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Abstract 

Nowadays, we are witnessing the advent of the Internet of Things (IoT) with numerous devices 

performing interactions between them or with their environment. The huge number of devices leads 

to huge volumes of data that demand the appropriate processing. The ‘legacy’ approach is to rely on 

Cloud where increased computational resources can realize any desired processing. However, the 

need for supporting real time applications requires a reduced latency in the provision of outcomes. 

Edge Computing (EC) comes as the ‘solver’ of the latency problem. Various processing activities can 

be performed at EC nodes having direct connection with IoT devices. A number of challenges should 

be met before we conclude a fully automated ecosystem where nodes can cooperate or understand 

their status to efficiently serve applications. In this paper, we perform a survey of the relevant 

research activities towards the vision of Edge Mesh (EM), i.e., a ‘cover’ of intelligence upon the EC. 

We present the necessary hardware and discuss research outcomes in every aspect of EC/EM nodes 

functioning. We present technologies and theories adopted for data, tasks and resource 

management while discussing how machine learning and optimization can be adopted in the domain  
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1. Introduction 

Nowadays, we are witnessing the huge evolution of the Internet of Things (IoT) that incorporates 

numerous devices interconnected into the same infrastructure [84]. This vast infrastructure gives 

the opportunity to build/support novel applications in close distance with end users. It is estimated 

that the potential impact of IoT will be close to $11.1 trillion by 2025 [88] exhibiting its value for all 

the stakeholders active in various application domains. IoT devices are in the position of interacting 

with end users and their environment to collect data and perform simple processing activities. IoT 

has evolved into a network of devices of all types and sizes, e.g., vehicles, smart phones, home 

appliances, toys, cameras, medical instruments and industrial systems [106]. Data or the outcome of 

any lightweight processing can be transferred through the adoption of wireless communications to 

other ‘peer’ devices or to the Cloud infrastructure where more advanced processing can take place. 

Such transfer of data is regulated by the appropriate models and protocols for sharing information 

and achieving the necessary detection, positioning and control.  

Researchers have focused on terms like ‘smart’ or ‘intelligent’ associated with IoT, however, it is not 
clearly defined what intelligence is in this context and who provides it. Such questions motivated the 



research community to study the data-centric IoT, data mining in IoT, the interaction of Artificial 

Intelligent (AI) with IoT etc. The majority of the current IoT systems build on a centralized entity 

(e.g., a server), usually place at the Cloud infrastructure, for achieving their computational targets. 

Low-level IoT devices are used only for sensing purposes and the collection of data while the final 

decision-making is performed by the central entity. IoT enables innovation upon a vast infrastructure 

that involves numerous sensors and devices (e.g., wearables) able to interact with their environment 

and users. The adoption of AI in IoT facilitates the proposed systems to be autonomous and react in 

the ambient contextual information. For instance, those systems can be predictive and capable of 

selecting the appropriate line of actions to efficiently support applications for end users. In the 

future, AI and IoT will be inseparable as AI applications will open up the room for concluding smarter 

applications than before to impact various domains like manufacturing, retail, healthcare, 

telecommunication, transportation, etc. The strength of the AI is that enhances applications with 

intelligence and combined the orientation of the IoT, i.e., to support the connection of numerous 

devices, will lead to a new world of fully autonomous systems.  

The forthcoming emergence of the Internet over Everything (IoE) [91] will extend the capabilities of 

the ‘legacy’ IoT, the number of devices and the volumes of data. This explosion will be driven by the 

evolution of 5G technology, advances in the Cloud infrastructure, the extended use of social media, 

advances in mobile computing and the new trends of data science. It becomes obvious that such an 

evolution will impose new requirements related to the storage of huge volumes of data as well as 

the management of numerous devices. Eventually, the aforementioned centralized model will be 

affected by the bottleneck in the processing of the collected data that will increase the latency in the 

provision of responses as well as by the need for an increased bandwidth. Additionally, Cloud may 

face accessibility challenges, e.g., unstable connections between Cloud and IoT devices. In any case, 

these problems negatively affect the performance of real-time applications where latency is critical.  

It becomes obvious that IoT devices are, usually, lightweight nodes with constrained resources, thus, 

no advanced processing can take place on them. Consequently, data and the ‘light’ local knowledge 
should be transferred to Cloud where increased computational resources are present. However, the 

transfer of huge volumes of data in the network can have negative effects on the scalability aspect 

and the required bandwidth [39]. Edge Computing (EC) comes into scene to limit the amount of data 

transported back to the Cloud [100]. EC provides an intermediate infrastructure upon the IoT and 

below the Cloud that can support services towards reducing the latency in the provision of 

responses to end users. If we build novel services at the EC, we can limit the connectivity cost and 

add a layer for storage and processing. Currently, the majority of the collected data in the IoT 

infrastructure are not used even they could contribute in the production of new knowledge. 

Considering EC to rely at the middle between the IoT and the Cloud creates multiple challenges. The 

first challenge deals with interoperability issues, i.e., we need a novel approach to ‘aggregate’ data 
coming from various devices. Additionally, we need advanced methodologies and algorithms for the 

management of data, EC nodes, IoT devices and so on and so forth.  

Currently, we are at the early stages of far-reaching and consequential EC revolution to prepare the 

aforementioned infrastructure for the new, modern, Edge Mesh (EM). EM provides a ‘virtual’ layer 
(a computational/processing overlay) that enables the cooperation between EC nodes of different 

types to conclude a cooperative infrastructure close to end users [118]. Operators can/should/will 

open the EC to third-parties, allowing them to rapidly deploy innovative applications and content 

towards mobile subscribers, enterprisers, and other vertical segments [37]. As things stand today, 

‘there is no edge’ and ‘if there is, everything is centralized’, Karri Kuoppamaki, VP of T-Mobile US 

said1. In the near future, with the advent of 5G networks, we will be surrounded by a high number of 

network ‘hubs’ moving from 4G macrocells to 5G microcells. The future networks may be as 

ubiquitous as electricity networks while their capacity is exploding to ‘host’ and process all the data 
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reported by IoT devices, thus, giving the opportunity for ‘tiered’ data management and limited 
latency.  

The EM gives the opportunity to build innovative applications upon the so-called Edge Intelligence 

(EI). EI refers to the EC/EM infrastructure where a set of connected systems and devices can be 

utilized to cooperatively collect, cache, process and analyze data adopting AI technologies [145]. EI 

provides the following advantages [110]: (a) it improves time-to-action and reduces latency down to 

milliseconds; (b) it minimizes the bandwidth of the network; (c) it can easily allow greater control 

over the generated data. EI can provide various means for data processing at different stages (e.g., 

pre-processing, post-processing) and their protection in terms of privacy and security. Example 

applications of EI can be: (i) development of wearable cognitive assistance for recognition tasks in a 

cloudlet [50]; (ii) development of constrained AI models on smartphones for activity recognition 

[72]; (iii) development of AI models for recognition tasks on wearables [113] and embedded devices 

[71]; (iv) computer vision applications for commercial aerial unmanned vehicles [110]; (v) face 

recognition through the ‘cooperation’ of smartphones and edge servers [149]. The estimation is that 

EI will be at the core of the processing performed at 6G networks where intelligence should be 

provided upon small cells [107].  

EC and EM are organically connected (see Figure 1) as the presence of both should be realized in 

order to support intelligence and innovative applications at the edge of the network. EC provides the 

necessary infrastructure upon which the EM functionalities will open up the pathway for applying AI 

algorithms, i.e., EI, and pursue the best possible performance. In the new era of EC/EM, multiple 

research questions should be answered like the following: How to define the network and 

computing model? How to manage/distribute data processing? How to jointly optimize 

computation? etc. Currently, the distributed processing can be realized in the available EC nodes, 

however, these nodes are heterogeneous, resource-constraint (compared to the Cloud), and have 

direct communication with a high number of IoT devices. In particular, EC nodes are characterized by 

diverse computational resources, runtime environments and hardware equipment [155]. The 

discussed heterogeneity makes difficult the orchestration of nodes and the adoption of cooperative 

approaches to process the desired tasks. According to [155], the unique technical challenges related 

to the heterogeneity of EC nodes are: (i) applications cannot manage nodes in a fully controlled 

manner; (ii) the degree of heterogeneity in EC is much more significant than systems present at the 

Cloud (there, it is assumed the presence of homogeneous architecture or tasks); (iii) existing 

resource management techniques should be re-designed to deal with the discussed heterogeneity. 

 

Figure 1 The connection between EC and EM 



Other open research issues like the reliability, fault tolerance, Quality of Service (QoS) management, 

security and privacy etc should also be considered. QoS is a significant metric that depicts the degree 

of satisfaction of various performance criteria and is classified into the following categories [150]: 

connectivity, reliability, capacity (or network bandwidth), and delay. An example of QoS 

management and, more specifically, capacity management is provided by [54] where the authors 

propose a model for administrating QoS over virtualized resources. The motivation behind the work 

is that containers exhibit a weakness in the control of network bandwidth for outbound traffic. 

Security is also a concern especially if we consider that a high number of devices are spread in the EC 

infrastructure. Problems may arise upon this distributed approach where data and devices are 

located far away from companies’ premises. Every device may be a potential vulnerable endpoint 
where advanced security and privacy models should be invoked. In general, EC nodes are not 

designed having security at the core point of research. Hence, any gaps or risks should be managed 

in the most efficient way in order to avoid jeopardizing the stability of the entire network.  

Machine Learning & Deep Learning (ML/DL) and optimization techniques can assist in many aspects 

for the provision of the appropriate services that will give a boost to the performance of applications 

with positive impact in end users activities. ML/DL can setup the basis for covering multiple axes of 

the EC/EM functioning. Nodes placed at the EC/EM can have a ‘logical’ connection over the physical 
infrastructure adopting distributed intelligence to conclude a fully automated framework close to 

IoT devices, thus, to end users. In the intelligent EM, we need a type of ‘cooperative computing’ for 
handling the unbalanced computation distribution and lead to better usage of resources, reduced 

latency and better services as nodes cooperate with each other. 

This survey targets to expose the current efforts in creating the new form of the EC, i.e., the EM. We 

focus on the EC, instead of Fog Computing (FC), due to its limited distance with the IoT devices and, 

thus, end users. Before the data are transferred to the Cloud back end, they can be the subject of 

various processing activities to apply EI close to their sources. Obviously, this EC/EM approach can 

provide the infrastructure and the intelligent cover to support innovative applications. EC nodes can 

become the host of distributed datasets and intelligent algorithms towards the provision of the 

aforementioned applications. Our focus is on the creation of the necessary intelligence to realize an 

ecosystem of autonomous devices in the EC. The axes of this study are as follows: (i) the necessary 

hardware to support the envisioned processing; (ii) the ML/DL and optimization models adopted for 

realizing the EM; (iii) models for data management at the EC; (iv) tasks management at the EM; (v) 

autonomous nodes management. We depart from other surveys and focus only on the 

aforementioned axes. Actually, we provide a survey on the necessary technologies to support 

intelligence in the EC/EM starting from the hardware and elaborating on the adoption of smart 

models for the management of the contextual data related to nodes participating in the EC/EM. 

Other similar efforts in the domain focus on different approaches when performing their review of 

the relevant efforts. In [145], the authors elaborate on edge caching, the training of intelligent 

models, models compression & inference acceleration and edge offloading. The authors of [147] 

report on a survey on federated learning, i.e., its architecture and applications. In [136], the subject 

is on training and inference of ML/DL models as in [145], while in [92], the training of ML/DL models 

is studied through the adoption of a cooperative approach between edge devices and edge servers. 

The survey of big data analytics adopting ML/DL approaches is the subject of [92] and the use of 

ML/DL in Wireless networks (e.g., spectrum resource allocation) is studied in [154]. The overlapping 

of our work with past efforts can be detected only in the study of the task offloading actions, 

however, we consider the problem in a generic way instead of focusing to the offloading of 

inference models like other surveys do. We do not focus on ‘low’ level information putting our 
efforts in the discussion of the challenges, open issues and the algorithms/models proposed to 

process data, tasks and nodes at the EC/EM. We try to reveal to the interested readers the minimum 

setup and the required technologies for supporting an intelligent EC/EM and innovative applications. 

Through this approach, we pay attention on the creation of the EC/EM ecosystem where numerous 

smart nodes can communicate each other, with the Cloud and with the IoT infrastructure to deliver 



novel applications. We devote a separate section for each axis and provide a description of the 

relevant efforts in each sub-field. Our aim is to expose the progress related to the management of 

the aforementioned ‘logical’ layer that covers the EC physical infrastructure. Finally, we conclude our 

paper by giving some future directions. 

 

2. Edge Computing and Internet of Things 

2.1 A Layered Architecture 

Figure 2 (retrieved from [21]) shows the generic architecture of the layered approach moving from 

the IoT infrastructure to the Cloud datacenters. At every layer, a high number of devices can be 

present capable of supporting the envisioned processing of the collected data and offering a wide 

set of services. EC relies upon the IoT infrastructure and refers to the data processing that happens 

close to where data are collected/produced, i.e. ‘at the edge’ of the IoT network. Both EC and IoT 

are a perfect match exposing their complementarity related to the collection, transfer and 

processing of data. EC nodes are located in a close distance with end users, thus, the latency in the 

provision of responses is limited. As a result, IoT devices are no longer dependent on the connection 

with the network resulting an autonomous infrastructure. In any case, EC nodes cannot quickly and 

efficiently perform the processing demanded by complex and computational intensive applications 

compared to Cloud due to their limit capabilities. For instance, it will not be efficient to train a huge 

DL neural network upon large volumes of data and expect the outcome in limited time. EC is mainly 

adopted to perform processing activities that can be concluded in (near) real time in order to meet 

the challenges of data streams processing and the immediate provision of responses to end users. 

Many times, EC is confused with FC [14]. The research community sees various definitions of EC and 

FC making us to allege that a consensus may be not present. For instance, in [17], FC is presented as 

a subset of the EC and multiple technologies, e.g., Micro Data Centers (MDC), Cloudlet, etc, may co-

exist and interact resulting the FC/EC infrastructure. In the aforementioned work, FC is considered as 

a platform that brings Cloud computing in close distance with end users. On the other hand, in [119], 

the authors state that EC and FC are the same. The FC/EC infrastructure is defined as a highly 

virtualized platform that offers computational resources, storage and control functionalities to 

connect end-users requests with the Cloud datacenters. In any case, FC exhibits the following 

differences when compared with EC [6], [95]: 

 FC is device independent and aware of the entire fog domain while EC is aware only for every 

device and a few services; 

 FC controls all devices in the domain while EC exhibits limited control; 

 FC extends Cloud as a continuum while EC is Cloud unaware; 

 FC supports for multiple IoT verticals while EC exhibits no IoT vertical awareness; 

 FC nodes are versatile and capable of performing a variety of functionalities while EC nodes are 

focused on device command and control; 

 FC supports end-to-end security while, in the EC, the security scope is limited to devices; 

 FC supports analytics from multiple devices while EC analytics are oriented to individual devices. 

Furthermore, Table 1 depicts a high level comparison by exposing the main differences/similarities 

between FC and EC [151]. 

Table 1 Comparison between FC and EC  

Attribute FC EC 

Devices Small scale with virtualization 

capabilities 

Small scale with virtualization 

capabilities 

Devices Location Dedicated/Edge Edge 

Resources Moderate Low/Moderate 



Distance form Users Moderate Low 

Availability  High Moderate 

Security Node oriented Infrastructure oriented 

Applications Decentralized / Hierarchical Distributed 

Latency Low Low 

Heterogeneity Support Yes No 

Mobility Support Yes Yes 

Real Time Applications Support Yes Yes 

Standards Yes Yes 

 

Both, EC and FC, try to keep the processing of data very close to the IoT infrastructure to speed up 

the provision of responses. The speed in data processing and the immediate provision of analytics 

are essential in many application domains but they are also the key for transforming industrial 

processes in many ways. The final target is to automate the industrial processing adopting control 

software, actuators and intelligent decision making.  

 

 

Figure 2 Edge-Fog-Cloud Architecture 

EC also provides a better alternative for the efficient management of computational resources 

compared to Cloud. This leaves the room for Cloud administrators to efficiently manage their 

resources as a set of functionalities are decoupled. The control of the resources is shifted from Cloud 

to the edge of the network creating a new layer of administration. Hence, we can place a number of 

management activities close to the source of data giving the opportunity to our systems to be 

aligned with the real time requirements for the provision of responses. A specific example is Edge 

Analytics [28] adopted by vendors like Intel2 or Cisco3 allowing the interested stakeholders to 

perform a set of pre-processing activities just after the reception of data. The significant aspect is 

that such an approach can be ‘distributed’ in the entire ecosystem of EC nodes opening up the path 
for high quality and novel services. EC nodes can be considered as points where distributed datasets 
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are formulated hosting any desired, however feasible, functionality. Consequently, we are enjoying, 

compared to Cloud, more storage, additional processing points, a fault tolerant approach and 

enhanced analytics capabilities as we can employ as many EC nodes as we desire.  

Additionally, in Cloud, processing is realized at the central datacenter with the response returning 

back to end users after its conclusion. This processing, usually, will not take too long (e.g., a couple 

of seconds for a high number of applications), however, in some cases, the provision of the final 

response could be jeopardized due to, e.g., a network glitch, weak network communications, a high 

distance between the receiver of the response and the datacenter [111]. It becomes obvious that 

the processing ‘pressure’ is taken away from the Cloud infrastructure, however, we have to secure 
the role of each framework. Cloud technologies face some accessibility challenges when providing 

services to end-users. An example concerns mobile clients who can move among different places, 

yet require Cloud services with minimum cost and limited response time. It becomes obvious that 

mobile communications can be heavily affected by problems in the communication channel. This, in 

a sequential order, can create severe problems in real-time applications where the latency is critical. 

Hence, the research community proposes the combination of EC/EM. i.e., the ecosystem of EC nodes 

enhanced with EI capabilities, for supporting such kind of applications. Several EC/EM technologies, 

originating in different backgrounds, have emerged to decrease latency and support the massive 

machine type of communication. However, there is an intense need to support the EC/EM nodes 

with intelligent services to overcome all the aforementioned challenges. 

 

2.2 Data & Processing Activities at the Layered Architecture  

In this layered architecture, EC nodes can formulate an ecosystem of processing points upon the 

collected data. As we have multiple locations where data can be stored, a significant research aspect 

is the opportunity to replicate data in multiple EC nodes and create a fully fault tolerant 

infrastructure. The following list reports on the advantages of replicating data in multiple distributed 

datasets at the EC as well as at the FC (as they exhibit similar characteristic in data storage): 

 Efficiency: It is not necessary to always access the ‘master’ data at the Cloud with positive 
impact on the performance of applications. 

 Low latency: If we have direct access on the local data, we can reduce the latency for accessing 

them in a distant location. 

 Fault tolerance: By distributing the data across multiple locations, we can easily support fault 

tolerance being able to recover from any disaster. However, this approach requires the efficient 

management of replicas and the adoption of mechanisms that manage possible redundancies. 

 Scalability: Complex processing can be distributed in multiple nodes to benefit from the 

‘collective’ power of the infrastructure. Recall that the available nodes can be provided by 
different vendors, thus, a powerful model for consistency and heterogeneity management as 

well as resilience is necessary.  

The EM virtually relies upon the EC ecosystem to overcome the disadvantages of the EC 

infrastructure, i.e., to facilitate the management of resources and tasks applying the necessary 

intelligence. It targets to a cooperative model where EC nodes can exchange data, tasks or 

knowledge in order to perform the desired processing. Eventually, EM acts as an overlay virtual 

network over EC nodes trying to overcome the problem of constrained resources through a 

collective intelligence approach. EM is proposed to deal with a computing paradigm that uses a 

mesh network of EC nodes to enable distributed decision-making, exchange of data and 

computation among the available nodes. This differs from the existing EC paradigm which usually 

considers EC nodes as ‘simple’ nodes responsible to collect and transmit data to the Cloud 

infrastructure. EM ‘imposes’ the idea of using EC nodes to enable distributed intelligence in IoT 
[114], i.e., the cooperation between autonomous entities, intermediate communication 



infrastructures (local networks, access networks, global networks) and/or Cloud systems to optimally 

support IoT communication and applications. 

Under this rationale, EC/EM and IoT can have a close cooperation to host business processes and 

support a strong computing paradigm for the future. If we apply intelligence in both, the EC/EM and 

IoT, we can easily go beyond the state of the art and support the autonomous behaviour of 

numerous nodes. The envisioned interconnection can be holistically realized either in the horizontal 

axis or in the vertical one. The vertical approach will refer in the communication between the IoT, 

the EC/EM, the FC and the Cloud. Hence, we will be able to integrate and distribute the processing 

activities and power in any direction at will. Eventually, this will lead to the optimization of the use of 

resources and the ability to dynamically react to end users dynamic requirements. For instance, we 

can easily control the data flow and the processing needs from one location to another. In any case, 

such an approach will open up the road for having third parties involved in the provision of advanced 

services in the discussed ecosystem. Businesses will find more opportunities to expand their 

portfolios or invest on new services that will increase their revenues and the quality of their 

products.  

Finally, Multi-access Edge Computing (MEC), formerly mobile edge computing, is an emerging 5G 

network edge-cloud architecture. MEC enables data processing at the edge of a cellular network 

where data are generated. This architecture reduces the latency in the provision of responses to 

various requests and brings real-time performance to demanding applications (e.g., applications 

demanding for a high bandwidth). Such applications include video analytics and video streaming4,5 

[80], [115], [120], augmented-virtual reality [2], [27], [127], [87], [55] and autonomous connected 

vehicles [15], [42], [146], [94].  

 

2.3 Technologies for the EC/EM 

Currently, there is a number of companies providing EC/EM services. For instance, Foghorn6, Swim7, 

Juniper8, Crosser9, Mutable10, AlefEdge11, CLearBlade12, SSAS13, Eurotech14, Edge Intelligence15 and 

many others support ML algorithms and analytics for EC/EM. Additional companies like Zededa16, 

Edgeworx17, Affirmed Networks18, Ori19, Packet20, EdgeConneX21 offer virtualization and 

orchestration services for EC. Of course the lists are not exhaustive but they just present indicative 

examples. The aim of all these companies is to have their services interacting with IoT and Cloud 

while applying specific algorithms and models upon the collected data. They become the first point 

of expansion for companies working at the provision of IoT platforms. Example companies are: 
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Software22, QIO23, Altizon24, IBM25, Litmus Automation26, Exosite27, Oracle28, Atos29. Dell is the leader 

of the EdgeX open source project for edge computing30. Eurotech offers Everywhere Software 

Framework31 for building edge computing applications. ADLINK develops Vortex Edge32 and Vortex 

DDS33 to facilitate the deployment of software on edge gateways.  

The aforementioned solutions target to facilitate the incorporation of IoT devices and the collected 

data to the infrastructure present at higher layers. These solutions try to offer to customers an 

integrated approach that includes device to edge, then, to Cloud. The deployment of any software or 

hardware will be facilitated due to the automatic detection of the requirements and the inclusion of 

advanced software to realize it. Significant Key Performance Indicators (KPIs) deal with the time 

required to perform any action (e.g., the provision of analytics, the conclusion of the incorporation 

of any devices) as well as the quality of the final outcome. The challenge here deals with the 

heterogeneity of products that have to be integrated and communicated in short time. For this, the 

appropriate APIs and protocols should be implemented together with the necessary wrappers. 

Already present models (i.e., APIs and protocols offered by Cloud providers) should be also adopted 

to secure the smooth integration of novel solutions. Example solutions are the initiatives of 

Amazon34, Microsoft35 and Google36. The aforementioned companies propose edge solutions 

connected with their respective IoT platform. Additionally, the majority of the IoT platform vendors 

(some example are already given above) are also proposing their own edge solutions to expand their 

portfolio. All of them target to expose a holistic, bottom up, approach to, finally, be able to support 

intelligent analytics upon the collected data. Of special attention is to facilitate the execution of 

advanced ML algorithms over huge volumes of data. 

Apart from commercial products, one can detect an increased number of efforts to provide open 

source tools. Such tools avoid the direct connection with a specific vendor, i.e., they offer solutions 

to avoid the vendor lock-in problem. However, this does not mean that the above discussed 

companies do not provide open source tools (e.g., IBM). Some open source initiatives are as follows 

(the list is not exhaustive). 

LF Edge Community37 is an umbrella organization that aims to establish an open, interoperable 

framework for edge computing independent of hardware, silicon, Cloud, or operating system. The 

community brings together leaders in the relevant industry and aims to create a common framework 

for hardware and software standards. Additionally, it aims to expose the best practices that are 

significant to sustain current and future generations of IoT and edge devices. The community fosters 

collaboration and innovation across the multiple industries, i.e., industrial manufacturing, cities and 

government, energy, transportation, retail, home and building automation, automotive, logistics and 

health care — all of which stand to be transformed by edge computing. A high number of companies 

active in the EC/EM domain are members of the effort (see https://www.lfedge.org/members/).  
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Akraino Edge Stack38 is a set of open infrastructures and application blueprints for the EC, spanning 

a broad variety of use cases, including 5G, AI, Edge IaaS/PaaS, IoT, for both provider and enterprise 

edge domains. These blueprints are proposed by the Akraino community (part of the LF Edge) and 

focus exclusively on the edge in all of its different forms. Hence, the community tries to setup the 

basis for defining blueprints for all the aspects of the edge infrastructure. The connection between 

the blueprints is secured by the community and the testing procedures to deliver solutions that can 

be adopted as-is.  

Eclipse ioFog Project39 is a complete edge computing platform that provides all of the pieces needed 

to build and run applications at the edge at enterprise scale. The project provides abstractions to 

manage the diversity and complexity of edge hardware. Hence, a ‘cover’ of software is adopted to 

support the necessary functionalities to avoid problems related with the underlying heterogeneity of 

devices and software. The project also targets to the management and orchestration of edge 

microservices performed by the dedicated ioFog Controller and its supporting set of components. 

The OSF Edge Computing Group40 targets to define infrastructure systems required to support 

applications distributed over a broad geographic area, with potentially thousands of sites, located as 

close as possible to discrete data sources, physical elements or end users. All these applications can 

communicate over wireless communications. Another goal of the group is to detect use cases, 

develop requirements, and produce viable architecture options for evaluating new and existing 

solutions, across different industries and global constituencies, to enable development activities for 

Open Infrastructure and other Open Source community projects to support EC use cases. 

StarlingX41 is a complete Cloud infrastructure software stack for the edge used by the most 

demanding applications in industrial IoT, telecom, video delivery and other ultra-low latency use 

cases. The approach proposed by the StarlingX is oriented around the provision of a container-based 

infrastructure for edge implementations in scalable solutions that is ready for production. The focus 

is on easy deployments, low touch manageability, rapid response to events and fast recovery. The 

solution is tested and released as a complete stack, thus, it ensures the compatibility among diverse 

open source components.  

CORD (Central Office Re-architected as a Datacenter) 42 is a project that intents the transformation 

of EC into an Agile service delivery platform enabling the operator to deliver the best end-user 

experience along with innovative next-generation services. The proposed platform builds upon 

Software Defined Networks (SDNs), Network Functions Virtualization (NFV) and Cloud technologies 

to build agile datacenters for the network edge. Integrating multiple open source projects, CORD 

delivers a cloud-native, open, programmable, Agile platform for network operators to create 

innovative services. 

EdgeX Foundry43 is a vendor-neutral open source project hosted by the Linux Foundation and builds 

a common open framework for IoT edge computing. The main focus of the project is the provision of 

an interoperability framework hosted within a full hardware and OS-agnostic reference software 

platform to enable an ecosystem of plug-and-play components that unifies the marketplace and 

accelerates the deployment of IoT solutions. 

KubeEdge44 is an open source system for extending native containerized application orchestration 

capabilities to hosts at Edge. It adopts Kubernetes45 (an open-source system for automating 
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deployment, scaling, and management of containerized applications) and provides a fundamental 

infrastructure support for network, application deployment and metadata synchronization between 

Cloud and edge. KubeEdge is licensed under Apache 2.0 and free for personal or commercial use.  

Table 2 & Table 3 summarize the main characteristics of the above described technologies. 
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Foghorn
6
 √ √ √ √     √  

Swim
7
 √  √      √  

Juniper
8
 √    √ √   √  

Crosser
9
 √   √   √    

Mutable
10

 √  √    √    

AlefEdge
11

 √  √     √   

CLearBlade
12

 √ √       √  

SSAS
13

 √  √ √     √  

Eurotech
14

 √  √        

Edge Intelligence
15

  √ √ √  √   √  

Zededa
16

 √  √ √     √ √ 

Edgeworx
17

 √ √ √       √ 

Affirmed 

Networks
18

 
√ √ √    √   √ 

Ori
19

 √      √ √  √ 

Packet
20

   √   √    √ 

EdgeConneX
21

   √    √   √ 

 

Table 3 Open source tools characteristics 
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Indicative partners  

(not an exhaustive list) 

Akraino Edge 

Stack
38

 
Linux  IaaS IoT, EC, MEC √ √ Arm, HP, Huawei, IBM, Intel, Tencent 

Eclipse ioFog 

Project
39

 
Eclipse  PaaS IoT, EC  √ Edgeworx 

StarlingX
41

 OpenStack  IaaS IoT, EC, MEC √  
China Telecom-Unicom, Dell, SUSE, 

Tencent, Ubuntu 

CORD
42

 Linux  IaaS EC, MEC √  
AT&T, China Unicom, Edge-core, Google, 

Intel, NTT 

EdgeX 

Foundry
43

 
Linux  PaaS IoT  √ Dell, HP, IBM, Intel, Ubuntu, wipro 

KubeEdge
44

 Linux  PaaS EC √  
Amazon, Apple, Alibaba, Microsoft, 

Huawei, Cisco, Google   

 

2.4 Intelligence at the Edge of the Network 



The development of intelligent applications in IoT has gained significant attention in recent years. 

Smart devices/sensors can be interconnected each other or with the back end systems to enable 

various services in multiple domains. Several intelligent technologies have emerged to ensure the 

proper functioning of IoT devices and their incorporation into the above discussed ecosystem. For 

instance, the efficient management of software updates of IoT devices aiming at the minimization of 

the conclusion time and the maximization of their and network’s performance is the subject of some 

recent studies [62], [63], [68]. Cloud provides many benefits to the IoT infrastructure, e.g., high-

performance computing, storage resources, processing and analysis of huge volumes of data. Hence, 

the IoT can be robust, smart and self-configuring. The forthcoming IoE will extend the capabilities of 

the ‘legacy’ IoT focusing on the intelligent communication between people, process, data and things 

[6]. Based on the above, we can easily identify the need for transformation of the interactions 

between all these ‘entities’ leading to new types of communications like Machine to Machine 

(M2M) and Person to Machine (P2M). In this new environment, we can detect new requirements 

for concluding an intelligent ecosystem, e.g., (i) advanced models for devices management; (ii) 

intelligent schemes for supporting communications; (iii) smart frameworks for the management, 

processing and storage of humongous volumes of heterogeneous data generated at the network 

edges.  

IoT devices will, now, communicate with EC nodes in short distance relying on them to enjoy 

advanced services and efficiently serve end users. This means that EC nodes should ‘convey’ the 
necessary knowledge, processing and decision making mechanisms to serve IoT devices and the 

Cloud infrastructure. In any case, EC/EM technologies face various challenges and open research 

issues. The following paragraphs report on a set of challenges that are critical for the transformation 

and the delivery of the new EC/EM.  

The future intelligent EC/EM (coined here as the ‘new edge’) will involve numerous autonomous 

entities capable of understanding their status, the status of the environment and their peers taking 

actions on the fly to efficiently serve the desired applications. This ecosystem targets to secure the 

efficient execution of any application learning how to: behave, collaborate, exchange data and tasks, 

process data and tasks, forecast abnormal situations, select the best strategy to work, react in 

potential errors or demands in an autonomous manner. It is the appropriate time to provide AI-

enhanced autonomous entities at the edge of the network that future applications demand. We 

have to combine and adapt already present solutions, currently lying isolated, together with new 

models, algorithms, methods and technologies to holistically target to autonomous entities capable 

of efficiently serving end users & applications. Apart from the latency minimization (a pivotal aspect 

in provision of real time services), we should also deal with the QoS and, more importantly, the 

Quality of Experience (QoE). Future applications will take seriously into consideration the latency 

combined with the efficiency and the quality of the delivered services. It is not enough to deal only 

with the latency but QoS and QoE should be also taken into consideration at the same time. Various 

KPIs will be adopted to depict QoS and QoE, thus, intelligent monitoring modules should be created 

to decide upon these KPIs. Decisions will be related to the configuration, the cooperation and, in 

general, the management of EC/EM nodes. KPIs will cover all the aspects of EC/EM nodes 

functioning being related to the performance of the network, users’ satisfaction and potential 
overheads associated with deployment/migration/replication of the required processing tasks and 

data. An efficient edge infrastructure is the key challenge for the envisioned IoT applications; it is 

critical with the growing demand for energy-hungry applications, such as video streaming, 

Augmented Reality (AR) and 3D gaming. 

 

3. Hardware Requirements 

EC/EM functionalities are provided upon the relevant hardware to perform the desired processing or 

communication. A survey on ‘low’ level characteristics of the necessary hardware is presented in 

[22]. In this section, we perform a ‘high’ level review with limited technicalities to setup the basis for 



understanding what we need to efficiently support EC/EM and deploy solutions from the hardware 

perspective. Table 4 reports on the comparative assessment of a list of representative hardware. 

The difference of the EC/EM (compared to Cloud) is that it is distributed across a high number of 

devices in different locations. This adds a burden on the connection with all the appropriate devices 

together with their configuration and management. Additional requirements deal with the data 

present at the distributed locations, e.g., there should be an efficient storage mechanism across 

different devices, advanced replication and consistency checking models as well as efficient 

strategies for baking up the available data. In any case, a strong scheme for implementing the 

coordination with the Cloud back end for data management could increase the performance and 

assist in solving the aforementioned problems. However, the EC/EM hardware infrastructure should 

be efficiently connected with the Cloud ‘premises’ to facilitate the easy communication between the 
two frameworks when executing the proposed algorithms/models. 

The first key component of EC/EM is the communication support. EC/EM should support the 

connection with the IoT devices (e.g., sensors, actuators) based on already proposed technologies 

and protocols. The most common protocols for communication are as follows: Bluetooth46, ONVIF47, 

Z-Wave48, ZigBee49, LoRa50, KNX51, Siemens S752, HomeConnect53, Modbus54, EnOcean55, BACnet56, 

OPC57. Apart from that, EC/EM nodes should support data and device management protocols like 

MQTT58, CoAP59, AMQP60, Websockets61, TR-06962, OMA-DM63. This way, IoT devices will be 

facilitated to transfer data in an upwards mode and cooperate in processing activities.  

The processing at the EC/EM can be performed by dedicated hardware in various forms, e.g., 

gateways, routers, microservers, etc (see Figure 3). Currently, various companies propose the use of 

a set of high quality hardware with small size, however, with increased computational resources. 

The aim is to efficiently support advanced processing at the edge of the network upon the large 

scale data streams. The first example deals with the Graphical Processing Unit (GPU) [105]. A GPU is 

a chip dedicated to perform advanced calculations very quickly. Usually, GPUs are adopted for 

rendering images alleviating the main processor from these activities. For instance, NVIDIA offers 

multiple solutions for incorporating GPUs in other devices64.  

Field Programmable Gate Arrays (FPGAs)65 are semiconductors IC where the majority of the 

electrical functionality in the device can be altered by the design engineer, during the PCB assembly 

process, or after the adoption of the equipment. FPGAs offer many advantages like reducing the 

latency in the computation, they can be directly connected to inputs and offer a high bandwidth. 

FPGAs exhibit worse compatibility than the GPUs, however, they require limited programming skills.  
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Coral Edge TPUs66 are the proposal of Google for edge computing. More specifically, the Dev Board 

is a single-board computer that is ideal for performing fast ML/DL inferencing. TPUs/Dev Boards can 

be adopted to prototype embedded systems and scale them to production using the on-board Coral 

System-on-Module (SoM) combined with a custom PCB hardware. The Edge TPU coprocessor is 

capable of performing 4 trillion operations (tera-operations) per second (TOPS), using 0.5 watts for 

each TOPS (2 TOPS per watt).  

The EGX Edge Computing Platform67 is proposed by NVIDIA to deliver accelerated AI computing to 

the edge with an easy-to-deploy Cloud native software stack, a range of validated servers and 

devices, and a vast ecosystem of partners who offer EGX through their products and services. The 

EGX hardware portfolio starts with the power-efficient NVIDIA Jetson Family, which includes the 

small but mighty Jetson Nano and Xavier NX providing between 0.5 to 21 trillion operations per 

second (TOPS) for tasks such as image recognition and sensor fusion. Additionally, the hardware 

scales to a full rack of NVIDIA T4 servers, delivering more than 10,000 TOPS to serve hundreds of 

users with real-time speech recognition and other complex AI experiences. 

The Raspberry Pi68 is a series of small single-board computers to, initially, promote teaching of basic 

Computer Science. It is widely used in applications developed for various research domains because 

of its low cost and portability. Several implementations of Raspberry Pis have been released so far. 

Pis feature a Broadcom System on a chip (SoC) with an integrated ARM-compatible CPU and on-chip 

GPU. CPU speed ranges from 700 MHz to 1.4 GHz for the Pi 3 Model B+ or 1.5 GHz for the Pi 4; on-

board memory ranges from 256 MB to 1 GB random-access memory (RAM), with up to 8 GB 

available on the Pi 4. Secure Digital (SD) cards in MicroSDHC form factor (SDHC on early models) are 

used to store the operating system and program memory. 

Micro servers can be also adopted for hosting the collected data and performing the desired 

processing for delivering analytics. According to [93], the micro server market was valued at USD 

39.71 billion in 2019 and is expected to reach USD 67 billion by 2025, at a CAGR of 9.11% over the 

forecast period 2020 - 2025. This growth will be driven by the expansion of EC/EM and the 

applications it hosts. The market will be enhanced by the adoption of M2M learning and IoT-enabled 

devices that create the need for more advanced services. Micro servers will be able to host services 

related to the management of huge volumes of structured and unstructured data or trivial 

workloads. The presence of a pre-installed operating system in micro servers will facilitate the 

deployment of new services and expose the infrastructure to small and medium size enterprises. 

However, the lack of standardization requires more intensive efforts towards the easiness of the 

integration of multiple heterogeneous models and algorithms.  

 

Table 4 AI & ML solutions comparison
69

 

 NVIDIA® Jetson™ TX270
 TPU Dev Board

71
 Raspberry Pi

72
 

AI Accelerator 256 CUDA Maxwell Cores EDGE TPU K210 (Extra) 
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Kit size 87 mm x 50 mm 88 mm x 60 mm x 22 mm 85.6mm × 56.5mm 

SOM size 69.6 mm x 45 mm 48 mm x 40 mm x 5 mm 55 mm × 40 mm × 4.5mm 

Operating 

System 
Ubuntu Debian Raspberry Pi OS (Debian) 

GPU 
NVIDIA with 256 NVIDIA CUDA 

cores 1.3 TFLOPS (FP16) 

Integrated GC7000 Lite 

Graphics 

Broadcom VideoCore VI (32-

bit) 

CPU 

Dual-core Denver 2 64-bit CPU 

and quad-core ARM A57 

complex 

NXP i.MX 8M SoC (quad 

Cortex-A53, Cortex-M4F) 

Quad-core ARM Cortex-A72 

64-bit @ 1.5 Ghz 

Memory 
8 GB 128-bit LPDDR4 

1866MHz - 59.7 GB/s 
4 GB LPDDR4 4-8 GB LPDDR4 

Storage 32 GB eMMC 5.1 8 GB eMMC, MicroSD slot 8 GB eMMC, MicroSD slot 

Video encode H.264/H.265 (4Kp30)     4Kp60 HEVC/H.265 
H.264/H.265 (4Kp60, 2x 

4Kp30) 

Video decode 
H.265(4Kp60), 

H.264(1080p60) 

4Kp60 VP9  

4Kp30 AVC/H.264 1080p60 

MPEG-2, MPEG-4p2 

VC-1, VP8, RV9, AVS, MJPEG 

H.263 

H264(1080p30) 

Wi-Fi √ √ √ 

LAN √ √ √ 

Bluetooth  √ √ 

Audio  √ √ 

USB3 √ √ √ 

Camera √ √ √ 

Display HDMI 2.0 HDMI 2.0 micro-HDMI 

Average Cost ($) ~450 ~150 ~70 

 

 

4. (Deep) Machine Learning Models 

Machine Learning (ML) refers to the process that a machine has to go through in order to learn a 

certain behavior and then recognize it, replicate it, or predict new ones without needing to be 

explicitly programmed on how to do that. ML algorithms receive a considerable amount of data from 

which they try to extract information. The extraction, also known as training of the algorithm, 

involves the use of mathematical models or mechanisms that focus on eliminating the errors made 

by the final model. Some algorithms take into consideration statistics about the dataset to produce 

the final model, whereas others start with a guess and improve the model incrementally as they 

process each of the provided dataset’s entries. Traditional ML methods are not computationally 

efficient or scalable enough to handle both the characteristics of big data (e.g., large volumes, high 

speeds, varying types, low value density, incompleteness) and uncertainty [41]. In this Section, we 

present ‘traditional’ ML models together with DL approaches to have a complete view on the types 

of algorithms that can be adopted to support intelligent applications at the EC/EM.  
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Figure 3. Hardware examples per processing category 
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 Machine Learning Models 4.1.

There are various types of machine learning algorithms, such as supervised, unsupervised, and semi-

supervised learning, reinforcement learning, feature learning and association rules algorithms. 

4.1.1 Supervised Learning 

Supervised learning algorithms take as input a training dataset whose every entry consists of a 

vector of features along with a target value or label. Based on the dataset, a mathematical model is 

built that works as follows; when receiving as input the feature values of an instance of the dataset, 

it attempts to produce the corresponding value or label. In essence, a function is created that 

receives as input the values for specific features and produces a value or decision as its output. The 

discussed function’s error rate has been minimized to be congruous to the training dataset. 
Supervised learning can be performed with regression and classification algorithms. 

A linear regression algorithm models the target value of the training dataset as the linear 

combination of its features that predicts an output value based on the input feature values. More 

specifically, every feature is assigned a coefficient and there is also a bias, such that                             , where   represents the target value of an 

instance,   is a vector containing the features of the instance,   is the vector containing the 

coefficients corresponding to the features   and   is the bias. The problem is finding the right 

coefficients and bias that result in the most accurate predictions of the output value given the input 

values; this is achieved by minimizing the Mean Squared Error (MSE) of the predicted values against 

the true values of the dataset instances. 

Classification, on the other hand, is the process of categorizing an instance of data to the most 

appropriate of a number of available classes. Classification can be performed after the training of a 

Support Vector Machine (SVM), a logistic regression classifier, a Naïve Bayes classifier, a decision 
tree, a k-nearest neighbours algorithm, a neural network, or other algorithms. Support vector 

machines depict all the instances of a training dataset in a multi-dimensional space and then try to 

create one or more hyperplanes that divide the instances into the two or more separate classes. A 

Naïve Bayes classifier depends on the Bayes theorem, i.e.,  ( | )   ( | ) ( ) ( ) , to predict the class 

label of an instance. In particular, the application of the Bayes theorem is the following:  (  | )   ( |  ) (  ) ( ) , meaning that the probability of an instance’s class to be    given that the feature vector 

is   is equal to the probability of the feature vector   occurring in class    multiplied by the 

probability of an instance belonging to class    and divided by the probability of an instance being 

described by the feature vector  . A decision tree is created from the root all the way down to the 

leaves by dividing the dataset based on the criteria that divide it most efficiently; all leaves are 

affiliated with a class and when a prediction needs to be made an instance starting from the root 

follows the path to the appropriate leaf based on its feature values and node rules. The k-nearest 

neighbours (k-NN) algorithm predicts an instance’s class by taking into consideration its k (specified) 
closest neighbours in the multi-dimensional space; the instance’s distance from all other instances of 
the training dataset is computed to choose the k nearest ones and come to a decision about its class. 

A logistic regression classifier works very similarly to the linear regression algorithm, with the only 

difference being that at the end it classifies the instance to a class based on the computed linear 

combination of the feature values. 

 

4.1.2 Unsupervised Learning 

Unsupervised learning, also known as self-organization, is a process which takes as input a dataset 

that is unlabelled and tries to discover its underlying structure. Unsupervised learning can be 

achieved through the use of clustering, anomaly detection and other algorithms. 



A clustering algorithm receives a set of unlabelled data and attempts to divide them into groups. 

Maybe the most well-known clustering algorithm, the k-Means clustering algorithm sets a specified 

number of cluster centroids based on random data entries and then classifies each of the rest of the 

data entries to the cluster whose centroid is closest to it. After all the entries have been classified, 

the cluster centroids are recomputed based on their members and all the data are classified once 

again. This process goes on until the cluster centroids become stable or a maximum number of 

iterations, also known as epochs, is reached. Hierarchical clustering attempts to form a hierarchy of 

clusters, and there are two different methods of achieving that: agglomerative or divisive 

hierarchical clustering. The former strategy constitutes a bottom-up approach; it begins with all of 

the data entries making up their own cluster and the hierarchy is created by the merge of pairs of 

clusters, until the top layer is reached where all clusters have been merged into one. The latter 

strategy is a top-down approach; in the beginning, all data entries make up a single cluster and the 

hierarchy is created by recursively splitting a cluster until all clusters contain only one entry. The 

resulting tree is depicted in a dendrogram. Cutting it at a specified height gives one the 

corresponding clusters. Another popular clustering algorithm is DBSCAN; it divides data points into 

clusters based on the density of the different groups of points. In particular, groups of data points 

that are close enough to a specified number of other points, along with any other points in their 

reach, form clusters; the rest of the points are classified as noise points. OPTICS is an algorithm that 

combines hierarchical clustering with density-based clustering. 

Anomaly detection involves the training of an algorithm to recognize a set of patterns or behaviours 

as normal and the rest as outliers. Anomalous items are also called novelties, deviations, noise, or 

exceptions. Density-based techniques, such as k-nearest neighbour, local outlier factor, and isolation 

forest are very popular in the literature; data points that are not members of high-concentration 

clusters, are by default anomalous. One-class SVMs are another option, seeing as they form a 

hyperplane that divides most of the data from the noise. In general, cluster analysis methods can 

also be used to perform outlier detection. Bayesian networks and Hidden Markov models, as well as, 

many more algorithms also provide solutions to the anomaly detection problem. 

 

4.1.3 Reinforcement Learning 

Reinforcement learning (RL) involves the existence of an environment and an agent. Unlike 

supervised learning, RL does not need a labelled dataset to train an agent; it rather attempts to find 

a balance between exploring the uncharted territory and exploiting the current knowledge. In 

particular, the environment has a state while the agent repeatedly takes actions in order to reach an 

objective. Every time the agent takes an action, the environment gives back a reward along with its 

next state; the reward reflects the agent’s progress towards its goal. This happens until the 
environment reaches a final state; either that the agent has achieved its objective or not. RL utilizes 

dynamic programming — breaking down a problem into sub-problems and recursively solving them 

— in combination with the Markov Decision Process (MDP), having the agent’s actions be dictated 
by the probability that they will lead to a successful outcome, all the while trying to maximize its 

cumulative reward. The aforementioned probability is determined by a policy that the agent 

employs and is dependent on the agent’s current state. Furthermore, a value is defined as the long-

term expected return of a state given a policy and a Q-value, also known as action-value, is defined 

as the long-term expected return of a state-action pair given a policy. 

The most well-known algorithm to implement RL is Q-learning, which is based on the Bellman 

equation [1] and gives no guarantee that a solution will be found. Applying the Bellman equation to 

the agent-environment system, we have:  ( )           (    )|      where  ( ) is the 

value of a state  ,      refers to the immediate reward,   is the discounting factor of future state 

values and   depicts the expectation. In the form of Q-value, the equation is transformed to   (   )                (     ) |    , where   (   ) is the action-value of a state-action 



pair. The goal is to find the optimal/maximum Q-value; Q-Learning uses a greedy policy to achieve 

that. Another algorithm is State-Action-Reward-State-Action (SARSA), which is quite similar to Q-

learning. Their difference is that SARSA computes the optimal Q-value given the action that is 

performed based on the current policy instead of the greedy policy. Lastly, the policy gradient 

method relies upon the optimization of the agent’s policy in relation to the long-term cumulative 

reward by performing gradient ascent, using the REINFORCE algorithm as well as the actor-critic 

architecture. This approach avoids the lack of guarantee of a value function, as well as, the 

complexity that the previous approach entails. 

 

4.1.4 Algorithms Categorization 

In Table 5, we provide a categorization of the above discussed algorithms and present their 

characteristics. For each category, we also provide representative models together with their 

implementation complexity and usage. 

Table 5 Machine Learning models 

ML Models Supervised Learning Unsupervised Learning Reinforcement Learning 

Type of data Labelled Unlabelled No predefined data 

Training  External supervision No supervision No supervision 

Complexity  Simple High High 

Usage Predict outcome/future by 

mapping labelled data inputs 

to known outputs 

Find hidden structure in 

data and discovers the 

output 

Learn series of actions 

using trial-and-error 

method 

Algorithms Regression 

 Logistic Regression 

 Decision Tree Regression 

 LASSO Regression 

 Ridge Regression 

 ElasticNet regression 

 

Classification 

 support-vector machine 

(SVM), 

 logistic regression 

classifier,  

 Naïve Bayes classifier,  
 decision tree,  

 k-nearest neighbors  

 Neural network 

Clustering 

 K-means clustering 

 Hierarchical clustering 

 DBSCAN 

 OPTICS 

 

 

Anomaly detection 

1. K-NN (k nearest 

neighbors) 

2. local outlier factor 

3. isolation forest 

4. One-class SVMs 

5. Bayesian networks  

6. Hidden Markov models 

 Q-learning 

 State-Action-Reward-

State-Action 

 QV 

 ACLA 

 

 

4.2 Deep Learning Models 

Another way to approach ML algorithms is to form topologies of nodes, also known as neurons that 

collaborate to achieve learning. Neural network algorithms are characterized as DL algorithms 

because they can model especially complex behaviours and patterns, in contrast to other models. 

Their setting enables them to delve deep into the available data and extract comprehensive and 

accurate knowledge. 

4.2.1 Supervised Learning 

Neural networks provide a more sophisticated approach to linear regression. In fact, neural 

networks have an input layer, an output layer, and a number of hidden layers; the input layer has as 

many nodes as the features of the dataset and the output layer has as many nodes as the output 



values we want to predict. Had there been no hidden layers, a neural network would seem like a 

simple linear regressor; now, the nodes of each layer receive as input the output of the previous 

layer and compute their own output which propagates in a forward direction until the outcomes of 

the output layer are computed. In the training phase, an instance’s prediction error is computed at 
the output layer and is gradually ‘back-propagated’ until all the layers’ weights and biases are 
optimized, each node optimizing its coefficients quite similarly to how a single linear regressor does. 

This kind of neural network is called a multi-layer adaptive linear element (MADALINE). 

Apart from the basic neural network manner of training, there are also the radial basis function 

(RBF) neural networks. A node in such a network behaves a lot like the k-NN algorithm, in that it 

receives as input the distance from a set of points in the multi-dimensional space. It essentially 

functions based on the idea that similar inputs produce similar output values. Another entirely 

different approach to neural networks is the one presented by convolutional neural networks 

(CNNs). In their case, the input has three (3) dimensions and usually represents the pixels of an 

image. One type of layer in CNNs consists of filters being convoluted with the output table of the 

previous layer. Pooling is another type of layer in CNNs; it produces a smaller table that condenses 

the contents of the previous layer’s output table. Furthermore, another layer may contain an 
activation function being applied to the previous layer’s output table. Lastly, a final set of layers is 
often fully connected, resembling a multi-perceptron layer. 

Neural network classifiers also work in a similar fashion to their regression counterparts; just like 

with the logistic regression algorithm, an activation function decides what class the input instance 

belongs to, based on the output value of the neural network. An appropriate activation function can 

also be applied to the output of any one node, before that is used for further computation in the 

next layer. Some activation functions are rectifier linear unit (ReLU), the hyperbolic tangent, the 

logistic/sigmoid function, the softplus function and more. 

All the previous networks can be either static or dynamic. Static networks depend only on the 

current input to the network to compute its output. In contrast, dynamic networks depend not only 

on the current input to the network but also on the network’s past inputs, outputs, or states. 
Dynamic networks contain delay lines that have a forward or backward (recurrent) direction or both. 

Therefore, the order in which the inputs enter the network can make a huge difference to the 

output. One of the most well-known recurrent networks is the long short-term memory (LSTM). 

 

4.2.2 Unsupervised Learning 

Neural network topologies have been designed to perform unsupervised learning. First off, auto 

encoders are neural networks that receive a set of data and (learn to) encode them without 

following a specific preprogramed algorithm. Their main advantage is their ability to perform 

efficient dimensionality reduction, keeping only the useful information and discarding of the rest. 

Deep belief networks are trained to reconstruct an input to their topology given an output result; 

they consist of visible and hidden units where the former represent the training dataset features and 

the latter an output vector. To train such a network, each of the layers serves as input to the other; 

the two vectors are computed back and forth until the weights are trained to turn information from 

one format to the other, quite similarly to auto encoders. Hebbian Learning is based on Hebb’s rule 
which states that when one cell A repeatedly fires another cell B, then A’s efficiency is increased [52] 

or else ‘neurons that fire together wire together’ [20]. Applying this rule to artificial neural networks, 

a specified number of clusters can be created by sequentially combining each entry of a dataset with 

the representative of the cluster that is closest to it, until all cluster representatives reach their final 

form. A generative adversarial network (GAN) can produce a dataset that has the same statistics as 

its training dataset. It consists of two neural networks that are adversaries to one another; the 

generative and the adversarial network. The former generates candidate data, while the latter 

evaluates their plausibility and/or fitness into the distribution of the original data; candidates that 



are classified as real data are saved to the new dataset. A self-organizing map (SOM) is trained to 

create a low-dimensional (generally two-dimensional) representation of a high-dimensional dataset, 

essentially performing dimensionality reduction. A SOM’s training is carried out with the use of 

competitive learning - a variant to Hebbian learning - instead of back propagation, and a 

neighbourhood function that helps maintain the input data’s properties. 

 

4.2.3 Deep Reinforcement Learning 

In RL, neural networks are not typically the main attraction. On the contrary, they are used to 

estimate the optimal Q-value for an agent that would otherwise have to be computed. The deep Q 

network (DQN) algorithm, for instance, trains a neural network consisting of two (2) convolutional 

and two (2) fully connected layers on the target Q-value based on the Q-learning update equation. 

Subsequently, the DQN’s complexity is much lower than that of the original Q-learning algorithm. 

Moreover, deep deterministic policy gradient (DDPG) is the classic policy gradient algorithm taken a 

step further to include a neural network, thus, becoming faster to train. 

 

4.2.4 DL Algorithms Categorization 

In Table 6, we provide a categorization of the above discussed algorithms and present their 

characteristics. For each category, we also provide representative models together with their usage. 

Table 6 Deep Neural Networks characteristics 

Deep Neural 

Networks 

Activation 

function 

Dataflow Usage 

Supervised Learning 

MADALINE Sign Feed forward Classification, Regression 

Radial basis 

functions 

Radial basis Feed forward function approximation, time series prediction, 

classification 

Recurrent Sigmoid 

Hyperbolic tangent 

Any direction language modelling, Long short-term memory 

Convolutional ReLU Feed forward computer vision, speech recognition 

Unsupervised Learning 

Auto 

encoders 

Sigmoid function 

ReLU 

Softplus 

Feed forward dimensionality reduction, structured prediction, 

anomaly detection 

GAN ReLU Feed 

forward, 

Adversarial 

process 

Fashion, art and advertising, Video games 

SOM None Feed forward dimensionality reduction 

Deep belief 

networks  

Hyperbolic tangent Any direction Motion-capture, Image/video recognition 

Reinforcement Learning 

Deep QN ReLU Feed forward Q-value approximation 

 

4.3 Discussion 

The above described algorithms can become the key enabling factors for bringing intelligence at the 

EC/EM. ML can be adopted by EC/EM nodes to facilitate the local processing of the collected data as 

well as the processing of the surrounding contextual information to lead to better decision making 

for every aspect of their behavior. Currently, the advent of new computationally enhanced edge 

devices (see Section 3) in small sizes opens up the path for training, running and aggregating 

https://en.wikipedia.org/wiki/Deep_belief_network
https://en.wikipedia.org/wiki/Deep_belief_network


multiple ML models at the edge of the network. Various companies have started to propose 

solutions for bringing these algorithms in the constrained devices present at the EC and support the 

vision of the EM. A representative example is Microsoft’s effort79 where a library of ML algorithms 

designed to work off the grid on severely resource constrained scenarios is provided. As described in 

[156], the first step towards having intelligence at the edge is to collect the data from various 

sources. There are two options for data storage and the training of ML models, i.e., at the Cloud or 

directly at the EC/EM. The first option is selected when we want to train complex ML/DL models 

(e.g., deep learning models) upon large scale data. The second option is preferable when our ML/DL 

model is simple enough to be concluded in the minimum possible time upon a limited amount of 

data (e.g., a simple linear regression scheme). The same approach can be adopted for the inference 

process. We can perform the inference directly at the EC/EM leading to increased edge intelligence 

as it enhances the autonomous nature of nodes present at the edge. Data can be also used to retrain 

the model on the edge by taking advantage of transfer learning [143]. This action will lead to a 

‘personalized’ model fully aligned with the data and the contextual needs of each node. Other 

activities can be also adopted at the EC/EM like the federated learning [3], i.e., the aggregation of 

multiple ‘personalized’ models in order to produce a ‘global’ model. This gives the opportunity to 
have nodes taking decisions on the fly related to their preferences for receiving ML/DL models from 

peers and aggregate them in order to incorporate their view into the local decision making 

mechanism. Form this discussion, it becomes obvious the organic relation between the EC/EM and 

the Cloud and the need for realizing nodes that are capable of deciding type of the processing and 

the places where this processing should be realized. The future edge ecosystem of numerous nodes 

with advanced capabilities (as the computational resources at the edge increase) will blur the 

‘traditional’ model where the Cloud data centers are devoted to train ML/DL models and the 

inference is performed at the EC/EM. The advent of the EM and the incorporation of EI will give the 

opportunity to keep some training and management tasks at the edge with positive impact in the 

latency on the provision of responses. Hence, complex DL activities can be kept in the Cloud while 

the remaining ML/DL models can be trained and adopted at the EC/EM infrastructure opening up 

the space for edge to edge collaborations. Finally, the distributed DL frameworks could also be 

executed on the edge, however, there is an increased complexity required by the aggregation of the 

distributed models when this is necessary.    

 

5. Data Management at the Edge 

5.1 High Level Description 

In recent years, data are continuously being collected by sensors and end users, amounting to huge 

volumes which were traditionally pulled to the Cloud. Today, the edge of the network can assist to 

alleviate the traffic by playing the role of the mediator. As [112] proposes, the edge can pull the data 

at first, then, send them to the Cloud at an acceptable rate. The more advanced alternative would be 

to store data at the edge and have them be closer to users or store them both at the edge and the 

Cloud for security reasons. 

Data management models are essential in an EC/EM environment. EC/EM can only be efficient if 

data are stored at an appropriate node with respect to their popularity. Accordingly, the data 

provision latency will usually be low if users requesting them are close to the node that they are 

                                                           
79

 https://www.microsoft.com/en-us/research/project/resource-efficient-ml-for-the-edge-and-endpoint-iot-

devices/#!publications 



stored at. Nevertheless, data have to be distributed in a uniform manner as much as possible. If not, 

the danger of creating big data centers that start to resemble Cloud infrastructures arises. 

The authors of [49] propose a fitting solution to the problem by taking into consideration four 

important factors; the spatio-temporal locality of range queries, the corresponding information and 

type of data, the incessant creation and collection of data, as well as the requirements for increased 

availability of stored data. More specifically, (i) they index data by their spatio-temporal features and 

place them close to the interested clients, while also (ii) creating replicas on other edge nodes and 

Cloud, (iii) allowing application developers to define groups of nodes which can balance their loads 

among each other, and (iv) applying a time-to-live eviction policy, data aggregation and compression 

to the incoming data. Therefore, this system decreases data latency, is fault-tolerant, strives for load 

balance and de-escalation of data hotspots, and keeps resource requirements at a minimum, 

presenting an efficient approach to data management at the edge. 

In [117], an architecture for the distributed storage of real-time machine vision data at the edge is 

proposed. The authors argue that data storage architectures for the edge of the network should be 

designed keeping in mind the application that uses the specific data. Feature vectors that describe 

the objects in an image are transferred to the edge at a high rate, whereas images (100x larger in 

size) whose primary purpose is to be archived and can afford to lose some accuracy are transferred 

less often, and in case they are similar enough to previous ones they are discarded. The 

architecture’s main idea is to take the advantage of the difference between the data types’ latency 
requirements and the tolerance in images’ accuracy loss. Such architecture allows for the efficient 

management of data related to machine vision at the edge, seeing as it avoids placing useless data at 

an edge node’s storage units. 

The authors of [125] provide a polynomial-time greedy algorithm as a solution to the problem of 

data allocation in a group of heterogeneous mobile edge nodes. Their model takes into 

consideration the size of data, the storage capacity of the available nodes, a node-to-data demand 

matrix, as well as a corresponding transportation cost matrix. The result of the proposed model is an 

optimal decision for the data allocation and is computed at a (1-1/e)-approximation factor. This work 

presents an option that can easily be implemented at the edge of the network, owing to its 

efficiency and minimal demand of resources. 

Moreover, the use of a system called Greedy Routing for Edge Data (GRED) is suggested by [144] for 

the efficient management of data storage and subsequent recovery. Data items and edge servers are 

mapped in a virtual space according to their IDs; afterwards, a data item is assigned to the closest 

edge server in the virtual space for storage. Data retrieval is implemented through the utilization of 

distributed hash tables (DHTs) for data stored at one-hop-away neighboring edge nodes in 

combination with SDN for query routing. Its experimental evaluation yields less than 30% routing 

cost and balances the load of data better than Chord [132], a popular DHT. 

ECS (Edge-side Cooperative Storage) [59] constitutes a graph-based iterative algorithm that aims to 

place data that is required by an edge node to perform its tasks at its corresponding storage unit. 

The algorithm starts off by assigning to each edge server its most preferred data block and then 

continues by repetitively updating every node’s assignment taking into consideration the other 
nodes’ assignments. This framework can easily be implemented in a distributed manner and is not 
necessarily dependent on a centralized manager. One drawback is that an edge server is assigned 

with only one specific data block, whose size and content is predetermined, removing the possibility 

of an edge server storing a list of unrelated data items. Surely, that poses no problem unless an edge 

node performs many tasks at a time. 

GAPSO [26] combines the best characteristics of the Genetic Algorithm (GA) and Particle Swarm 

Optimization (PSO) to distribute accordingly the data that are required from each edge node that 

participates in a scientific workflow. In particular, GA’s crossover and mutation functions are 
integrated into PSO, whose ability to quickly converge to a solution is exploited. The decision is 



made considering the restrictions placed on the transmission costs. This algorithm involves little to 

no difficulty in implementation, while also achieving efficiency in performance. 

Another approach to data management at the edge is represented in [60]; data can be stored at 

different edge nodes according to criteria like data solidity, which ensures that all data allocated to a 

specific node have a bounded standard deviation. This paper’s authors utilize interpretable machine 
learning to compute the most important of an incoming data entry’s features, and only based on 
them decide whether it will be stored locally or offloaded to a peer or the cloud. The importance of 

each feature is calculated with three different metrics and finalized by a neural network. Then, the 

most important features are imported to a Naïve Bayes model that determines the data entry’s final 
location. Such a model can improve the time of retrieval for a range query, since data are stored in a 

quite sorted manner, hence proving itself valuable for an appropriate application setting. 

 

5.2 Replica placement 

A variety of models (like [8], [123]) are proposed for the prediction of data items’ future demand and 
subsequent caching on edge nodes, should the corresponding demands be high. These frameworks 

allow for quick retrieval of requested data that are primarily stored on the Cloud. The authors of [78] 

suggest the use of two centralized algorithms for the allocation of data block replicas; DRC-GM is 

responsible for dynamically adjusting the number of replicas given the frequency of access to a 

specified data block, and RP-FNSG’s goal is to find the optimal location for the aforementioned 
replicas in this problem of distributed placement. In [126], the authors introduce a model that 

combines the cloud and edge computing paradigms to place data replicas on both of the two 

infrastructures, thus delivering a time- and power-efficient solution for IoT scenarios that involve 

large datasets. More specifically, the problem is modeled as a 0-1 integer programming model and 

makes decisions through a variant of intelligent swarm optimization based on dependencies 

between data and the reliability of the storage hardware, among others. A content centric approach 

is the focus of [128] where a scheme is described around four complementary to each other 

algorithms for data caching at the edge. Each of these algorithms focuses on one of the following 

features to make latency minimum: data popularity, data heterogeneity, user mobility, and resource 

availability. Combining all these metrics to derive the final allocation makes for a powerful 

framework that can make effective decisions very fast. Indeed, the model was designed for use in a 

smart city, which requires efficient real-time decision-making above all else. 

These approaches deliver positive results, seeing data in close proximity to a number of edge nodes 

that request them; however, replication techniques seem to be costlier than offloading models in 

terms of computational resources and latency. This is due to the involvement of Cloud, which makes 

computations more complicated and communications slow. 

 

5.3 Joint Data and Tasks Allocation 

Data and tasks allocation/placement at the EC/EM is a significant research field. A number of 

research activities try to detect the optimal location where data and tasks are distributed (e.g., [67]). 

The aim is to eliminate the time for delivering the final analytics while keeping maximized the 

‘matching’ between requests and the available data. In [38], the authors focus on joint tasks and 

data placement over the edge of the network for data-intensive services. They suggest the use of a 

polynomial-time algorithm that solves their problem by treating it as a set function optimization. The 

solution takes into consideration resource constraints in computation, storage, communication, and 

cost. In [18], a scheme that allocates data to edge nodes and, then, if possible, allocates tasks to 

edge nodes that have in their storage the data they require. Specifically, the scheduler’s data 
placement kernel can function in four ways: (i) no replication, where no data are replicated to an 

edge node before a request for them arrives, (ii) 1-replication, where each data block is replicated to 



only one edge node, (iii) full replication, where all data blocks are replicated and stored at each edge 

node in the network, and (iv) context-aware replication, where a strategy much like the one 

introduced in [78] is activated. Furthermore, the scheduler’s task allocation component operates 
through (i) random task scheduling, (ii) data aware-scheduling, where a task is randomly placed on 

one of the edge nodes that possess a replica of the data required for the task’s execution, and (iii) 
performance-aware scheduling, which places a task at the fastest edge node without a job that also 

possesses the required data at that moment. Such an approach is very appealing, but if the network 

it is applied to is large enough, transmission latencies risk exceeding the avoided cost of not having 

to communicate data very often. An additional research effort [75] proposes a scheme that seems 

superior to the previous two. First, data blocks are allocated to edge nodes based on (i) the value of 

the data, which depends on their popularity, the edge node’s storage capacity and replacement 
ratio, denoting the data block’s size in relation to the node’s storage capacity, (ii) the transmission 
cost, and (iii) the replacement cost. The assignments are determined through the use of the Tabu 

search algorithm [43], [44]. After that comes the tasks allocation part, which is based on the 

allocated data blocks. A variant of the Kuhn-Munkres Hungarian method [138] is employed to find 

the optimal solution, given (i) the tasks’ priorities, (ii) the relevance between tasks and data, and (iii) 
the transmission costs. This framework combines the two functionalities and, as experimental 

results show, achieves low response times, high hit rates and a low number of replacements, making 

it an ideal solution for a generic joint data-and-task allocation scheme. 

 

6. Tasks Management at the Edge 

Since the number of owned personal devices has immensely increased these last few years, so have 

requests for services. The rise in the number of devices has made possible people’s access to existing 
services and to new ones created to satiate the population’s new needs. Service requests are now 
numerous and require much more processing power than before to be responded. EC/EM intends to 

bring the request processing closer to end users and reduce the bandwidth overload which restricts 

the performance of the Web, thus, lowering the related latency. However, executing tasks at the 

edge is not as simple as it sounds, owing to the heterogeneity of EC nodes and service requests at 

different locations. Placement/offloading techniques have to be employed to ensure the smooth 

operation of edge computing. We have to notice that, in this survey, we consider the research 

efforts dealing with services/tasks management in two ‘sub-layers’, i.e., the EC infrastructure and 
the intelligent cover that EM offers. Hence, services and workflow management are usually 

combined with actions adopted in the EC infrastructure for supporting the processing tasks 

demanded by users or applications.  

DCTA (Data-driven Cooperative Task Allocation) [23] was designed to manage multi-task transfer 

learning. It exploits the fact that each task has its own importance so as to produce an effective task 

allocation solution. In particular, the authors have observed that only a few of the requested tasks 

are actually important and, thus, DCTA assigns those tasks to the most powerful available edge 

nodes. To achieve that, at first, Clustered Reinforcement Learning (CRL), which is a combination of k-

NN and Deep Q-learning, was created. However, due to simulation limitations that CRL poses, a 

cooperative learning approach that uses both CRL and SVM is finally proposed. Ultimately, even 

though the algorithm was developed to solve a quite specific problem, it can certainly be applied to 

the generic problem of tasks allocation, since the main idea of task importance applies to all tasks. 

MobMig [108], a mobility-aware and migration-enabled approach, is a framework that consists of 

two algorithms for mobile edge computing tasks allocation. The first, mobility-aware allocation, is 

responsible of detecting incoming users in the range of an edge node that have unallocated task 

requests and then allocating them to edge nodes, based on a fitness function. The second, mobility-

aware migration, aims to find overloaded edge nodes and relieve them by offloading tasks to nearby 



under loaded nodes. This scheme takes care of incoming tasks and redistributes existing tasks to 

reflect user mobility and solve node overloading, which can be a big problem if left untreated. 

 

6.1 Placement of Containers 

In general, containers and virtualized resources management should be dictated by a number of 

parameters that deal with the environment where these resources are placed. Such a decision is 

significant as the desired services will be uploaded and executed on them towards supporting the 

processing activities that end users or applications demand. The discussed management mainly 

refers in the EC infrastructure exhibiting a very close connection with the hardware and the 

operating software that is present in EC nodes. The authors of [83] focus on the migration of services 

to nearby edge nodes as the user is moving and approaching different nodes in a wide area network. 

They propose the use and migration of Docker containers, which they have studied extensively, and 

have been able to utilize their hierarchical file system to shorten the cost of its synchronization, all 

the while not depending on the distributed file system. The authors present experimental results 

that show an extensive decrease in service migration time, which renders this technique suitable for 

integration to any container allocation method. Further, the authors of [31] present two placement 

algorithms, KCBP (k-Center-Based Placement) and KCBP-WC (KCBP-Without Conflict), whose aim is 

to allocate container images to edge nodes while reducing the maximum transmission time of 

containers. To achieve that, it also exploits the hierarchical structure of containers and 

communicates only the layers that are not already in the receiving node’s storage. The first 

algorithm, KCBP sorts layers by their size and places them at edge nodes so that the distance sum is 

minimized. KCBP-WC is an extension that avoids placing two large layers at the same node, so that 

there is no extra overhead. Experimental results show a very large reduction in recovery time 

compared to other algorithms, supporting the proposed scheme’s effectiveness. 

In [130], the authors study the frequent handover problem with the objective to maximize the 

availability of resources at fog domains. To do so, they propose a resource placement algorithm 

leveraging RL and apply it in vehicular networks. The presented results point-out that RL solutions 

can learn the underline resources and result in fewer live migrations. In [40], migration strategies for 

virtual machines and containers are studied based on the concept of community relationship of the 

devices of a distributed system. The base idea is to migrate applications if the overall benefit is 

greater than the generated overhead by migrating applications between nodes. Fog nodes are 

partitioned into a hierarchical dendrogram using topological features of graphs. The latter is used to 

assign virtual machines to DCs. An extension of iFogSim [48], a simulator is presented in [81]. 

MyiFogSim supports mobility as it enables virtual machine migration policies for users based on 

user’s position, direction and speed. 

 

6.2 Greedy Approaches 

A lot of work has been performed in the management of workflows and the corresponding tasks 

placement at the EC or the Cloud infrastructures (e.g., [102]). Usually, high level tasks may be 

‘transformed’ to a workflow, i.e., a sequence of dependent or independent tasks that should be 

executed in the available nodes. For instance, when a node in the EM receives a request for the 

delivery of the regression coefficients upon the available data, it may separate the high level task to 

a set of sub-tasks and allocate them to the available resources for execution. The authors of [5] have 

developed a greedy heuristic algorithm that assigns tasks to resources on the edge or the Cloud for 

execution. Its criteria for the allocation include the deadline or other constraints connected to a task, 

the network distance between a task and a resource, and hence the latency it results in, a node’s 
load of work and its capacity concerning energy. The algorithm’s main objective is to produce a 
mapping of services to resources, while also minimizing the overall execution times and costs. The 



algorithm’s time complexity equals Θ(nm), where n is the number of tasks and m the number of 

nodes, which is a quite reasonable and expected value for a greedy algorithm. In [9], a number of 

algorithms for autonomous (re)placement of services in an edge node are described and compared 

to a centralized optimal Mixed Integer Linear Problem (MILP) based algorithm which minimizes the 

number of services that are delegated to Cloud for execution. In particular, the authors propose the 

admission and scheduling of service requests by an edge node only if the deadlines of already 

scheduled tasks as well as the new task are not violated; otherwise, the service request that the 

node denied is propagated to the cloud through the fog network, where it can also be admitted and 

executed by a fog node. The admitted requests are scheduled based on non-preemptive polices, 

such as Earliest Deadline First (EDF) and First-In-First-Out (FIFO). In addition, as a general rule, an 

edge cannot be running all services it receives requests. For that reason, it maintains a running set of 

services which is updated upon request arrival, periodically or at random intervals. The paper 

recommends the following ranking policies for the selection of running services: (i) Strictest Deadline 

First (SDF), where the requests of the services that are chosen have the least average amount of 

remaining time towards the deadline, (ii) Least Frequently Used (LFU), employed as an eviction 

policy for unpopular services, (iii) Hybrid, a mix of SDF and LFU, where services with distant-deadline 

requests are sent to the fog/cloud and the remaining are ranked based on popularity to the users, 

and (iv) Least Recently Used (LRU), which is also used as an eviction policy for services that have not 

been requested in a while. Out of the four, the Hybrid algorithm seems to be the best and closest in 

performance to the optimal. Such an approach presents an interesting option due to its autonomy, 

seeing as a node does not need to communicate with any other entity in order to make a decision. 

This results in an increased rate of decision-making and, generally, processing of requests, along with 

the improvement of the users’ quality of service, which is the ultimate goal in any network. 

A more specific approach to tasks management with respect to a single edge node is to just decide 

on whether it is best for a particular task to be executed locally or offloaded to a peer node or the 

cloud [61]. The central idea involves building an incremental kernel density estimator for every task’s 
requests as time progresses that allows for the calculation of the probability of high request rates in 

the immediate future. Having exchanged this information among themselves, each edge node 

computes the probability of each task being popular generally in the group of nodes that does not 

include themself. Through a set of rules implemented by a fuzzy logic controller, an offloading value 

is calculated for each task by a node, and it indicates whether a task should remain for local 

execution or be offloaded elsewhere, where it is more popular to reduce the average latency for end 

users. The paper does not include the allocation of the task to a new edge node or the cloud, but the 

authors do refer to another work of theirs that does [65]. There, the Utility Theory is exploited to 

produce aggregated ranked lists of nodes where each task can be offloaded to, and if no node’s 
related values exceed a certain threshold then the task is sent to the fog/cloud for execution that 

will not respect the task’s deadline. Both of the proposed approaches’ results are promising, as well 
as better compared to other distributed algorithms. 

Overall, greedy approaches are dependent on the performance of each edge node. They work most 

efficiently if they require little to no interaction among them and certainly if interaction with the 

cloud is avoided. They can reduce the end user’s waiting time since heavy computation is not 
employed to manage tasks. However, since an optimal solution is not usually possible, waiting time 

might sometimes reach very high values. 

 

6.3 Energy-Saving Approaches 

The authors of [79] study the placement problem from an IoT perspective and strive to develop an 

algorithm that finds the optimal solution to tasks management while also respecting edge servers’ 
low energy reserve. They model the problem at hand as a multi-objective optimization problem and 

employ Particle Swarm Optimization (PSO) to solve it and achieve the goal. Indeed, the algorithm 



does decrease the required energy, in comparison to other algorithms, but a centralized scheme 

such as the aforementioned can never accomplish optimal performance and energy consumption. In 

[121], it is proposed that the processing of heavy computations generated in an IoT environment be 

offloaded to other devices in their network once a specified level is reached. Instead of setting a 

universal offloading level for all devices, the authors suggest that each device has its own. In doing 

so, a network’s devices’ resources are utilized to a satisfactory extent and, at the same time, a 

bandwidth overload is avoided. Furthermore, experimental results show that this approach 

increases battery life, which is precious to IoT devices. This work is of the utmost importance to IoT 

networks which collect a large amount of data in need of aggregation or, in general, run applications 

requiring many computations. 

DART (DAta tRansportation neTwork) [34] treats the tasks allocation problem as a stochastic mixed-

integer optimization problem and attempts to solve it with an advanced coarse-grained offloading 

mechanism. The idea is to visualize IoT as a network of points of connection, which can 

communicate, compute tasks as well as store data and exploit the advantages of spectrum allocation 

in their model. Therefore, the devices in the network spend as little as possible of their much-

needed energy for precise communication activities and save the rest for executing and offloading 

tasks. The authors of [82] strive to propose a model that utilizes data compression and task 

offloading to minimize a task’s execution latency and the requesting device’s energy consumption in 
a mobile edge computing environment. The problem is modeled as a non-convex one at first, but 

through conversion to a quadratically constrained quadratic program and then through a 

semidefinite relaxation approach, it is rendered solvable in polynomial time. Cooperatively 

optimizing task latencies and device energy exhaustion is a novel idea that seems quite suitable for 

devices with energy constraints. 

 

6.4 Placement of Interacting Tasks 

The Edge Orchestrator (EO) described in [109] is tasked with splitting a workflow into several parts 

to be executed across a number of devices and resources, as well as assigning tasks to be executed 

on an edge node or offloading the process for execution on a cloud. Furthermore, after a task has 

been performed at the edge, the EO must aggregate the resulting data before forwarding them to a 

cloud, and vice versa. As with most other models, the purpose is performance optimization with 

regard to latency and quality of service. The fact that this scheme offers a lot of alternatives for the 

allocation of requested tasks is positive since, out of all the possible solutions, the best one should 

be quite close to the optimal one. Having said that, the same feature must render the model slower 

to decide than others precisely because of the abundance of options. 

Poster [56] aims to optimize communication costs between interacting tasks. To achieve that, it 

mines users’ cookies with PISMine, an algorithm the authors have developed. PISMine finds the 

most common 2-itemsets of services based on an interestingness measure and places those that are 

a part of the same 2-itemset on the same edge node for execution, or as close as possible. Such a 

placement allows for the minimization of inter-service communication costs, thus minimizing the 

overall latency of a service and maximizing the users’ QoS. This approach is quite original and easy to 

implement, making it a very interesting choice for tasks management at the edge of the network. 

The effort presented in [12] models the problem as a joint allocation of the multiple tasks an 

application might request. Similarly to [34], the problem is also modeled as a MILP that takes into 

consideration user mobility and network capacity at a given moment. The authors present an 

effective heuristic online algorithm as a solution that is based on the Hungarian method [70]. 

Experiments show that the proposed approach is quick and makes virtually optimal decisions, 

making this scheme a very strong option for solving the tasks management problem at the edge. 



DATA (Dependency-Aware Task Allocation) [73] is another approach at multi-component application 

allocation at the edge. This particular method is comprised of three sub-algorithms. The first one 

produces a graph that shows the order in which the tasks of a request must be processed, making 

sure that the all tasks in the graph are divided into sub-tasks which have the same maximum 

workload. This allows for the design of a pipeline of events, which is vital for the efficient operation 

of the next sub-algorithm. The second sub-algorithm aims to assign each sub-task to a container in 

the pool of available edge nodes in a manner that minimizes dependency-related transmission costs. 

Lastly, the third sub-algorithm is responsible of scheduling a sub-task’s execution in the chosen 
container, by computing the maximum time that the inputs will have arrived at and respecting 

dependencies. 

In addition, the authors of [142] suggest a scheme that utilizes RL, specifically Q-learning, to solve 

the problem of service request placement at the edge. A request is modeled as a set of sub-tasks, all 

of whom have to be allocated to edge nodes for processing. This paper introduces a strategy that 

allocates all the involved sub-tasks jointly, by treating them as a service tree with sub-trees which 

respect the order of events to take place. The model recursively allocates an edge node for every 

sub-tree using Q-learning, and eventually develops an efficient system that has learnt from its 

mistakes and can maximize the resource utility while minimizing the network congestion. This 

approach has favorable prospects as it can always evolve by adapting to changes in the network and 

maintain a high performance until a change occurs and it adapts to it again. 

The services that are offered nowadays are complex and involve many components more often than 

not. Utilizing service placement methods which recognize that and strive for the minimization of 

inter-component latencies is an integral part of achieving overall efficiency in all networks, and 

especially a vast one like the world-wide web is. 

Table 7 shows the optimization goals of each algorithm as well as the metrics that are taken into 

consideration. Symbol ↑ refers to the maximization of a goal, symbol ↓ to the minimization of a 

goal while symbol ↔ depicts that algorithm accounts the specific metric for the final decisions. To 

avoid cluttering, we merge the optimization goals and the accountable metrics for the first three 

columns. The first column (Resource Management) contains the following optimization parameters: 

(a) resource utilization, (b) recovery time, (c) execution cost, (d) load balancing and (e) energy. The 

second column (Network Parameters) contains the following optimization parameters: (a) 

bandwidth, (b) topology, (c) network cost, (d) transmission time and (e) network traffic. Finally, 

column Data & Users Management contains: (a) data-users locality, (b) type of data, (c) data 

availability, (d) data solidity and (e) mobility. Consider the case of the algorithm presented in [49]. It 

can be easily revealed that the optimization goals of this algorithm are to minimize latency (↓) and 
to maximize load balancing (↑d) and fault-tolerance (↑). To do that, it considers the topology (↔b

) 

of the network, the locality, the type and the availability of the data (↔a ↔b ↔c
) and the storage 

capacity of nodes (↔).  

Table 8 depicts the classification of algorithms for the following distinct perspectives: (a) the 

optimization strategy, (b) the appliance of replication methodologies, (c) the use of containers, (d) 

tasks dependencies (workflows), (e) the evaluation strategy and (f) the type of workloads used in the 

experimental evaluation. Consider again the case of the algorithm presented in [49]. This algorithm 

implements a heuristic approach to the SUMO simulator on real-world workloads.  

Table 7 Algorithms classification of optimization goals and accountable metrics 
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Gupta et al [49] ↑d
 ↔b

 ↔a ↔b ↔c
   ↑ ↓ ↔   

Ravindran et al [117]  ↔b
  ↑   ↓    

Shao et al [125]  ↔c
 ↔b

     ↔ ↑  

GRED [144] ↑d
 ↔a ↔b ↓c

     ↓    

ECS [59]   ↔a
     ↔ ↑  

GAPSO [26]  ↓c
 ↔c

     ↓ ↓   

Karanika et al [60]   ↔b ↑d
 ↔d

    ↓    

Li et al [78] ↔d
 ↔c

 ↔c
  ↔  ↓    

Shao et al [126] ↓c ↔d
 ↔c

 ↑c
 ↔c ↔d

  ↔   ↑   

Sinky et al [128]  ↓e
 ↔b ↔c

 ↑  ↔ ↓  ↑  

Farhadi et al [38] ↔c
 ↔c

  ↑ ↓   ↔   

Breitbach et al [18]  ↓a ↔e
   ↓  ↓    

Li et al [75]  ↓a ↔c
 ↔b

 ↑   ↓ ↔ ↑  

DCTA [23]     ↓     ↔ 

MobMig [108]  ↔b
 ↔e

        

Ma et al [83]  ↔c
 ↑e

    ↓ ↔ ↔  

KCBP [31] ↓b
 ↔b ↓d

         

Alqahtani et al [5] ↓c ↔e
 ↔b ↓e

  ↔   ↓    

Ascigil et al [9]  ↔b
  ↑↔ ↓      

Karanika et al [61]  ↔b
     ↓   ↔ 

Kolomvatsos [65] ↔e
 ↔b

   ↔  ↓   ↔ 

Li et al [79] ↑a ↓e
 ↔e

 ↔b
         

Samie, et al [121] ↑a ↓e
 ↔e

 ↔a
         

DART [34] ↓e
 ↔e

 ↔b
   ↔      

Ly et al [82] ↓e
 ↔e

  ↓d
 ↔d

  ↔  ↓    

Petri et al [109]    ↔ ↓  ↔    

PISMine [56]  ↓c
 ↔d

 ↑   ↓    

Bahreini et al [12]  ↔a
 ↔a

        

DATA [73]  ↔d
   ↓↔      

Wang et al [142] ↑a
 ↓e

   ↔      

 

Table 8 Algorithms classification for the scheduling and the application model 
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Evaluation Workloads 

Simulation Real Synthetic Real 

Gupta et al [49] Heuristic √   √ SUMO    √  

Ravindran et al [117] Heuristic  √  √ NS3   √   

Shao et al [125] DP    √   √   

GRED [144] Heuristic    √ P4   √   

ECS [59] LP/IP    √ BRITE    √  

GAPSO [26] GA/PSO   √ √CloudSim    √  

Karanika et al [60] Ensemble ML    √    √  

Li et al [78] GA √     √Alibaba  √  

Shao et al [126] 0-1 IP/PSO √  √ √   √   

Sinky et al [128] Hierarchical 

Clustering 

√     √  √  

Farhadi et al [38] MILP √   √   √   

Breitbach et al [18] Heuristic √  √ √Tasklet    √  

Li et al [75] Metaheuristic √ ↓ √    √  √  

DCTA [23] Heuristic, TL     √  √  



MobMig [108] Heuristic, DM     √  √  

Ma et al [83] Heuristic  √   √  √  

KCBP [31] Heuristic √ √  √  √  √  

Alqahtani et al [5] Heuristic   √ √iFogSim   √   

Ascigil et al [9] Heuristic √   √  √  √  

Karanika et al [61] Heuristic, FL    √   √  

Kolomvatsos at al [65] k-NN      √  √  

Li et al [79] PSO    √    

Samie, et al [121] Heuristic    √DART   √   

DART [34] MILP    √   √   

Ly et al [82] QCQP    √   √   

Petri et al [109] Heuristic   √   √CometCloud  √  

PISMine [56] FP-tree    √    √  

Bahreini et al [12] Heuristic    √   √   

DATA [73] Heuristic  √  √   √   

Wang et al [142] RL  √  √   √   

 

 

7. Resources Management at the Edge 

This section is devoted to the presentation of the most significant efforts that deal with the 

management of resources (e.g., processing nodes) at the EC/EM. Our aim is to reveal the axes that 

dictate the research implementations to deal with the requirements of the fully autonomous EC/EM 

infrastructure. Table 9 reports on the classification of the relevant research efforts according to the 

sub-domain. 

Table 9. Categorization of research activities related to the management of EC/EM nodes. 

Research Subject Research Efforts 

Tasks Offloading [24], [66], [137]  

Nodes reconfiguration 
[7], [19], [30], [57], [62], [64], [68], [69], [74], [77], [85], [104], 

[131], [133], [152]  

Resources Scaling  
[4], [33], [35], [36], [53], [58], [89], [90], [116], [122], [129], [134], 

[135], [140], [148], [153] 

Load balancing  [10], [25], [51], [76], [96], [97], [98], [99], [141]  

Caching [1], [45], [46], [47], [86], [124]  

Monitoring [11], [13], [29], [32], [103] 

  

The subject of [24] is the intelligent computational offloading of mobile devices towards edge nodes, 

specifically at the edge of radio access networks. Task offloading to the available nodes is a 

significant research issue that demands for efficient solutions to increase the performance of the 

EC/EM. Tasks offloading should take into consideration nodes characteristics and the data present 

on them before the final decision. The activity can be coordinated by a multitude of EC/EM nodes 

accompanied by admission control and a specific scheduling scheme [101], [137]. Additional efforts 

like [66] focus on the adoption of multiple criteria and try to ‘match’ tasks with EC/EM nodes 

characteristics before an allocation takes place. The discussed paper deals with the dynamic update 

of tasks and nodes characteristics due to the changes in the demand and the availability of nodes.  

Nodes’ reconfiguration is also very significant to keep the firmware and the pre-installed 

applications updated. Relevant efforts in the field [7], [62], [64], [68], [69] are mainly oriented to the 

IoT domain, however, the proposed algorithms can be easily adopted in EC/EM. A survey on the 

adopted methodologies is presented in [19]. Updates can affect the firmware of a device or have the 

form a ‘generic’ reprogramming activity. This means that an update server is adopted to deliver the 

updates that can be software patches, security modules, new functionalities/modules, etc. All the 

proposed algorithms try to minimize the effect in the network while targeting to limit the time for 

concluding the update. Incremental updates and data compression could be adopted to reduce the 



size of messages [133]. In any case, the separation of the updates imposes additional requirements 

for the number of messages transferred through the network and the algorithm adopted to 

conclude the aggregation of messages and installation of the update. The incremental management 

of the updates does not eliminate the necessary process for maintaining updates history and the 

aforementioned aggregation. Some widely cited research efforts in the domain are as follows. 

Trickle [74] disseminates and, accordingly, maintains software updates in a set of nodes through an 

epidemic approach with scalable multicasting. Based on this scheme, updates are periodically 

transferred to nodes. Epidemic approaches, in general, may involve the transmission of several 

copies to random nodes, thus, there is an increased cost for the management of the received 

messages. DHV [30] reports on a code consistency maintenance protocol that ensures that nodes 

will, eventually, have the same code. The Multicast-based Code redistribution Protocol (MCP) [77] is 

another protocol that performs code maintenance. MCP requires a table that depicts the 

information of applications present in a node. The table is adopted for the ‘coordination’ of the 

delivery of multicast-based code dissemination requests. However, the use of additional data 

structures increases the storage complexity of the corresponding models. The Multi-hop, Over-the-

Air code distribution Protocol (MOAP) [131] adopts a store-and-forward approach upon patterns of 

updates. Updates are broadcasted in a neighbour-per-neighbour basis forcing nodes to disseminate 

the incoming code to reduce the latency. Deluge [57] proposes a protocol over algorithms related to 

density-aware, epidemic maintenance models. It is built upon Trickle for the advertisement of 

updates and separates the code into a set of fixed-size pages. Through this approach, the time 

required for the propagation of large components is reduced. However, the adoption of multiple 

optimization activities increases the complexity of the proposed solution especially for the 

recreation of the updates. Stream [104]adopts Deluge and optimizes the code parts transferred 

through the network. It deals with pre-installations of the re-programming application. This way, 

Stream transmits the minimal support (approximately one page) required for the activation of the 

re-programming image. Resource-awareness, time-efficiency, and the integration of security 

solutions are involved in the model presented in [85]. A multi-hop propagation scheme is proposed 

enhanced by security codes and means from fuzzy control theory. MELETE [152] is designed to 

support multiple concurrent applications. It assumes that the network is a set of groups of nodes 

that execute different tasks. The framework adopts a group-keyed model to selectively distribute 

the code to only the interested nodes, and reactively distribute the code only when it is required. 

The dynamic scaling of activities adopted by EC/EM nodes is another significant resources topic. 

Scaling activities can be performed either horizontally [4] or vertically [129]. Horizontal scaling refers 

in adding/removing infrastructure capacity in pre-packaged blocks of resources while vertical scaling 

refers in scale-up/scale-down, i.e., add/remove resources to an existing system [129], [140]. Scaling 

activities can deal with the management of Virtual Machines (VMs) [148] or containers [122], [153]. 

Activities adopted to be aligned with the real demand can also involve the migration of services or 

data to different VMs/containers [89]. ENORM [140] proposes a framework for integrating the 

EC/EM in the computing ecosystem to realize FC. The framework builds on a provisioning and 

deployment model to integrate an EC/EM node with a Cloud server. Additionally, it supports an 

auto-scaling mechanism to dynamically manage edge resources to be fully aligned with the real 

demand. DYVERSE [139] is a light-weight and dynamic vertical scaling mechanism for managing 

resources allocated to applications for facilitating multi-tenancy in EC/EM. DYVERSE proposes the 

use of a static and three dynamic priority management scheme being workload-, community- and 

system-aware. Thoth [122] proposes a dynamic resource management system using Docker 

container technology. It automatically monitors resource usage and dynamically adjusts appropriate 

amount of resources for each application based on ML models, i.e., a Neural Network, a Q-Learning 

scheme and a rule-based algorithm. Other efforts that adopt reinforcement learning for predicting 

the demand and align the available resources are discussed in [35], [116]. A fuzzy logic approach is 

proposed in [58]. The fuzzy controller is adopted to result the scaling actions based on demand 

prediction estimated by a reinforcement learning scheme. In [36], the authors present a queuing 



mathematical and analytical model to study and analyze the performance of fog computing system. 

The discussed model determines under any workload the number of nodes required to keep the QoS 

at the desired levels. In [135], the proposed scheme integrates hypervisors and virtualization based 

on containers to construct an integrated virtualization platform for industrial applications. The 

adopted model is a fuzzy-based real-time auto scaling mechanism that provides a dynamic, rapid, 

lightweight, and low-cost solution.  

The authors of [53] study the technical challenges for managing the resource-limited nodes in 

EC/EM. They present three architectures, i.e., dataflow, control, and tenancy. The infrastructure is 

seen in three axes, i.e., hardware, software, and middleware. They also discuss algorithms for load 

balancing, discovery, benchmarking, and placement. Another effort studying the resources 

continuity is provided in [90]. The study focuses on the management of resource continuity from the 

EC/EM to Cloud and depicts a layered architecture for continuity provisioning, effective resources 

selection and service execution mechanisms. We have to notice that resources should be able to be 

aligned with the needs of streams as coming from the IoT infrastructure. The authors of [33] provide 

a survey on stream processing techniques for supporting resource elasticity features. The review 

focuses on ongoing efforts dealing with the deployment on EC/EM environments and insights of 

future directions. A taxonomy of resource management at the EC/EM is provided by [134]. The 

authors categorize the relevant efforts according to their resource type, the objective of the 

management, resource location, and resource use.  

Load balancing is another significant research subject in EC/EM. The research community proposes 

two main types of load balancing strategies: static and dynamic [76]. Static load balancing deals with 

a ‘stateless’ approach (models that do not consider the previous state of the node). The load is 

efficiently distributed when nodes do not exhibit significant variations in their activities. Dynamic 

strategies involve a ‘statefull’ model, i.e., they take into consideration the dynamic changes in nodes’ 
behavior (the state of each node). Intermediary nodes can be also adopted for performing load 

balancing activities [10]. In [76], the authors propose an architecture for load balancing based on 

intermediary nodes that obtain the state information of the network. Intermediaries classify the 

status of each node by using a set of attributes. Based on this information, the framework is capable 

of performing the final allocation. In [51], the authors propose an improved constrained particle 

swarm optimization algorithm based on SDN. The algorithm improves the performance by adopting 

the opposite property of the mutated particles and reducing the inertia weight linearly. In [25], a 

task allocation model is provided for load balancing. The algorithm calculates the completion time 

for each task and formulates the load balancing optimization problem. The authors of [141] present 

a distributed traffic management system adopting an offloading algorithm for real-time traffic 

management in fog-based internet of vehicle systems. The ultimate goal is to minimize the average 

response time of the traffic management server. In [99], the authors investigate a joint computation 

offloading, power allocation, and channel assignment scheme for 5G-enabled traffic management 

systems. The satisfaction of heterogeneous requirements for communications,, computation and 

storage are studied in [98]. The authors propose an energy-efficient scheduling framework taking 

into consideration task latency constraints. In [97], a deep learning model is presented for data 

transmission. The use cases involve the communication of vehicles with the EC/EM infrastructure. In 

[96] another deep leaning model is presented. More specifically, the authors focus on a deep 

reinforcement learning method integrated with vehicular edge computing.  

Caching is a key mechanism that aims to reduce the traffic of the network and increase the response 

time of a system. MEC enables Cloud computing capabilities at the edge of the network using a 

multi-layered architecture that consists of IoT/users’ devices, FC nodes, cellular base stations and 

other edge nodes. Thus, apart from caching policies, the location where caching will be deployed is 

important in mobile networks. Caching at users’ devices can exploit storage resources in a D2D 
communication; caching at the edge is a good choice since edge nodes are closer to end users; 



caching at the upper levels i.e., FC and cellular base stations, may result to increased hit ratios as the 

coverage area is larger than in the remaining setups.  

Caching in users’ devices has been studied in conjunction with D2D communication. D2D offers a 

decentralized opportunistic short-range communication by utilization the air-interface resources in 

5G networks. In [46], the authors propose a scheme to increase the throughput of video files in D2D 

communication. Popular video files that might be requested by other users, are cached in individual 

users’ devices. Caching content based on its popularity is also the subject of [45]. Authors optimize 

the D2D collaboration distance assuming that requests are modelled using the Zipf distribution. The 

authors of [86] use a homogeneous PPP model with realistic noise and interference to decide on the 

best distribution of user requests that maximize the number of hit ratios. The idea of a small base 

station (BSs) with a low-rate backhaul link and high storage capabilities to cache popular video files 

has been studied in [124]. Femtocaching avoids frequent replication of similar content by caching 

them at small base stations that are located close to the end users. In [1], the authors study the 

distributed caching of videos at the BS of Radio Access Network (RAN) in order to improve the 

quality of service that users enjoy. Both proactive and reactive policies are proposed based on 

videos global popularity (cities) instead of local popularity (campus). Authors in [47] investigate the 

storage allocation of macro BS. The problem of minimizing the total occupied storage space of 

macro BSs is transformed into a multiple knapsack problem and subsequently solved using linear 

programming. 

A monitoring tool is a key component in resource allocation in more than one respect. It provides 

performance KPIs and statistics for the virtualized resources (CPU, memory, disk, network usage, 

etc.) and for the applications that are being served. It can detect over- or under-utilized resources 

and perform load balancing, auto scaling or the dynamic reallocation of resources. Also, it certifies 

SLAs compliance in case of failure, revocation (e.g., spot virtual machines) and delays to increase the 

QoS offered through Cloud.  Monitoring tools like Lattice [29], PCMONS [32], Amazon Cloud Watch80, 

CloudMonix81 and IBM Tivoli82 are effective to monitor virtualizes resources, however, they are 

limited to monitor applications and services that are deployed in federated Clouds, private Clouds, 

AWS, Azure Cloud, and IBM Cloud, respectively. In MEC, apart from monitoring virtualized resources, 

it is also important to consider other levels of monitoring like the network, applications, services and 

sensors. Zenoss [11], Nagios [13] and Zabbix [103] are three open source monitoring tools that 

support multi-level and end-to-end link quality monitoring. This type of monitoring includes virtual 

machines, containers (except Nagios), network traffic/delays and throughput that are essential in a 

MEC environment. Some of the fundamental services provided by the former tools are a) the ability 

to monitor all critical infrastructures of a MEC environment, including applications, services, 

operating systems and network protocols, b) notifications/alerts upon potential resources 

unavailability; and c) the provision of a detailed picture of network traffic and potential security 

threats. 

 

8. Conclusions 

The Edge Computing (EC) and the Edge Mesh (EM) target to support an intelligent infrastructure 

close to end users realizing services that can be applied upon the huge volumes of data collected by 

numerous devices. The ultimate (and first) goal is the minimization of the latency that 

users/applications enjoy when requesting the execution of various processing activities. The 

challenges that should be met before we arrive at a fully automated EC/EM infrastructure are many. 

The research community has already started to provide solutions to a wide set of problems relevant 

to this vision. Our paper serves the goal of presenting such efforts working mainly around the data, 
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tasks and resources management. We want to reveal the paths for supporting additional services 

and models starting from a concrete basis. We discuss and classify a high number of models while 

categorizing them upon their research target. We present how legacy and advanced ML as well as 

optimization techniques are adopted to support novel solutions while reporting on the pros and 

cons of the discussed algorithms. We argue that all these aspects are parts of the same picture, i.e., 

to conclude an intelligent edge node that is capable of learning the status of itself, its peers and the 

environment before taking any decision about the upcoming line of actions. This means that we 

want to reveal the need of an adaptive node that reasons upon the contextual information of 

everything. If this becomes true, we will able to see a fully automated EC/EM ecosystem that is not a 

science fiction but a reality with huge benefits for services provided to end users.  

References 

[1] Ahlehagh, H., & Dey, S. (2014). Video-aware scheduling and caching in the radio access network. 

IEEE/ACM Transactions on Networking, 22(5), 1444-1462. 

[2] Ahn, J., Lee, J., Niyato, D., & Park, H. S., ‘Novel QoS-Guaranteed Orchestration Scheme for Energy-

Efficient Mobile Augmented Reality Applications in Multi-Access Edge Computing’, IEEE 
Transactions on Vehicular Technology, 69(11), 2020, pp. 13631-13645. 

[3] Aledhari, M., et al., ‘Federated Learning: A Survey on Enabling Technologies, Protocols, and 

Applications’, IEEE Access, 8:1-1, 2020. 

[4] Ali-Eldin, A., Tordsson, J., Elmroth, E., ‘An adaptive hybrid elasticity controller for cloud 
infrastructures’, in IEEE Network Operations and Management Symposium, 2012, pp. 204–212. 

[5] Alqahtani, D. N. Jha, P. Patel, E. Solaiman and R. Ranjan, "SLA-aware Approach for IoT Workflow 

Activities Placement based on Collaboration between Cloud and Edge," in 1st Workshop on 

Cyber-Physical Social Systems (CPSS) 2019, Newcastle, UK, 2019.  

[6] Al-Qamash, A., Soliman, I., Abulibdesh, R., Moutaz, S., ‘Cloud, Fog, and Edge Computing: A 
Software Engineering Perspective’, International Conference on Computer and Applications 
(ICCA), 2018. 

[7] Anagnostopoulos, C., Kolomvatsos, K., 'An Intelligent, Time-Optimized Monitoring Scheme for 

Edge Nodes', Journal of Network and Computer Applications, Elsevier, vol. 148, 2019. 

[8] Aral and T. Ovatman, "A decentralized replica placement algorithm for edge computing," IEEE 

transactions on network and service management, vol. 15, no. 2, pp. 516-529, 2018.  

[9] Ascigil, O., et al., "On Uncoordinated Service Placement in Edge-Clouds," in 2017 IEEE 

International Conference on Cloud Computing Technology and Science (CloudCom), Hong Kong, 

China, 2017.  

[10] Babu, R., Joy, A., Samuel, P., ‘Load balancing of tasks in cloud computing environment based 
on bee colony algorithm’, 5th International Conference on Advances in Computing and 
Communications (ICACC), 2015, pp. 89–93. 

[11] Badger, M., ‘Zenoss core network and system monitoring’, Packt Publishing Ltd, 2008. 
[12] Bahreini, T., Grosu, D., "Efficient placement of multi-component applications in edge 

computing systems," in SEC '17: Proceedings of the Second ACM/IEEE Symposium on Edge 

Computing, San Jose, CA, USA, 2017, October.  

[13] Barth, W., ‘Nagios: System and network monitoring’, No Starch Press, 2008. 
[14] Basir, R., et al., ‘Fog Computing Enabling Industrial Internet of Things: State-of-the-Art and 

Research Challenges’, Sensors, MDPI, 19, 2019.  
[15] Behrisch, M., Bieker, L., Erdmann, J., & Krajzewicz, D., ‘SUMO–simulation of urban mobility: an 

overview’, In Proceedings of SIMUL 2011, The Third International Conference on Advances in 
System Simulation, 2011. 

[16] Bellman, R., "Dynamic programming and stochastic control processes," Information and 

control, vol. 1, no. 3, pp. 228-239, 1958.  

[17] Bilal, K., et al., "Potentials, trends, and prospects in edge technologies: Fog, cloudlet, mobile 

edge, and micro data centers," Computer Networks, 2018. 



[18] Breitbach, M. et al., "Context-Aware Data and Task Placement in Edge Computing 

Environments," in 2019 IEEE International Conference on Pervasive Computing and 

Communications (PerCom), Kyoto, Japan, 2019.  

[19] Brown, S., Sreenan, C., 'Software Updating in Wireless Sensor Networks: A Survey and 

Lacunae', Journal of Sensor and Actuators, vol. 2, 2013, pp. 717-760. 

[20] Buhmann, J., Kuhnel, H., "Unsupervised and supervised data clustering with competitive 

neural networks," in IJCNN International Joint Conference on Neural Networks, 1992.  

[21] Cao, H. et al., ‘Analytics Everywhere: Generating Insights From the Internet of Things’, IEEE 
Access, vol. 7, 2019, pp. 71749 – 71769. 

[22] Carpa, M., et al., ‘Edge Computing: A Survey on the Hardware Requirements in the Internet of 
Things World’, Future Internet, MDPI, 11, 2019. 

[23] Chen, Q., et al., "Data-driven task allocation for multi-task transfer learning on the edge," in 

2019 IEEE 39th International Conference on Distributed Computing Systems (ICDCS), Dallas, TX, 

USA, 2019.  

[24] Chen, X., Jiao, L., Li W., Fu, X., ‘Efficient Multi-User Computation Offloading for Mobile-Edge 

Cloud Computing’, IEEE/ACM Transactions on Networks, 2016, 24, 2795–2808. 

[25] Chen, Y. A., Walters, J., Crago, S., ‘Load balancing for minimizing deadline misses and 
totalruntime for connected car systems in fog computing’, IEEE International Symposium on 

Parallel and Distributed Processing with Applications, 2017.  

[26] Chen, Z., et al., "Effective data placement for scientific workflows in mobile edge computing 

using genetic particle swarm optimization," Concurrency and Computation: Practice and 

Experience, p. e5413, 2019.  

[27] Chen, Z., Jiang, L., Hu, W., Ha, K., Amos, B., Pillai, P., & Satyanarayanan, M., ‘Early 
implementation experience with wearable cognitive assistance applications’, In Proceedings of 
the 2015 workshop on Wearable Systems and Applications, 2015, pp. 33-38. 

[28] Cisco, ‘The Cisco Edge Analytics Fabric System’, White paper, 2016 

[29] Clayman, S., Galis, A., & Mamatas, L., ‘Monitoring virtual networks with lattice’, In 2010 
IEEE/IFIP Network Operations and Management Symposium Workshops, 2010, pp. 239-246. 

[30] Dang, T., Bulusu, N., Feng, W., Park, S., 'DHV: A Code Consistency Maintenance Protocol for 

Wireless Sensor Networks', In Proceedings of the 6th European Conference on Wireless Sensor 

Networks, Cork, Ireland, 2009. 

[31] Darrous, J., Lambert, T., Ibrahim, S., "On the Importance of Container Image Placement for 

Service Provisioning in the Edge," in 2019 28th International Conference on Computer 

Communication and Networks (ICCCN), Valencia, Spain, 2019.  

[32] De Chaves, S. A., Uriarte, R. B., & Westphall, C. B., ‘Toward an architecture for monitoring 
private clouds’, IEEE Communications Magazine, 49(12), 2011, pp. 130-137. 

[33] Dias de Assunção, M., da Silva Veith, A., Buyya, R., ‘Distributed data stream processing and 
edge computing: A survey on resource elasticity and future directions;, Journal of Networks 

Computing Applications, 103, 1–17, 2018. 

[34] Ding, H., et al., "Beef Up the Edge: Spectrum-Aware Placement of Edge Computing Services for 

the Internet of Things," IEEE Transactions on Mobile Computing, vol. 18, no. 12, pp. 2783-2795, 

2019.  

[35] Dutreilh, X., Kirgizov, S., Melekhova O., Malenfant, J., Rivierre, N. and Truck, I., ‘Using 
Reinforcement Learning for Autonomic Resource Allocation in Clouds: Toward a Fully Automated 

Workflow’, 7th International Conference on Autonomic and Autonomous Systems, 2011, pp.67-

74. 

[36] El Kafhali, S., Salah, K., ‘Efficient and dynamic scaling of fog nodes for IoT devices’, Journal of 
Supercomputing, 73(12), 2017, 5261–5284. 

[37] ETSI, Mobile-edge Computing Introductory Technical White Paper, White Paper, Mobile-edge 

Computing Industry Initiative, 2014. 



[38] Farhadi, V., et al.,, "Service Placement and Request Scheduling for Data-intensive Applications 

in Edge Clouds," in IEEE INFOCOM 2019-IEEE Conference on Computer Communications, Paris, 

France, 2019.  

[39] Farzad, S., Bauer, L., Henkel, J., ‘New Problems and Challenges in Bandwidth Allocation for 
IoT’, Internet of Things Symposium, Amsterdam, Netherlands, 2015. 

[40] Filiposka, S., Mishev, A., & Gilly, K., ‘Community-based allocation and migration strategies for 

fog computing’, In 2018 IEEE Wireless Communications and Networking Conference (WCNC), 
2018, pp. 1-6. 

[41] Foukas, X., Patounas, G., Elmokashfi, A., Marina, M., ‘Network slicing in 5G: Survey and 
challenges’, IEEE Communications Magazine, 55(5): 94-100, May 2017. 

[42] Giust, F., Sciancalepore, V., Sabella, D., Filippou, M. C., Mangiante, S., Featherstone, W., & 

Munaretto, D., ‘Multi-access Edge Computing: The driver behind the wheel of 5G-connected 

cars;, IEEE Communications Standards Magazine, 2(3), 2018, pp. 66-73. 

[43] Glover, F., "Tabu Search—Part I," ORSA Journal on Computing, vol. 1, no. 3, pp. 190-206, 1989.  

[44] Glover, F., "Tabu search—part II," ORSA Journal on computing, vol. 2, no. 1, pp. 4-32, 1990.  

[45] Golrezaei, N., Dimakis, A. G., & Molisch, A. F., ‘Wireless device-to-device communications with 

distributed caching’, In 2012 IEEE International Symposium on Information Theory Proceedings, 
2012, pp. 2781-2785. 

[46] Golrezaei, N., Mansourifard, P., Molisch, A. F., & Dimakis, A. G., ‘Base-station assisted device-

to-device communications for high-throughput wireless video networks’, IEEE Transactions on 
Wireless Communications, 13(7), 2014, pp. 3665-3676. 

[47] Gu, J., Wang, W., Huang, A., & Shan, H., ‘Proactive storage at caching-enable base stations in 

cellular networks’, In 2013 IEEE 24th Annual International Symposium on Personal, Indoor, and 

Mobile Radio Communications (PIMRC), 2013, pp. 1543-1547. 

[48] Gupta, H., Vahid Dastjerdi, A., Ghosh, S. K., & Buyya, R., ‘iFogSim: A toolkit for modeling and 
simulation of resource management techniques in the Internet of Things, Edge and Fog 

computing environments’, Software: Practice and Experience, 47(9), 2017, 1275-1296. 

[49] Gupta, H., Xu, Z., Ramachandran, U., "DataFog: Towards a Holistic Data Management Platform 

for the IoT Age at the Network Edge," in {USENIX} Workshop on Hot Topics in Edge Computing 

(HotEdge 18), Boston, MA, USA, 2018.  

[50] Ha, K., et al., ‘Towards wearable cognitive assistance’, in Proceedings of the 12th Annual 

International Conference on Mobile systems, Applications, and Services, 2014, pp. 68–81. 

[51] He, X., Ren, Z,. Shi, C., Jian, F., ‘A novel load balancing strategy of software-defined cloud/fog 

networking in the internet of vehicles’, Chinese Communications, 13(S2), 145–154, 2016.  

[52] Hebb, D. O.,The organization of behavior: a neuropsychological theory, New York, NY: Wiley, 

1949.  

[53] Hong, C.-H. and B. Varghese, ‘Resource Management in Fog/Edge Computing: A Survey’, arXiv 
preprint arXiv:1810.00305, 2018. 

[54] Hong, C.-H., et al., ‘qCon: QoS-Aware Network Resource Management for Fog Computing’, 
Sensors, 18(10), 3444, 2018. 

[55] Hou, X., Lu, Y., & Dey, S., ‘Wireless VR/AR with edge/cloud computing.’, In 2017 26th 
International Conference on Computer Communication and Networks (ICCCN), 2017, pp. 1-8. 

[56] Huang, Y., et al., "Poster: Interacting Data-Intensive Services Mining and Placement in Mobile 

Edge Clouds," in Proceedings of the 23rd Annual International Conference on Mobile Computing 

and Networking, London, United Kingdom, 2017.  

[57] Hui, J. W., Culler, D., 'The dynamic behavior of a data dissemination protocol for network 

programming at scale', in Procedings of the International Conference on Embedded networked 

sensor systems, SenSys, 2004, pp. 81-94. 

[58] Jamshidi, P., Sharifloo, A., Pahl, C., Arabnejad, H., Metzger, A. Estrada, G., ‘Fuzzy Self-Learning 

Controllers for Elasticity Management in Dynamic Cloud Architectures’, 12th International ACM 
SIGSOFT Conference on Quality of Software Architectures, 2016, pp. 70-79. 



[59] Jin, J., Li, Y., Luo, J., "Cooperative storage by exploiting graph‐based data placement algorithm 

for edge computing environment," Concurrency and Computation: Practice and Experience, vol. 

30, no. 20, p. e4914, 2018.  

[60] Karanika, P. Oikonomou, K. Kolomvatsos and C. Anagnostopoulos, "An Ensemble Interpretable 

Machine Learning Scheme for Securing Data Quality at the Edge," in Cross Domain Conference for 

Machine Learning and Knowledge Extraction (CD-MAKE 2020), 2020.  

[61] Karanika, P. Oikonomou, K. Kolomvatsos and T. Loukopoulos, "A Demand-driven, Proactive 

Tasks Management Model at the Edge," in IEEE International Conference on Fuzzy Systems, 2020.  

[62] Kolomvatsos, K., 'An Efficient Scheme for Applying Software Updates in Pervasive Computing 

Applications', Journal of Parallel and Distributed Computing, Elsevier, vol. 128, 2019, pp. 1-14. 

[63] Kolomvatsos, K., 'An Intelligent, Uncertainty Driven Management Scheme for Software 

Updates in Pervasive IoT Applications', Elsevier Future Generation Computer Systems, vol. 83, pp. 

116-131, 2018. 

[64] Kolomvatsos, K., 'An Intelligent, Uncertainty Driven Management Scheme for Software 

Updates in Pervasive IoT Applications', Elsevier Future Generation Computer Systems, vol. 83, pp. 

116-131, 2018. 

[65] Kolomvatsos, K., Anagnostopoulos, C., "Multi-criteria optimal task allocation at the edge," 

Future Generation Computer Systems, vol. 93, pp. 358-372, 2019.  

[66] Kolomvatsos, K., Anagnostopoulos, C., 'Multi-criteria Optimal Task Allocation at the Edge', 

Elsevier Future Generation Computer Systems, vol. 93, 2019, pp. 358-372. 

[67] Kolomvatsos, K., Oikonomou, P., Koziri, M., & Loukopoulos, T., ‘A distributed data allocation 
scheme for autonomous nodes’, In IEEE SmartWorld, Ubiquitous Intelligence & Computing, 
Advanced & Trusted Computing, Scalable Computing & Communications, Cloud & Big Data 

Computing, Internet of People and Smart City Innovation 

(SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI), 2018, pp. 1651-1658. 

[68] Kolomvatsos, K., 'Time-Optimized Management of IoT Nodes', Elsevier Ad Hoc Networks, vol. 

69, 2018, pp. 1-14. 

[69] Kolomvatsos, K., 'Time-Optimized Management of Mobile IoT Nodes for Pervasive 

Applications', Journal of Network and Computer Applications, Elsevier, vol. 125, 2019, pp. 155-

167. 

[70] Kuhn, H. W., "The Hungarian method for the assignment problem," Naval research logistics 

quarterly, vol. 2, no. 1-2, pp. 83-97, 1955.  

[71] Lane, N. D., et al., ‘An early resource characterization of deep learning on wearables, 
smartphones and internet-of-things devices’, in Proceedings of the ACM International Workshop 
on Internet of Things towards Applications, 2015, pp. 7–12. 

[72] Lane, N. D., et al., ‘Squeezing deep learning into mobile and embedded devices’, IEEE 
Pervasive Computing, vol. 16, no. 3, pp. 82–88, 2017. 

[73] Lee, J., et al., "DATA: Dependency-Aware Task Allocation Scheme in Distributed Edge Cloud," 

IEEE Transactions on Industrial Informatics, 2020.  

[74] Levis, P, Patel, N., Culler, D., Shenker, S., 'Trickle: a self-regulating algorithm for code 

propagation and maintenance in wireless sensor networks', in Proceedings of the Symposium on 

Networked Systems Design and Implementation, vol. 1, 2004. 

[75] Li, C., Bai, J., Tang, J., "Joint optimization of data placement and scheduling for improving user 

experience in edge computing," Journal of Parallel and Distributed Computing, vol. 125, pp. 93-

105, 2019, March.  

[76] Li, G., Yao, Y., Wu, J., Liu, X., Sheng, X., Lin, Q., ‘A new load balancing strategy by task 

allocation in edge computing based on intermediary nodes’, EURASIP Journal on Wireless 
Communications and Networking volume 2020. 

[77] Li, W., Zhang, Y., Childers, B., 'MCP: an Energy-Efficient Code Distribution Protocol for Multi-

Application WSNs', in Proceedings of the 5th IEEE International Conference on Distributed 

Computing in Sensor Systems, 2009. 



[78] Li, Y. Wang, H. Tang, Y. Zhang, Y. Xin and Y. Luo, "Flexible replica placement for enhancing the 

availability in edge computing environment," Computer Communications, vol. 146, pp. 1-14, 

2019.  

[79] Li, Y., Wang, S., "An energy-aware edge server placement algorithm in mobile edge 

computing," in 2018 IEEE International Conference on Edge Computing (EDGE), San Francisco, CA, 

USA, 2018, July.  

[80] Liu, P., Qi, B., & Banerjee, S., ‘Edgeeye: An edge service framework for real-time intelligent 

video analytics’, In Proceedings of the 1st International Workshop on Edge Systems, Analytics and 
Networking, 2018, pp. 1-6. 

[81] Lopes, M. M., Higashino, W. A., Capretz, M. A., & Bittencourt, L. F., ‘Myifogsim: A simulator for 
virtual machine migration in fog computing’, In Companion Proceedings of the10th International 
Conference on Utility and Cloud Computing, 2017, pp. 47-52. 

[82] Ly, M. H., Dinh, T. Q., Kha, H. H., "Joint Optimization of Execution Latency and Energy 

Consumption for Mobile Edge Computing with Data Compression and Task Allocation," in 2019 

International Symposium on Electrical and Electronics Engineering (ISEE), Ho Chi Minh, Vietnam, 

2019.  

[83] Ma, L., Yi, S., Li, Q., "Efficient Service Handoff Across Edge Servers via Docker Container 

Migration," in SEC '17: Proceedings of the Second ACM/IEEE Symposium on Edge Computing, San 

Jose, CA, USA, 2017, October.  

[84] Mahdavinejad, M. S., Rezvan, M., Barekatain, M., Adibi, P., Barnaghi, P., Sheth, A., ‘Machine 
learning for internet of things data analysis: a survey’, Digital Communications and Networks, 
4(3):161 – 175, 2018. 

[85] Maier, K., Hessler, A., Ugus, O., Keller, J., Westhoff, D., 'Multi-Hop Over-The-Air 

Reprogramming of Wireless Sensor Networks using Fuzzy Control and Fountain Codes', in Self-

Organising, Wireless Sensor and Communication Networks, 2009. 

[86] Malak, D., Al-Shalash, M., & Andrews, J. G., ‘Optimizing content caching to maximize the 
density of successful receptions in device-to-device networking’, IEEE Transactions on 
Communications, 64(10), 2016, pp. 4365-4380. 

[87] Mangiante, S., Klas, G., Navon, A., GuanHua, Z., Ran, J., & Silva, M. D., ‘Vr is on the edge: How 
to deliver 360 videos in mobile networks’, In Proceedings of the Workshop on Virtual Reality and 

Augmented Reality Network, 2017, pp. 30-35. 

[88] Manyika, J., Chui, M., Bisson, P., Woetzel, J., Dobbs, R., Bughin, J., Aharon, D., ‘The Internet of 
Things: Mapping the Value Behind the Hype’, Technical report, McKinsey Global Institute, 2015. 

[89] Mao, M., Humphrey, M., ‘Auto-scaling to minimize cost and meet application deadlines in 

cloud workflows’, International Conference on High Performance Computation, Networking, 
Storage and Analysis, 2011, pp. 1–12. 

[90] Masip-Bruin, X., Marin-Tordera, E., Jukan, A., Ren, G.J., ‘Managing resources continuity from 
the edge to the cloud: architecture and performance’, Future Generation Computer Systems, 79, 
777–785, 2018. 

[91] Miraz, H. M., Ali, M., Picking, R., ‘A review on Internet of Things (IoT), Internet of Everything 

(IoE) and Internet of Nano Things (IoNT)’, Internet Technologies and Applications (ITA), 2015. 
[92] Mohammadi, M., et al., ‘Deep learning for IoT big data and streaming analytics: A survey;, IEEE 

Communications Surveys & Tutorials, vol. 20, no. 4, pp. 2923–2960, 2018. 

[93] Mordor Intelligence, ‘Micro Server Market – Growth, Trends, and Forecast (2020-2025)’, 
Report, January 2020. 

[94] Ndikumana, A., Tran, N. H., Kim, K. T., & Hong, C. S., ‘Deep Learning Based Caching for Self-
Driving Cars in Multi-Access Edge Computing’, IEEE Transactions on Intelligent Transportation 
Systems, 2020. 

[95] Nebbiolo Technologies Inc., ‘Fog vs Edge Computing’, White paper, retrieved July 2020 by 
https://www.nebbiolo.tech/wp-content/uploads/whitepaper-fog-vs-edge.pdf 



[96] Ning, Z, Dong, P., Wang, X., Rodrigues, J., Xia, F., ‘Deep reinforcement learning for vehicular 
edge computing: an intelligent offloading system’, ACM Transactions on Intelligent Systems 
Technology, 2019. 

[97] Ning, Z., Feng, Y., Kong, X., Guo, L., Hu, X., Bin, H., ‘Deep learning in edge of vehicles: exploring 
trirelationship for data transmission’, IEEE Transactions on Industrial Informatics, 2019. 

[98] Ning, Z., Huang, J., Wang, X., Rodrigues, J., Guo, L., ‘Mobile edge computing-enabled internet 

of vehicles: toward energy-efficient scheduling’, IEEE Networks, 2019 

[99] Ning, Z., Wang, X., Xia, F., Rodrigues, J., ‘Joint computation offloading, power allocation, and 
channel assignment for 5g-enabled traffic management systems’, IEEE Transactions on Industrial 
Informatics, 2019. 

[100] Odun-Ayo, I., Okereke, C., Orovwode, H., ‘Cloud Computing and Internet of Things: Issues and 
Developments’, in World Congress on Engineering, London, UK, 2018. 

[101] Oikonomou, P., et. Al., ‘Scheduling Video Transcoding Jobs in the Cloud’, In IEEE Green 
Computing and Communications (GreenCom), 2018, pp. 442-449. 

[102] Oikonomou, P., Kolomvatsos, K., Tziritas, N., Theodoropoulos, G., Loukopoulos, T., Stamoulis, 

G., 'Uncertainty Driven Workflow Scheduling Using Unreliable Cloud Resources', in IEEE 

International Symposium on Network Computing and Applications (NCA), November 24-27, 2020. 

[103] Olups, R., ‘Zabbix 1.8 network monitoring’, Packt Publishing Ltd, 2010. 
[104] Panta, R., Khalil, I., Bagchi, S., 'Stream: Low overhead wireless reprogramming for sensor 

networks', in Proceedings of the International Conference on Computer Communications, 

INFOCOM, 2007, pp. 928-936. 

[105] Parker, M., ‘Implementation with GPUs’, Digital Signal Processing, 2017, pp. 387-393 

[106] Patel, K. K., Patel, S. M., ‘Internet of Things-IoT: Definition, Characteristics, Architecture, 

Enabling Technologies, Application & Future Challenges’, International Journal of Engineering 
Science and Computing, vol. 6(5), 2016. 

[107] Peltonen, E., et al., ‘6g white paper on edge intelligence’, arXiv preprint arXiv:2004.14850, 
2020. 

[108] Peng, Q., et al., "Mobility-Aware and Migration-Enabled Online Edge User Allocation in Mobile 

Edge Computing," in 2019 IEEE International Conference on Web Services (ICWS), Milan, Italy, 

2019.  

[109] Petri, O. Rana, A. R. Zamani and Y. Rezgui, "Edge-Cloud Orchestration: Strategies for Service 

Placement and Enactment," in 2019 IEEE International Conference on Cloud Engineering (IC2E), 

Prague, Czech Republic, 2019.  

[110] Plastiras, G., et al., ‘Edge Intelligence: Challenges and Opportunities of Near-Sensor Machine 

Learning Applications’, IEEE 29th International Conference on Application-specific Systems, 

Architectures and Processors (ASAP), 2018, 10.1109/ASAP.2018.8445118. 

[111] Popescu, D., Zilberman, N., Moore, A. W., ‘Characterizing the Impact of Network Latency on 
Cloud-based Applications Performance’, Computer Laboratory technical reports, UCAM-CL-TR-

914, 2017.  

[112] Psaras, O. Ascigil, S. Rene, G. Pavlou, A. Afanasyev and L. Zhang, "Mobile Data Repositories at 

the Edge," in {USENIX} Workshop on Hot Topics in Edge Computing (HotEdge 18), 2018.  

[113] Radu, V., et al., ‘Multimodal deep learning for activity and context recognition’, in Proceedings 
of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, vol. 1, no. 4, p. 157, 

2018. 

[114] Rahman, H., Rahmani, R., ‘Enabling Distributed Intelligence Assisted Future Internet of Things 

Controller (FITC)’, Applied Computing and Informatics, 14(1), 2018, pp. 73-87. 

[115] Ran, X., Chen, H., Zhu, X., Liu, Z., & Chen, J., ‘Deepdecision: A mobile deep learning framework 
for edge video analytics;, In IEEE INFOCOM 2018-IEEE Conference on Computer Communications, 

2018, pp. 1421-1429. 



[116] Rao, J., Bu, X., Xu, C.Z., Wang, L., and Yin, G., ‘VCONF: a reinforcement learning approach to 
virtual machine auto-configuration’, 6th International Conference on Autonomic Computing, 

2009, pp. 137-146 

[117] Ravindran and A. George, "An Edge Datastore Architecture For Latency-Critical Distributed 

Machine Vision Applications," in {USENIX} Workshop on Hot Topics in Edge Computing (HotEdge 

18), Boston, MA, USA, 2018.  

[118] Sahni, Y., et al., ‘Edge Mesh: A New Paradigm to Enable Distributed Intelligence in Internet of 
Things’, IEEE Access, 2017 

[119] Salaht F.A., et al., "An overview of service placement problem in Fog and Edge Computing," 

ACM Computing Surveys, 2020. 

[120] Salsano, S., Chiaraviglio, L., Blefari-Melazzi, N., Parada, C., Fontes, F., Mekuria, R., & Griffioen, 

D., ‘Toward superfluid deployment of virtual functions: Exploiting mobile edge computing for 
video streaming’, In 29th International Teletraffic Congress (ITC 29), 2017, vol. 2, pp. 48-53. 

[121] Samie, F., et al., "Computation offloading and resource allocation for low-power IoT edge 

devices," in 2016 IEEE 3rd World Forum on Internet of Things (WF-IoT), 2016.  

[122] Sangpetch, A., Sangpetch, O., Juangmarisakul, N., Warodom, S., ‘Thoth: Automatic resource 

management with machine learning for container-based cloud platform’, International 
Conference on Cloud Computing and Services Science, 2017, pp. 103–111. 

[123] Saputra, Y. M. et al., "Distributed deep learning at the edge: A novel proactive and cooperative 

caching framework for mobile edge networks," IEEE Wireless Communications Letters, vol. 8, no. 

4, pp. 1220-1223, 2019.  

[124] Shanmugam, K., Golrezaei, N., Dimakis, A. G., Molisch, A. F., & Caire, G., ‘Femtocaching: 
Wireless content delivery through distributed caching helpers’, IEEE Transactions on Information 
Theory, 59(12), 2013, pp. 8402-8413. 

[125] Shao, X., et al., "A Competitive Approximation Algorithm for Data Allocation Problem in 

Heterogenous Mobile Edge Computing," in 2019 IEEE 89th Vehicular Technology Conference 

(VTC2019-Spring), 2019.  

[126] Shao, Y., Li, C., Tang, H., "A data replica placement strategy for IoT workflows in collaborative 

edge and cloud environments," Computer Networks, vol. 148, p. 46–59, 2019.  

[127] Shi, S., Gupta, V., Hwang, M., & Jana, R., ‘Mobile VR on edge cloud: a latency-driven design’, In 
Proceedings of the 10th ACM Multimedia Systems Conference, 2019, pp. 222-231. 

[128] Sinky, H., et al., "Adaptive Edge-Centric Cloud Content Placement for Responsive Smart Cities," 

IEEE Network, vol. 33, no. 3, pp. 177-183, 2019.  

[129] Sotiriadis S., Bessis N., Amza C., Buyya R., ‘Vertical and horizontal elasticity for dynamic virtual 
machine reconfiguration’, IEEE Transactions on Service Computing, vol. 99, 2016. 

[130] Souza, V. B., Pereira, M. H., Lelis, L. H., & Masip-Bruin, X., Enhancing resource availability in 

vehicular fog computing through smart inter-domain handover’, IEEE Global Communications 
Conference, 2020. 

[131] Stathopoulos, T., Heidemann, J., Estrin, D., 'A remote code update mechanism for wireless 

sensor networks', Technical Report, Center for Embedded Networked Sensing, 2003. 

[132] Stoica, R. Morris, D. Karger, M. F. Kaashoek and H. Balakrishnan, "Chord: A scalable peer-to-

peer lookup service for internet applications," ACM SIGCOMM Computer Communication Review, 

vol. 31, no. 4, pp. 149-160, 2001.  

[133] Stolikj, M., Cuijpers, P.,. Lukkien, J., 'Efficient Reprogramming of Wireless Sensor Networks 

Using Incremental Updates and Data Compression', in Proceedings of the IEEE International 

Conference on Pervasive Computing and Communications Workshops, 2013, pp. 584-589. 

[134] Toczé, K., Nadjm-Tehrani, S., ‘A taxonomy for manage-ment and optimization of multiple 

resources in edge computing’, Wireless Communications and Mobile Computing, 2018, 1–23. 

[135] Tseng, F.-H., Tsai, M.S., Tseng, C.W., Yang, Y.T., Liu, C.C., Chou, L.D., ‘A lightweight auto-scaling 

mechanism for fog computing in industrial applications’, IEEE Transactions on Industrial 
Informatics, 14(10), 2018, 4529–4537. 



[136] Wang, J., et al., ‘Deep learning towards mobile applications’, in IEEE 38th International 
Conference on Distributed Computing Systems (ICDCS), 2018, pp. 1385–1393. 

[137] Wang, L., Jiao, L., Kliazovich, D., Bouvry, P., ‘Reconciling task assignment and scheduling in 

mobile edge clouds’, In Proceedings of the IEEE 24th International Conference on Network 
Protocols (ICNP), Singapore, 2016. 

[138] Wang, N., Fei, Z., Kuang, J., "QoE-aware Resource Allocation for Mixed Traffics in 

Heterogeneous," in IEEE International Conference on Communication, Shenzhen, China, 2017, 14-

16 December.  

[139] Wang, N., Matthaiou, M., Nikolopoulos, D., Varghese, B., ‘DYVERSE: DYnamic VERtical Scaling 
in multi-tenant Edge Environment’, Future Generation Computer Systems, vol. 108, 2020, pp. 

598-612. 

[140] Wang, N., Varghese, B., Matthaiou, M., & Nikolopoulos, D., ‘ENORM: A Framework For Edge 
NOdeResource Management’, IEEE Transactions on Services Computing, 2017. 

[141] Wang, X., Ning, Z., Wang, L., ‘Offloading in internet of vehicles: A fog-enabled real-time traffic 

management system’, IEEE Transactions on Industrial Informatics, 2018. 
[142] Wang, Y., et al., "A Reinforcement Learning Approach for Online Service Tree Placement in 

Edge Computing," in 2019 IEEE 27th International Conference on Network Protocols (ICNP), 

Chicago, IL, USA, 2019, October. 

[143] Weiss, K., Khoshgoftaar, T., Wang, D., ‘A Survey of Transfer Learning’, Journal of Big Data, 3(1), 
2016. 

[144] Xie, J., et al., , "Efficient Data Placement and Retrieval Services in Edge Computing," in 2019 

IEEE 39th International Conference on Distributed Computing Systems (ICDCS), 2019.  

[145] Xu, D., et al., ‘Edge Intelligence: Architectures, Challenges, and Applications’, 
arXiv:2003.12172v2, 2020. 

[146] Xu, X., Xue, Y., Qi, L., Yuan, Y., Zhang, X., Umer, T., & Wan, S., ‘An edge computing-enabled 

computation offloading method with privacy preservation for internet of connected vehicles’, 
Future Generation Computer Systems, 96, 2019, 89-100. 

[147] Yang, Q., et al., ‘Federated machine learning: Concept and applications’, ACM Transactions on 

Intelligent Systems and Technology (TIST), vol. 10, no. 2, p. 12, 2019. 

[148] Yazdanov, L., Fetzer, C., ‘Lightweight automatic resource scaling for multi-tier web 

applications’, in IEEE International Conference on Cloud Computing, 2014, pp. 466–473. 

[149] Yi, S., et al., ‘Fog computing: Platform andapplications’, in 3rd IEEE Workshop on Hot Topics in 
Web Systems and Technologies (HotWeb), 2015, pp. 73–78. 

[150] Yi, S., Li, C., Li, Q., ‘A survey of fog computing: Concepts, applications and issues’, In 
Proceedings of the 2015 Workshop on Mobile Big Data, 2015, pp. 37–42. 

[151] Yousefpour, A., et al., ‘All one needs to know about fog computing and related edge 
computing paradigms: A complete survey’, Journal of Systems Architecture, 98, 2019, pp. 289-

330. 

[152] Yu, Y., Rittle, L. J., Bhandari, V., Lebrun, J. B., 'Supporting concurrent applications in wireless 

sensor networks', in Proceedings of the 4th International Conference on Embedded Networked 

Sensor systems, SenSys, 2006. 

[153] Zhang F., Tang X., Li X., Khan S.U., Li Z., ‘Quantifying cloud elasticity with container-based 

autoscaling’, Future Generation Computer Systems, 98, 2019, pp. 672-681. 

[154] Zhang, C., Patras, P., Haddadi, H., ‘Deep learning in mobile and wireless networking: A survey’, 
IEEE Communications Surveys &Tutorials, 2019. 

[155] Zhang, D., et al., ‘HeteroEdge: taming the heterogeneity of edge computing system in social 
sensing’, in Proceedings of the International Conference on Internet of Things Design and 
Implementation, 2019, pp. 37–48. 

[156] Zhang, X., et al., ‘OpenEI: An Open Framework for Edge Intelligence’, arXiv:1906.01864, 2019.  

 


	ACM Cover Sheet (AFV)
	236454

