDCS), 2018, pp. 1385–1393.

[137] Wang, L., Jiao, L., Kliazovich, D., Bouvry, P., ‘Reconciling task assignment and scheduling in

mobile edge clouds’, In Proceedings of the IEEE 24th International Conference on Network
Protocols (ICNP), Singapore, 2016.

[138] Wang, N., Fei, Z., Kuang, J., "QoE-aware Resource Allocation for Mixed Traffics in

Heterogeneous," in IEEE International Conference on Communication, Shenzhen, China, 2017, 14-

16 December.

[139] Wang, N., Matthaiou, M., Nikolopoulos, D., Varghese, B., ‘DYVERSE: DYnamic VERtical Scaling
in multi-tenant Edge Environment’, Future Generation Computer Systems, vol. 108, 2020, pp.

598-612.

[140] Wang, N., Varghese, B., Matthaiou, M., & Nikolopoulos, D., ‘ENORM: A Framework For Edge
NOdeResource Management’, IEEE Transactions on Services Computing, 2017.

[141] Wang, X., Ning, Z., Wang, L., ‘Offloading in internet of vehicles: A fog-enabled real-time traffic

management system’, IEEE Transactions on Industrial Informatics, 2018.
[142] Wang, Y., et al., "A Reinforcement Learning Approach for Online Service Tree Placement in

Edge Computing," in 2019 IEEE 27th International Conference on Network Protocols (ICNP),

Chicago, IL, USA, 2019, October.

[143] Weiss, K., Khoshgoftaar, T., Wang, D., ‘A Survey of Transfer Learning’, Journal of Big Data, 3(1),
2016.

[144] Xie, J., et al., , "Efficient Data Placement and Retrieval Services in Edge Computing," in 2019

IEEE 39th International Conference on Distributed Computing Systems (ICDCS), 2019.

[145] Xu, D., et al., ‘Edge Intelligence: Architectures, Challenges, and Applications’,
arXiv:2003.12172v2, 2020.

[146] Xu, X., Xue, Y., Qi, L., Yuan, Y., Zhang, X., Umer, T., & Wan, S., ‘An edge computing-enabled

computation offloading method with privacy preservation for internet of connected vehicles’,
Future Generation Computer Systems, 96, 2019, 89-100.

[147] Yang, Q., et al., ‘Federated machine learning: Concept and applications’, ACM Transactions on

Intelligent Systems and Technology (TIST), vol. 10, no. 2, p. 12, 2019.

[148] Yazdanov, L., Fetzer, C., ‘Lightweight automatic resource scaling for multi-tier web

applications’, in IEEE International Conference on Cloud Computing, 2014, pp. 466–473.

[149] Yi, S., et al., ‘Fog computing: Platform andapplications’, in 3rd IEEE Workshop on Hot Topics in
Web Systems and Technologies (HotWeb), 2015, pp. 73–78.

[150] Yi, S., Li, C., Li, Q., ‘A survey of fog computing: Concepts, applications and issues’, In
Proceedings of the 2015 Workshop on Mobile Big Data, 2015, pp. 37–42.

[151] Yousefpour, A., et al., ‘All one needs to know about fog computing and related edge
computing paradigms: A complete survey’, Journal of Systems Architecture, 98, 2019, pp. 289-

330.

[152] Yu, Y., Rittle, L. J., Bhandari, V., Lebrun, J. B., 'Supporting concurrent applications in wireless

sensor networks', in Proceedings of the 4th International Conference on Embedded Networked

Sensor systems, SenSys, 2006.

[153] Zhang F., Tang X., Li X., Khan S.U., Li Z., ‘Quantifying cloud elasticity with container-based

autoscaling’, Future Generation Computer Systems, 98, 2019, pp. 672-681.

[154] Zhang, C., Patras, P., Haddadi, H., ‘Deep learning in mobile and wireless networking: A survey’,
IEEE Communications Surveys &Tutorials, 2019.

[155] Zhang, D., et al., ‘HeteroEdge: taming the heterogeneity of edge computing system in social
sensing’, in Proceedings of the International Conference on Internet of Things Design and
Implementation, 2019, pp. 37–48.

[156] Zhang, X., et al., ‘OpenEI: An Open Framework for Edge Intelligence’, arXiv:1906.01864, 2019.

	ACM Cover Sheet (AFV)
	236454

