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Abstract. In this paper, we present a novel monogenic scale space based
Principal Component Analysis (PCA) method by integrating the Reisz
transform of face images at different scales and the PCA method for face
representation and recognition. The Reisz transform captures desirable
facial features characterized by local phase information and local energy
at different scales in order to cope with the variations due to illumination
and facial pose changes. The PCA method is then employed to reduce
the dimension of the feature vectors and hence for efficient face represen-
tation and recognition. The feasibility of the proposed monogenic scale
space based method integrated with PCA has been successfully tested on
many standard face databases such as AT&T and YALE face databases.
The recognition accuracy of the proposed approach is compared with the
other well known face recognition approaches namely the PCA method,
the kernel PCA method and the Gabor wavelet-based RCM method and
it is found that the proposed approach exhibit better recognition accu-
racy when compared to these well known methods.

Keywords: log-Gabor Transform, Riesz transform, Monogenic scale
space, Principal component analysis, Face recognition.

1 Introduction

In these days, the biometrics is the well addressed research area in the domain of
computer vision and we have seen plethora of algorithms on face based biometrics
because of its wide acceptability in several applications ranging from access con-
trol, identity authentication, and visual surveillance to human-computer inter-
action/communication. Devising an efficient face recognition algorithm is quite
challenging because of many inherent problems such as inter-class similarity and
intra-class variability, occlusion, variations in illuminations, pose changes etc. In
order to address these problems, efforts are made by many researchers that re-
sult in different classes of algorithms. The local descriptor based algorithms gain
much importance because of their robustness to noise and occlusion-the common
problems encountered in real recognition environment. The transform based al-
gorithms are most useful in face recognition as they are capable of withstanding
illumination problems.
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The local descriptors [8], [14], [22] are commonly employed in a number of
real-world applications such as object recognition [5], [14] and image retrieval
[16] as they can be computed efficiently, are resistant to partial occlusion, and
are relatively insensitive to changes in viewpoint. Mikolaczyk and Schmid [15]
presented a comparative study of several local descriptors including steerable
filters [7], differential invariants [10], moment invariants [22], Scale Invariant
Feature Transform [13], and cross-correlation of different types of interest points
[8], [16]. Their experiments showed that the ranking of accuracy for the different
algorithms was relatively insensitive to the method employed to find interest
points in the image but was dependent on the representation used to model the
image patch around the interest point. In the SIFT algorithm, each keypoint
is represented by its neighborhood, described as a set of orientation histograms
computed from the gradient image. The SIFT descriptors are invariant to scale,
rotation, lighting and viewpoint change (in a narrow range). The most common
implementation uses 16 histograms of 8 bins (8 orientations), which gives a 128
dimensional descriptor. Ke and Sukthankar [9] proposed PCA-SIFT descriptor
which is also based on the gradient image, the main difference with SIFT being
the further compression using PCA. Recently, the Speeded Up Robust Features
(SURF) descriptor [1] has appeared as an alternative to SIFT. Its main ad-
vantage is its fastest computation, while keeping a high descriptive power. It is
partially inspired by SIFT, but instead of using the gradient image, it computes
first order Haar wavelet responses. The Local Energy based Shape Histogram
(LESH) has been specifically designed for face recognition applications. Its goal
is to encode the underlying shape present in the image. Basically, the descrip-
tor is a concatenation of histograms obtained by accumulating local energy at
several filter orientations.

On the other hand, we have seen appearance based approaches which are
capable of withstanding noise and illumination and simple in terms of imple-
mentation. In these approaches, data transformation is a fundamental step and
the goal is to obtain highly discriminative lower-dimensional data from high-
dimensional data. Principal component analysis (PCA) and linear discriminate
analysis (LDA) are the widely used techniques in the face recognition domain,
which encode high-dimensional face images as lower diimensional eigenfaces [20]
and fisherfaces [2] respectively. PCA is a linear method that ensures that the data
transformed are uncorrelated and preserve maximally the second order statistics
of the original data, and hence is insensitive to the dependencies of multiple
features in the patterns. To overcome this problem, kernel PCA [19] is proposed
as a non-linear extension of PCA that computes the principal components in a
high-dimensional feature space. On the similar line, kernel FLD is proposed as
a non-linear extension to linear discriminant analysis.

We have also seen the frequency domain based approaches where high fre-
quency components are used as facial features because of their robustness to
illumination changes. The local phase information is used in some techniques as
it is proved to be sufficient to completely reconstruct a signal within a scale fac-
tor [17]. As the Gabor wavelet representation captures salient visual properties
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such as spatial localization, orientation selectivity, Lades et al [11] applied Gabor
wavelets for face recognition using dynamic link architecture framework. Wiskott
et al. [23] extended this basic frame work to devise Gabor wavelet based elastic
bunch graph matching method to label and recognize faces. Liu [12] proposed
Gabor-based kernel PCA method by integrating the Gabor wavelet representa-
tion of face images and the kernel PCA method for face recognition. Porikli and
Tuzel [18] and Tuzel et al.[12] proposed a new descriptor framework called region
covariance matrices (RCM) for object detection and tracking. The RCMs can
be categorized as a matrix-form feature. However, direct application of RCM to
face recognition has not produced satisfactory results and hence Yanwei et al.,
[24] introduced Gabor-based region covariance matrices as face descriptors. The
results of Yanwei et al. [24] are highly encouraging when compared to any other
Gabor wavelet based techniques. Although Gabor wavelet based face recognition
models possess very high recognition accuracy irrespective of noise, occlusion and
illumination problems, massive computing and space requirements are the major
bottleneck in these approaches. In this context, we have proposed a new frame
work for face recognition based on monogenic scale space approach. The mono-
genic signal requires fewer convolutions when compared to Gabor wavelet based
model and hence require much lesser computing time. The principal component
analysis is employed on monogenic scale space based images to obtain compact
representation of face images.

The remaining part of the paper is organized as follows. In section 2, we
discussed monogenic scale space and its application in the context of face recog-
nition is analyzed. The PCA based face representation in monogenic scale space
is given in section 3. The experimental results and comparative study is given
in section 4. Conclusion is reached in section 5.

2 Monogenic Scale Space: A Review

The monogenic signal [3], [4] is based on the Riesz transform which is used
instead of the Hilbert transform. The monogenic signal analysis [3], [4] is a
framework to interpret images in terms of the local phase, local orientation and
local energy. The monogenic signal is an effective tool to analyze 2-D signals
in a rotation invariant manner. The signal is built upon the first order Riesz
transform. The spatial representation of the Riesz kernel in 2D space is:

(Rx(x), Ry(x)) =
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and its transfer function in the Fourier domain is:
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For any image, say I(x), the monogenic signal is defined as the combination of
I and its Riesz transform:

i.e. Im(x) = (I(x), Rx {I} (x), Ry {I} (x))
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Fig. 1. Original image; log-Gabor image; Energy image and Orientation image

= (I, Rx ∗ I, Ry ∗ I) (3)

where ∗ stands for the convolution operation. And hence the local orientation is
calculated as [3, 4]:

θ = arctan
Ry {I}
Rx {I} , θ ∈ [0, π) (4)

The local phase is defined as:

φ = arctan2
(√

R2
x {I}+R2

y {I}, I
)
, φ ∈ [0, π) (5)

The local energy is defined as:

E =
(√

R2 {I}+R2
x {I}+R2

y {I}, I
)

(6)

where R2 {I} = I ∗ F−1(G(w)).Here G(w) is the log-Gabor filter in the Fourier
domain. Since log-Gabor filters are band-pass filters, usually multi-scale mono-
genic representation is required to fully describe a signal. In Fig 1, we have
given the convolved images in monogenic scale space filter showing the log-
Gabor transformed image with its energy and orientation images. One can see
that the local structure is well captured in monogenic components.

3 Face Representation Using PCA in Monogenic Scale
Space

Let there be N number of training images. Let Ai, i=1...N, be an image of size
m x n. Let each image Ai, i=1...N, has p number of local phase and local energy
captured images. These 2p number of images are concatenated to form 2pmxn
dimensional feature vector. Hence, we are having 2p(mxn)xN sized training
matrix called U. Let A be the average image of all the images: 2p x N. Let U be
made as mean centred. i.e.,

U = [U1,1 −A,U1,2 −A, ..., U1,KN −A] (7)
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where U1,1 represents the first training image obtained by both local phase and
local energy at different scales,, U2,1 represents the second training image ob-
tained by both local phase and local energy at different scales and so on. The
training matrix U given in Eq. (7) contains 2pmn-dimensional feature vector
which are mean centered. Unlike appearance based models where intensity val-
ues are used as feature vectors, here we have considered local energy and local
phase information associated with each image as a feature vector. However, a
large number of training samples are often needed to get reliable and robust
estimation about the characteristics of data distribution which is often called as
curse of dimensionality. The eigenvectors, ei and the corresponding eigenvalues
λi of U are determined by solving the well-known eigen-structure decomposition
problem:

λiei = U ei (8)

Though all the eigenvectors are needed for accurate recognition, only a small
number, q is generally sufficient for capturing the primary characteristics of the
feature descriptors. The q eigenvectors, corresponding to the q largest eigenval-
ues, constitute the monogenic eigenspace. Thus monogenic eigenspace analysis
can drastically reduce the dimension 2pmn to the monogenic eigenspace dimen-
sion q while keeping several of the most effective features that summarize the
original information.

3.1 Feature Extraction

The optimal projection axes: λ1, λ2, ..., λq are used for feature extraction. Given
an image A, compute the local phase and local energy images, S of the image A
and project the local phase and local energy images onto the optimal projection
axes λs that results in a feature matrix. That is,

F = Sλj , ∀j = 1..q (9)

The above process of projection of training images onto monogenic eigenspace
is to be repeated for all the training images to create a knowledge base.

3.2 Face Recognition

Let I be an image given for recognition. Let I
′
be the local phase and local en-

ergy captured image which is projected onto the q number of optimal projection

axes λs that results in test image feature matrix say, T computed by T = I
′
λ.

Given two images, say γi1andγi2 of any two face(s), represented by feature vec-
tors: r = �r1, r2, ..., rq� and s = �s1, s2, ..., sq�, the dist(r,s) is defined as

dist(r, s) =

q∑
j=1

‖rj − sj‖ (10)

where ‖a− b‖2 denotes the Euclidean distance between the two vectors a and b.
For classifying a given test image, the nearest neighbour is identified among the
training samples and the corresponding class label of nearest neighbour training
sample is attached to the image under testing.
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4 Experimental Results

This section presents the results of the experiments conducted to corroborate the
success of the proposed model. We have conducted experimentation on AT&T
and YALE face datasets. We have specifically chosen this dataset as these are
used by many researchers as a benchmark dataset to verify the validity of their
proposed face recognition models. All experiments are performed on a P-IV
2.99GHz Windows machine with 8GB of RAM.

Experimentation on AT&T face dataset: The AT&T face dataset contains
images from 40 individuals, each providing 10 different images of size 112x92. In
our experiment, we have considered alternate five samples per class for training
and the remaining samples for testing. Similarly, we have conducted experiments
considering 160 faces as training faces of the AT&T database choosing remaining
6 faces from each person as test faces and the recognition performance has been
obtained considering the remaining faces as test faces. The recognition accuracy
of the proposed approach with varying dimension of feature vectors is given in
Table 1.

Table 1. Recognition accuracy of the proposed approach and other techniques on
AT&T Face database

Algorithm No. of Dimension of featuer vector
Training 30 35 40 45 50
samples

Eigenface 200 88 87.5 86.5 86.5 86.5
160 83.33 80.41 80.41 81.25 81.25

Kernel 200 88 88 88 88 88
Eigenface 160 87.5 87.5 87.5 87.5 87.5

Proposed 200 94.5 95 96 96 96.5
approach 160 95 95 95 95.41 95.41

Gabor 200 86.50 – Here the dimension of the feature vector is : 1600
Wavelet 160 84.00 – Here the dimension of the feature vector is : 1600

Table 2. Recognition accuracy of the proposed approach and other techniques on
YALE Face database

Algorithm No. of Dimension of featuer vector
Training 30 35 40 45 50
samples

Eigenface 75 86.66 86.66 86.66 86.66 86.66
90 82.66 82.66 84 84 82.66

Kernel 75 85.55 85.55 85.55 85.55 85.55
Eigenface 90 82.66 82.66 82.66 82.66 82.66

Proposed 75 91.11 92.22 92.22 92.22 92.22
approach 90 89.33 89.33 90.66 90.66 90.66

Gabor 75 85.89 – Here the dimension of the feature vector is : 1600
Wavelet 90 84.30 – Here the dimension of the feature vector is : 1600
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Experimentation on YALE face dataset:The YALE face dataset contains 165
images of 15 subjects that include variation in both facial expression and light-
ing. The training set comprised of five and six images randomly chosen for each
person with remaining number of face images for each person. The recognition
accuracy of the proposed approach with varying dimension of feature vectors
is given in Table 2. In Tables 1 and 2, we have also provided the recognition
accuracy of the standard eigenface approach, kernel PCA and Gabor wavelet
based RCM techniques. It shall be observed from Table 1 and 2 that the pro-
posed approach possess best recognition accuracy when compared to the existing
approaches.

5 Conclusion

We have presented a new face recognition algorithm within the frame work of
monogenic scale space that captures the local energy and local phase information
at different scales. For the compact representation of the phase and energy con-
tained images, principal component analysis is employed and there by crated the
knowledge base. Experimental results on the standard benchmark face databases
and comparative study with the well known face recognition approaches reveal
the superiority of the proposed approach for face recognition problems and its
suitability in real environment.
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