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We present an overview of the main methodological features and the goals of

pharmacoeconomic models that are classified in three major categories: regression

models, decision trees, and Markov models. In particular, we focus on Markov models

and define a semi-Markov model on the cost utility of a vaccine for Dengue fever

discussing the key components of the model and the interpretation of its results.

Next, we identify some criticalities of the decision rule arising from a possible incorrect

interpretation of the model outcomes. Specifically, we focus on the difference between

median andmean ICER and on handling the willingness-to-pay thresholds. We also show

that the life span of the model and an incorrect hypothesis specification can lead to very

different outcomes. Finally, we analyse the limit of Markov model when a large number of

states is considered and focus on the implementation of tools that can bypass the lack of

memory condition of Markov models. We conclude that decision makers should interpret

the results of these models with extreme caution before deciding to fund any health care

policy and give some recommendations about the appropriate use of these models.

Keywords: pharmacoeconomics, cost-utility analysis, Markov models, Dengue fever, incremental cost-

effectiveness ratio, willingness to pay

1. INTRODUCTION

In the year 2016 US and EU spent 17.3 and 9.9% of their GDP in healthcare, respectively (1).
Therefore, health expenditure is one of the largest items in their national budget and adequate
spending and allocation of budget resources to healthcare is an open problem worldwide. To
attenuate risks linked to this resource allocation problem, Pharmacoeconomics has recently gained
more and more consideration. It refers to the branch of health economics, which compares
and analyses the value of one health policy to another. All the pharmacoeconomic analyses
estimate the cost of an intervention strategy or of a new pharmaceutical product. They include
health consequences expressed in terms of monetary value, efficacy or enhanced quality of life.
Perspectives for pharmacoeconomic studies include institutional, provider, patient, governmental
and societal. Identifying the right perspective is a fundamental task. A different perspective may
alter significantly the cost benefit analysis (2).

Pharmacoeconomic evaluations essentially differ based on the category of outcomes used. A
classification of methods used in pharmacoeconomics distinguishes among three major categories
(2, 3): cost-benefit analysis (CBA), cost-effectiveness analysis (CEA), and cost-utility analysis
(CUA). In CBA, both costs and benefits of a new drug or of a health intervention are put in
monetary terms, although it is difficult to attach a monetary value to the health outcomes. In CEA,
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two ormore alternative strategies are compared bymeasuring the
costs and outcomes of each; outcomes can be assessed as natural
units (e.g., life-year gained, reduced mortality, morbidity, blood
pressure etc.). In CUA, the intervention outcomes are measured
in terms of utility or preference; these outcomes are usually
expressed in terms of disability-adjusted life years (DALYs) or
in quality-adjusted life years (QALYs). One DALY can be seen
as one lost year of healthy life. DALYs are computed as the
sum of Years Lost due to Disability (YLD) for people living in
hill-health condition and the Years of Life Lost (YLL) due to
premature mortality. QALY, instead, is measured on a scale from
zero (representing death) to one (representing one year of perfect
health) and it is routinely used to measure the outcome of health
evaluations for all kind of individuals and for all kind of drugs or
diseases. Thus, it can be optimally implemented for comparisons
across programs. When a CEA or a CUA is accomplished, the
incremental cost effectiveness ratio (ICER) is used as a decision
rule. ICER tell us how much money invested in the new drug or
in the new therapy is necessary to gain one unit of effect, such
as life-year gained or one unity of utility, such as QALY. For two
alternative policies, say A and B, ICER is computed as

ICER(A,B) =
costA − costB

EffectA − EffectB
(1)

To better understand the ICER decision rule, we can plot the
ICER in a two-dimensional space (Figure 1), where on the y-axis
we represent the differences between the cost of the two policies,
and on the x-axis the differences between their effects.

FIGURE 1 | Incremental cost effectiveness ratio: four quadrant representation.

If ICER lays under the willingness to pay threshold line, policy
A is cost effective respect to policy B. Moreover, if it lays on the
second quadrant A still dominates B. Contrariwise, if ICER lays
above the WTP line A is not cost effective, whilst if ICER is in the
fourth quadrant A is dominated by B. The use of the willingness
to pay thresholds is further discussed in section 4.

The objective of this paper is to show the characteristics
of pharmacoeconomic studies and models, with a particular
focus on Markov and Semi-Markov models. Using a cost utility
model for a vaccination program for Dengue fever, we show
how these kinds of models work and what are their limits. We
also raise the attention on incorrect hypothesis specification
and incorrect interpretation of the outcomes. Moreover, we
suggest the use of some tools to bypass the limits of this
approach and give some recommendations for further research.
The remainder of the paper is structured as follows. Section
2 explains the theoretical background of pharmacoeconomic
models and their critiques in literature. Section 3 exploits
a Semi Markov model cost utility analysis for a vaccination
program, which serves as background for a more accurate
discussion in section 4. Section 5 ends the paper with some
concluding remarks.

2. METHODOLOGY AND MAIN
PHARMACOECONOMIC STUDIES

In literature, there are three main types of statistical approaches
to the implementation of pharmacoeconomic studies (4):
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regressionmodels, decision trees, andMarkov chainmodels. This
paper will primarily focus on the latter.

The most important advantage of regression models is their
capability to use least-squares linear regression techniques to
explore the marginal impact of covariates on incremental cost-
effectiveness instead of the usual models that aggregate cost
and effect differences (5). Linear regression has been primarily
used by various researchers to compute the net monetary benefit
(NMB) and the net health benefit (NHM) (6–9) but it has
also been used as an epidemiological model by interpreting
the estimated coefficients as the risk factor weights (4). Using
these models, it is straightforward to increase the number of
explanatory variables in order to examine their influence on
cost-effectiveness directly.

Decision trees are among the simplest model used in
pharmacoeconomics. They are simple directed graphs without
recursion (Figure 2) and represent a sequence of chance events
and decisions overtime (10, 11).

Decision trees have been used for many health care
problems: Caekelbergh et al. (12) tested the cost-effectiveness
of a methyl aminolaevulinate-based photodynamic therapy in
actinic keratosis and basal cell carcinoma, while Bachmann (13)
estimated the cost effectiveness of community-based therapeutic
care for children with severe acute malnutrition. Simple decision
trees usually follow the same paradigm: (a) the decision node; (b)
the decision strategy; (c) the outcome nodes. There is no decision
if no value is assigned to the outcomes. Both input probabilities
and values in decision trees are generally obtained from literature,
guidelines and experts (4). If the conditions and/or data inputs
evolve in time, Markov modeling is often employed as it has been
designed to model these types of changes in time.

Markov models were first developed by the Russian scientist
Andrei Markov (1856–1922). They are represented as partially
cyclic directed graphs (Figure 3).

In the field of pharmacoeconomic analysis, they are
exceptionally suited for diseases that involve an ongoing over
time risk (e.g., risk of hemorrhage, risk of kidney failure or risk
of mortality). The ongoing risk leads to important consequences:
first, the time when events occur is unknown; second, an event
can happen more than once, thus it is difficult in this case
to use a decision tree (11). In pharmacoeconomic Markov
models, health statuses are represented as Markov states, and
the health changes as transition probabilities between states.
Although continuous time Markov models can be built [e.g.,
Castelli et al. (14) use a continuous time semi-Markov model
to compute cost effectiveness of two follow-up strategies in a

FIGURE 3 | An example of Markov model transition diagram.

FIGURE 2 | An example of Decision Tree diagram.
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colorectal cancer study], usually the use of discrete time Markov
models is predominant in health economics (15). Although
modeling continuous time is somehow required, discrete event
simulation (DES) models are often suggested. DES is a flexible
modeling method where entities may interact with each other
for resources in a system, and each interaction between entities
is an event (15). A DES approach, in contrast to Markov
modeling, offers some advantages: retention of patient history;
risk profile update after each event and time flexibility. In view
of that, although in Markov models the length of a cycle is
fixed, in DES the simulation time can adapt directly to the time
the next event occurs (16). Markov models compensate their
limitations with their simplicity, as they can be visually inspected
for programming errors, and can be tested straightforwardly for
technical replication (17).

Notationally, a Markov chain is a sequence of random
variables X1,X2, ...,Xn, ... characterized by the Markov property
(Equation 2), which states that a model is memoryless: the
conditional probability of the forthcoming state depends on the
current state only, thus it does not depend on the previous ones
(18, 19). This means that, for all n and states xn

Prob {Xn+1 = xn+1|Xn = xn,Xn−1 = xn−1, . . . ,X0 = x0}

Pr {Xn+1 = xn+1|Xn = xn}
(2)

Let us define S = s1, s2, ..., sr of Xn as the set of possible states.
This set is defined as the state space of the chain. The chain
moves between states and the probability pij to move from state
si to state sj is called the “transition probability.” It expresses
the conditional probability of making a transition from the state
xn = si to the state xn+1 = sj, when time moves from n to n+ 1.
Transition probabilities are defined as

pij(n) = Pr
{

Xn+1 = sj|Xn = si
}

(3)

The matrix P(n) = (pij)ij, created by quantifying pij in row i
and column j, for all i and j, is named the “transition probability
matrix” or “chain matrix.” All the elements of P(n) satisfy the
following properties:

0 ≤ pij ≤ 1 (4)

and, for all i,
∑

j

pij = 1 (5)

Usually, Markov models are time-homogenous. This means that
there are no changes in the transition probabilities as time goes
on, but in modeling health care generally non-homogenous
Markov models (also called Semi-Markov models) are used
(15). In this case, the transition probabilities depend upon the
amount of time that has passed. In both cases (homogeneous
or non-homogeneous models) the process may, or may not, be
stationary. A process is said to be stationary if it is invariant under
an arbitrary shift of the time origin (18). A discrete time Markov
model consists of one or more communicating classes that form
a set of states that communicate. If the chain is composed of one
communicating class only, the chain is said to be irreducible (19).

If the transition probability is pii = 1, the state si is defined as an
absorption state, which corresponds to a closed communicating
class. A typical example of absorption state in health care Markov
model is “death.”

In order to use a Markov model in a pharmacoeconomic
study, it is fundamental to attach weights to the states, that allow
the analyst to estimate cost and health outcomes. As an example,
for predicting life expectancy a zero weight is attached to the
death state and a unit weight is attached to the other states.
Running the model for many cycles provides an estimate of the
average life expectancy. In the case of an economic evaluation,
researchers are interested in the quality adjusted life year, or
in the effect of a therapy. Thus, these kinds of elements need
to be attached in a similar way to the life-expectancy case. On
the cost side, the model behaves likely: the costs of spending
one cycle in each of the states are assigned to that state and,
as the model runs for many cycles, the total cost is obtained
by summing across those cycles (20). Moreover, to make this
economic model more realistic, adjustments for differential time
are needed. These adjustments are done by discounting outcomes
and costs. This allows the user to compare costs and outcomes in
terms of a net present value. In the pharmacoeconomic literature,
the use of Markov models or Semi Markov models is vast and
growing. Anis et al. (21) constructed a Markov model with the
objective to attain a CEA for antiretroviral therapy on HIV-
positive patients. Leelahavarong et al. (22), on the other hand,
tried to identify through a Semi-Markov model the maximum
price at which HIV vaccination is cost-effective, comparing it
with the normal HIV prevention programs in a governmental
prospective. Although Markov models can be used for infectious
disease modeling, dynamic models are better suited for the task.
For instance, DePasse et al. (23) modeled a CEA with an agent
based approach for an influenza vaccination campaign in the
U.S. Moreover, the two approaches can be used simultaneously.
As an example, in Khazeni et al. (24), in which the cost-utility
of pandemic influenza vaccination intervention is quantified in
terms of QALY through a joint use of a compartmental epidemic
model and a Markov model of disease progression. Furthermore,
Yaesoubi and Cohen (25) and Haeussler et al. (26) use a Markov
model with a force of infection function that accounts for
time dependent changes in prevalence and, consequently, for
the effects of herd immunity. With this approach, in contrast
to the deterministic compartmental models, it is possible to
approximate the spread of the disease in large populations
with a small state-space size, controlling for both an acceptable
degree of accuracy and computational time. Although Markov
models sometimes can be applied for infectious diseasemodeling,
they are also suitable for modeling pharmacoeconomics for
transplant, as in Jensen et al. (27) and in Rodina et al. (28).
Both studies conducted a CUA for kidney transplant compared
to dialysis.

An intensive use of Markov models can also be observed in
pharmacogenomics testing and precision medicine: by doing a
genetic test to a patient, it is possible to formulate a personalized
and more successful therapy. Therefore, in theory the cost of
the test should be counterbalanced by the higher effects of the
therapy. Examples of this kind of models are genetic testing for

Frontiers in Public Health | www.frontiersin.org 4 October 2020 | Volume 8 | Article 569500

https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/public-health#articles


Carta and Conversano On the Use of Markov Models in Pharmacoeconomics

major depressive disorder (29), cardiovascular prevention (30),
and epilepsy (31).

Moreover, Markov Models for economic evaluation of
healthcare interventions are particularly suitable for modeling
the cost effectiveness of new health care interventions for non-
communicable parasitic diseases. Examples of these diseases are
Dengue fever, West Nile fever, Changa disease, and Malaria.
These diseases are such that the parasite life cycle does not include
direct host-to-host transmission, thus they are not contagious
directly among humans (32). Studies on intervention for these
diseases are those of Shankar et al. (33) and Lee et al. (34)
with respect to a vaccination program for West Nile fever.
Finally, Seo et al. (35) compare the cost effectiveness of a
vaccine for Malaria in comparison with long lasting insecticide
treated nets. In the framework of Dengue fever, many papers
using Markov models have been proposed in the literature
for economic evaluation of healthcare interventions. Valuable
studies are that of Perera et al. (36), which analyzes from a
societal perspective the cost utility of the CYD-TDV vaccine
and a pre-vaccination serological screening for Dengue fever
in Sri Lanka; Orellano et al. (37) estimate the cost-utility of a
Dengue vaccine in a country with heterogeneous risk of Dengue
transmission using the incremental cost effectiveness ratio for
DALY averted as outcome; Lee at el. (38), on the other hand,
analyze the economic value of Dengue vaccine in Thailand for
various level of vaccine efficacy; Shepard et al. (39, 40) carry out
similar analysis but for a hypothetical pediatric Dengue vaccine
in South Est Asia and Panama; Fitzpatrick et al. (41) run two
probabilistic Markov chains in parallel for vector and human
populations, where the probability of a vector being infected with
the Dengue virus depends on the number of infected humans and
the probability of a human to be infected depends on the number
of infected vectors.
Beside Markov models, which in their standard version
are static models and cannot capture indirect effects such
herd immunity or increase transmissibility, recent economic
evaluations of interventions on Dengue fever often use dynamic
transmission models, described for instance in Flasche et al.
(42): four deterministic compartmental models and four
stochastic simulation models are compared among each other
to evaluate the cost-effectiveness of a Dengue vaccine (CYD-
TDV; Dengvaxia) in Latin America and Southeast Asia (43,
44). Moreover, Lee et al. (45) compare the cost-effectiveness
of the CYT-TDV vaccine respect to an hypothetical new
Dengue vaccine using a spatially explicit individual-based
transmission model.

3. SIMULATION EXPERIMENT

In this section, we show some examples to demonstrate how
and why Markov models are often used in pharmacoeconomic
analysis. Our analyses are carried out using the R software for
statistical computing (46), and in particular, the package Heemod
(47).

Since our main aim is to show how Markov models work in
Pharmacoeconomics, we exploit a semi-Markov model on the

cost utility of a vaccine for the Dengue fever disease. This is a
simplified version of the model described in (36) which analyzes,
from a societal perspective, a Dengue (CYD-TDV) vaccination
program following a pre-vaccination serological screening in
Sri Lanka. Since the main purpose of our analyses is showing
pros and cons of semi-Markov models in Pharmacoeconomics,
we do not consider the part of the model involving screening.
Our model, moreover, does not take into account the herd
effect resulted from the dengue vaccination campaign nor the
vaccine efficacy waning, as well as it does not deal with the well-
known CYT-TDV safety issues (48), as we do not consider the
serological screening as in Perera et al. (36). However, these
limitations do not undermine the relevance of our study. The
semi-Markov model we use for Dengue is just an instrument to
emphasize advantages and disadvantages of Markov models in
Pharmacoeconomics and to highlight the critical points that need
to be overlooked to pursue rational health care policy decisions.

3.1. Model Inputs
Cost, utilities, and transition probabilities of Dengue fever
disease, retrieved from literature, are reported in Table 1with the
related references in the last column.

The probability of showing the Dengue symptoms is
correlated with the age of the cohort and thus a semi-Markov

TABLE 1 | Parameters of the model.

Data input parameter Value (range) Distribution References

Dengue incidence 0.0088 (0.007–0.0106)a Binomial (36)

Age-specific risk of DF 1−

exp
(

−0.000259 · age3.991
)

(37)

Probability to have DHF

if DF

0.4342 (0.347–0.521)a Binomial (36)

Probability of Death if

DHF

0.0053 (0.0042–0.0064)a Binomial (36)

Vaccine efficacy

against DF

0.647 (0.587–0.0698)b Beta(143, 78) (37)

Vaccine efficacy

against DHF

0.955 (0.688–0.999)b Beta(5, 0.24) (37)

Cost of DF $51.4 (41.08–61.62)a Gamma,

sd ± 3

(36)

Cost of DHF $143.46 (112–169.2)a Gamma,

sd ± 6

(36)

Cost of Death $3000 (2400–3600)a Gamma,

sd ± 10

(49)

Cost of Vaccine $73 (58.4–87.6)a Gamma,

sd ± 3

(36)

Disability weight for DF 0.197 (0.172–0.211)c Beta(19.7, 80.3) (36)

Disability weight for

DHF

0.545 (0.475–0.583)c Beta(54.5, 45.5) (36)

Discount rate of cost 0.03 Point

estimate

(36)

Discount rate of benefit 0.015 Point

estimate

(50)

a Range: value ±20%.
b Range: 95% CI.
c Range: minimum-maximum.
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model is considered. A graphical representation of the model is
shown in Figure 4.

Costs and utilities, in form of QALYs, are attached to each
of the Markov states, and a discount rate is applied for both
benefits and costs. A time horizon of 10 years is used for the
cost utility analysis. Two identical cohorts of 1,000 9-years-old
children compose both the intervention and control groups.

FIGURE 4 | The semi Markov model for the Dengue fever disease.

3.2. Base Case
Early in the disease the entire population is in a healthy state, but
each year (corresponding to a Markov cycle) there is a chance
to get sick and to show Dengue fever symptoms, which require
moderate medical attention. Subjects with Dengue fever can
either get cured, and go back in the healthy state, or worse their
condition and show a Dengue hemorrhagic fever (DHF), which
requires intensive care. DHF patients have a certain probability
to die, or they can recover and go back to the healthy state.
The probability to show symptoms changes according to the age
of the cohort. Thus, it changes with time making this model a
non-homogeneous Markov model. The difference between the
intervention group and the control group is the use of a vaccine,
which lowers by a coefficient (efficiency of the vaccine) the
probability to develop the Dengue fever or the DHF.

3.3. Sensitivity Analysis
We perform a deterministic sensitivity analysis to check the
uncertainty of each parameter. Whenever possible, we use upper
and lower bound of the 95% percentile of the distribution of
a specific parameter, otherwise we use the ±20% value, or the
minimum-maximum range found in literature (37). Therefore,
each time one parameter is varied by a higher and a lower
value with respect to the base case within a certain range. The
result of this analysis is the range of the ICER due to parameter
uncertainty. The tornado diagram (see Figure 5, next section)
summarizes the results. In order to assess how changes of several
variables affect the ICER, a probabilistic sensitivity analysis (PSA)

FIGURE 5 | Tornado diagram of deterministic sensitivity analysis.
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based on 1,000 Monte Carlo simulations is also performed. This
is done by choosing a random value from the distribution of the
parameters that are uncertain. Probabilities of Dengue Incidence,
of having DHF as well as of dying because of DHF follow a
binomial distribution, utilities and vaccine efficiency follow a beta
distribution, while costs follow gamma distribution (see Table 1)
(51).

For each iteration, incremental costs and incremental QALYs
are computed. The results of these iterations are shown in a cost-
effectiveness plane (CE-plane) (see Figure 6, next section). Based
on the CE-plane, it is also possible to define a cost-effectiveness
acceptability (CEA) curve (see Figure 7, next section). The CEA
curve shows the probability that vaccination is cost-effective
compared to the no vaccination control group for different
threshold values of willingness-to-pay per QALY gained.

3.4. Results
The base case analysis, whose results are presented in Table 2,
shows that the vaccination results in an incremental cost of
67.01US$ per patient, and an incremental QALY of 0.0238 US$
per patient, causing an ICER of 2820.95US$ per QALY gained.

The deterministic sensitivity analysis shows the relative
contribution of each parameter for the estimation of ICER. The
diagram in Figure 5 shows which of the parameter can have the
greatest contribution.

In our case, the risk of getting the Dengue fever is the one that
has themajor impact, a higher risk lowers ICER, but still it cannot
result in a cost-dominant scenario (less costs, more QALY). The
same can be said for the probability to worse from the Dengue
fever to DHF. Moreover, the cost of vaccine is an important cost
driver, which can remarkably lower the incremental cost utility
ratio. The probability to die for Dengue, the other costs, and
the disability weights compared with the other parameters do
not affect highly the decision of this specific health care policy:
higher or lower values of these parameters do not lead to high
differences in results. Since the degree to which ICER is more
favorable depends majorly on the incidence of the Dengue, in
countries or regions where the risk to get infected is higher a
vaccination program is obviously recommended.

The Monte Carlo simulation assesses the uncertainty
surrounding the point estimates of the base case scenario.
The results are show in Table 3 together with their 95%
confidence interval.

The results show that ICER is 2812.72US$. This value is very
similar to that of the base case scenario, as the difference per
patient is $66.9 in terms of cost, and 0.0238 in terms of QALY.

Even if these results are meaningful, the most useful way
to express uncertainty about cost utility is through the cost
effectiveness acceptability curve and the cost effectiveness plane
(52) (Figures 6, 7).

FIGURE 6 | Cost effectiveness plane.
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FIGURE 7 | Cost effectiveness acceptability curve.

TABLE 2 | Base case results.

Strategy Costs 1 costs QALY 1 QALY ICER

Vax $74.26 $67.01 9.355 0.0238 $2820.95

No Vax $7.24 9.331

TABLE 3 | Results of the probabilistic sensitivity analysis.

Strategy Costs

(95% CI)

1 costs

(95% CI)

QALY

(95% CI)

1 QALY

(95% CI)

ICER

Vax $74.16

(69.42–79.04)

$66.9

(60.89–72.65)

9.355

(9.351–9.358)

0.0238

(0.0112–0.0383)

$2812.72

No Vax $7.26

(3.37–11.39)

9.332

(9.314–9.347)

Figure 6 shows the cost effectiveness plane, where each
dot represents a Monte Carlo iteration of PSA. It seems that
incremental costs are rather stable, whist the incremental effect
is more uncertain. With this information we can derive Figure 7,
which shows the probability to have an ICER greater than a
certain threshold, i.e., the willingness to pay (WTP) per QALY
gained. The higher is the threshold, the higher is the probability
that the vaccine is cost-effective. If the WTP threshold is 3,000
US$, more than half of the simulations show an ICER lower than
this value.

Figure 8, instead, represents the covariance analysis of PSA.
For each strategy, it shows the proportion of PSA variation
explained by each parameter, for both costs and effects. In our
model, the key parameters are the vaccine cost and the incidence
of Dengue fever, whilst the cost of death does not influence
PSA relevantly.

Finally, we assess if the policy causes important variation of
ICER as well as we determine the most important parameter
that have to be kept in higher consideration. Results about
variations of estimated parameters and subsequent ICER values
are reported in Table 4, which is self-explanatory.

Nevertheless, there are more factors, beside the model inputs,
that require more focus. These factors, that include inputs and
outputs of the model, together with tools to bypass some model
limitations are individually discussed in the next section.

4. DISCUSSION

The example shown in the previous section is aimed at
providing an overview about how Markov models work in
Pharmacoeconomics. In this section, we emphasize some critical
points of these models. Particularly, we take a closer look at
the incremental cost effectiveness ratio, the willingness to pay
thresholds, the model life span, the size of the cohorts, as well
as at two known problems of Markov models: the increasing
complexity of the model arising when many states are considered
and the memoryless condition.
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FIGURE 8 | Covariance analysis of PSA result.

TABLE 4 | Parameters and ICER range.

Parameter Value range ICER range

Death cost (2400–3600) (2823.735–2818.15)

Cost of Dengue fever (41.08–61.62) (2839.24–2802.855)

Cost of DHF (112–169.2) (3580.01–3025.52)

Cost of vaccine (58.4–87.6) (2206.358–3435.528)

Disability weight for DF (0.172–0.211) (2962.040–2747.64)

Disability weight for DHF (0.475–0.583) (3058.665–2706.74)

Vaccine efficacy against DF (0.587–0.698) (2938.149–2727.824)

Vaccine efficacy against DHF (0.688–0.999) (3018.16–2790.69)

Dengue incidence (0.00704–0.01056) (3580.014–2314.89)

Probability to have DHF (0.347–0.521) (3260.042–2480.894)

Probability of death (0.0042–0.0064) (2835.298–2806.703)

4.1. Incremental Cost Effectiveness Ratio.
Which Measure?
The main outcome of any cost utility model is ICER. It tells the
policy makers if the health care policy is worth to be financially
supported or not. In the previously reported model ICER has
been computed using the mean costs and the mean QALY of
the simulation. Another way to compute ICER is using the
median cost and median effect. In our case, the mean ICER is

slightly lower than themedian ICER, the latter being 2888.36US$.
The difference between the two measures is 75.66US$ only.
Bang and Zao (53) suggest that mean and median based ICERs
must be considered together as complementary tools in the cost
effectiveness analysis for an informed decision, acknowledging
the pros and cons of each.

4.2. WTP Thresholds. Is a Policy Really
Cost-Effective?
ICER is an absolute measure, thus it must be compared to some
thresholds. Indeed, the decision rule mainly depends on the
willingness to pay per QALY gained thresholds. These thresholds
reflect health opportunity costs and are generally used to assess
whether an intervention is worth. Nevertheless, these thresholds
differ among countries and among the kinds of health care
programs and their corresponding perspective. Wood et al.
(54) reject the guidelines of the World Health Organization
(WHO) because they tend to suggest too large thresholds (up to
three times the GDP per capita) and, in contrast, they estimate
thresholds as 1–51% of the GDP per capita for low/middle
income countries and 18–71% for middle/high income countries.
In the model discussed in the previous sections, we examine
the use of a vaccine in Sri Lanka. The 2018 GDP per capita of
this country, according to the World Bank, is 4102.48US$. Thus,
following Wood et al. (54), with an ICER of 2812.72US$ we are
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not able to give a clear answer about the possibility of funding this
policy. Rather, if we follow WHO which tends to suggest larger
thresholds, we can say that the policy is worth to be funded.

4.3. How Does the Cost of the Vaccine
Influence the ICER?
We see in Figure 8 that, on the cost side, the greatest part of
variability of the vaccination program in the PSA is explained by
the cost of the vaccine. To further investigate about this issue,
we fix the vaccine cost in each interaction of the Monte Carlo
simulation of the PSA.We run the simulation for several possible
values of the vaccine cost. Results of this fixed-cost vaccination
Monte Carlo Simulation are shown in Figure 9.

An increase in the vaccine cost leads to a linear increase of
ICER. The break-even point, i.e., the point when the vaccine
strategy changes from cost efficient to dominant, is observed for a
vaccine cost of 5.998$ which leads to an ICER of 0.01$ for QALY
gained. This means that the vaccine intervention will not increase
the total cost respect to the standard no intervention program,
but it will provide an increase in QALYs for the population of
interest. Thus, it will be rationally founded whichever the optimal
threshold is. Moreover, a vaccine that would cost <$6 provides a
negative ICER, making the vaccination program dominant, with
a decrease of total cost but an increase in effect. Policy makers,
thus, should identify the key parameters that they can somehow
control, like the vaccine cost, and try to drive their value in favor
of the new policy.

4.4. Model Time Span: Which Magnitude?
We have so far examined the outputs of our Markov model.
Moving to the input parameters, one of the main factor is the

time interval in which the policy is analyzed. A slight change in
its length could cause important changes in the outcomes. In our
model, we assume that the efficacy of the vaccine would last for 10
years because of the changes over time of the serological patterns
of Dengue. If this assumption is not true, and the efficacy of the
vaccine lasts for much less time, the results are very different. To
assess this point, we have replicated the base case scenario each
time using a different time span, and from Figure 10 we observe
that the relationship between time and ICER is not linear, despite
the previously shown ICER-Vaccine vs. cost linear relationship.

Results reported in Figure 10 show that if the vaccine efficacy
lasts only few years the policy is not enough cost efficient for a
middle/low income country like Sri Lanka. On the other side,
if the vaccine efficacy lasts longer we observe an important
decrease in ICER, which eases the policy decisions. This simple
experiment shows that, before discussing a policy of this kind,
there are important factors that need to be considered. Thus, the
scientific foundations of the study should be very solid.

4.5. Size of the Cohorts: How Many
Participants Are Needed?
In literature [see e.g., (55)] it is reported that in observational
studies it is essential to calculate the required sample size in
the design phase. If the sample is too small it may produce
an estimate for the population prevalence of an infection that
is too imprecise to be useful for public health planning and
prevention. Too large a sample may have used too many
resources and taken an unacceptably long time to collect. In our
simulations, we consider two identical cohorts of 1,000 9-years-
old children for both the intervention and control group. Indeed,
unreported outcomes provides evidence that applying the same

FIGURE 9 | Relationship between vaccine cost and ICER.
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FIGURE 10 | Relationship between time span cost and ICER.

Markov model with cohorts of children of different sizes, ranging
from very small sample sizes of 100 units to extremely large
ones (10,000 units) does not change significantly the results
provided by themodel. These remain practically unchanged. This
indifference to the sample size seems to be another limitation of
these class of models.

4.6. Number of States: How Much Complex
the Model Need to Be?
Markov Chain models, although they often work fine, have
some limitations about their use. One of the main problems
is that they become very complicated when more states and
more interactions among states are included. This complexity
becomes particularly problematic in presence of time-dependent
probabilities. One can take the model discussed in the previous
sections as a reference. In the case a screening with a Dengue
immunoglobulin (IgG) antibody test to detect the serostatus of
the population of interest needs to be added to the vaccine
policy, many more Markov states have to be included into the
original model to take into account IgG positives and negatives,
as well as the sensitivity and specificity of the test itself. In
this scenario, it would be also useful to differentiate between
sick patient hospitalized and in intensive care, considering the
different costs and utilities. This specification would require
adding even more Markov states to keep these differences into
consideration. Adding more and more conditions causes the

transition matrix to be very large, leading to a more complicated
model, which is quite hard to manage.

4.7. Tunnel States vs. Time Varying
Probabilities: Which Model to Choose?
Another limitation of the Markov Chain models is the lack
of memory. In fact, the probability of moving between states
does not depend on the previous cycles (56). To overcome
this limitation, Hawkins et al. (57) suggest using “tunnel states”
that enable to integrate the health experience from the previous
Markov cycles. The term “tunnel” implies that the states of the
cycles can be assessed only in a pre-determined sequence, as
passing through a tunnel. This method can be applied in the
dengue fever model. Let us suppose that patients in the DHF
state can stay sick for more than one cycle. This assumption is
in contrast with the model presented in section 3 where patients
in the DHF state could either get cured or die. Moreover, the
probability to stay in the same sick state (i.e., to keep on showing
DHF symptoms) is not constant as it depends on how long the
patient has been sick in the past. Specifically, the probability of an
improvement increases in the first two cycles, but then it remains
stable in time. Figure 11 describes the model and the use of the
tunnel states.

We could have obtained the same results with time varying
transition probabilities. The choice between the two methods
depends mainly on the type of model the researchers want to
specify. There are cases when tunnel states work better, and other
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FIGURE 11 | Example of the use of tunnel states in a Dengue fever model.

when a time varying probability is more appropriate. The latter
can be implemented easily. In the model presented in section 3
we used a time varying probability approach in the incidence of
Dengue fever in the cohort. Indeed, the incidence is correlated
with the age of the population of interest, thus it changes as the
time pass. Instead, the tunnel state approach would have required
the use of a large number of tunnel states, yielding to a more
complicated and difficult to handle model.

5. CONCLUDING REMARKS

Markov models are popular tools used for the evaluation of the
effects of specific health care policies. In this paper, we have
exploited the theory behind these particular kinds of models and
have explained how they can be used for choosing the right
policy to fund. Through a simulated Markov model, we have
focused the attention on the key components that make this
approach helpful, and on the interpretation of the results through
useful tools like the tornado diagram, the cost effectiveness plane,
the cost effectiveness curve and the covariance analysis of PSA
results. Moreover, we have described the median ICER which
is computed using the median cost and the median effect, and
we have compared it with the standard mean ICER and showed
that the two measures should be taken in consideration together.
We have also documented that the willingness to pay threshold
can vary between countries and that the WHO guidelines are
not unanimously accepted in literature. Next, we have alarmingly
highlighted that if the scientific bases like the duration of a
vaccine efficacy or the time span of the model are not solid and
robust, model outcomes can differ importantly. Finally, we have
also discussed about the use of tunnel states compared to time
varying transition probabilities, focusing on the pros and cons of
the two approaches.

All the theoretical and practical issues presented in the paper
lead us to the conclusion that it is of fundamental importance to
recommend policy makers and researchers to take into account
all the above-mentioned pros and cons of phamacoeconomic
Markov models and thus to interpret their results with extreme
caution before funding any health care policy. The correct
specification of input parameters, including the time span of the
study and the size of the cohorts, is of fundamental importance

for the implementation of a model leading to reliable and
realistic decisions in public health policy setting. Our general
recommendation for future research on the use of Markov
models in Pharmacoeconomics is that thismodel should be tested
in conjunction with one or more additional approach to check
if the outcomes are consistent and robust enough. Moreover,
specification of input parameters and other initial information
should not be taken parsimoniously from previous literature, as
they could cause estimation errors and excessive approximation.
It would be preferable, to obtain robust outcomes and thus take
reliable decisions, that input parameters should be estimated
from real data available to the researcher. This is particularly
important when the distribution of input parameters needs to be
inferred to carry out a sensitivity analysis. In fact, as shown in
the previous section, wrong assumptions can lead to sometimes
extremely wrong decisions, with a waste of financial resource,
and most importantly, they can negatively affect the health of the
population of interest.
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