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Abstract: A well-defined condition-monitoring for power transformers is key to implementing a

correct condition-based maintenance (CBM). In this regard, partial discharges (PD) measurement

and its analysis allows to carry out on-line maintenance following the standards IEC-60270 and

IEC-60076. However, new PD measurements techniques, such as acoustics or electromagnetic (EM)

acquisitions using ultra-high-frequency (UHF) sensors are being taken into account, IEC-62478. PD

measurements with antennas and the effect of their EM propagation in power transformer tanks is

an open research topic that is considered in this paper. In this sense, an empty tank model is studied

as a rectangular cavity and their resonances are calculated and compared with their measurement

with a network analyser. Besides, two low cost improved monopole antennas deployed inside and

outside of the tank model capture background noise and PD pulses in three different test objects

(Nomex, twisted pair and insulator). The average spectrum of them are compared and can be

found that mainly, the antenna frequency response, the frequency content distribution depending

on the PD source and the enclosure resonances modes are the main factors to be considered in PD

acquisitions with these sensors. Finally, with this set-up, it is possible to measure PD activity inside

the tank from outside.

Keywords: power transformer tank; VHF and UHF sensors; monopole antennas; partial discharges;

condition monitoring

1. Introduction

Measurement of partial discharges using very-high frequency (VHF), 30–300 MHz, and

ultra-high frequency, 300–3000 MHz, sensors has become an important tool when monitoring

and assessing the state of the insulation system on gas-insulated substations (GIS) and power

transformers [1,2]. The current pulses that occur as a consequence of PD activity within this electrical

equipment can generate the presence of electromagnetic emissions with bandwidths ranging from

MHz to several GHz [3]. All information contained in these frequency bands can be captured and

stored by using wideband sensors (antennas) which also does not require galvanic contact with any

terminal of the equipment under test [4–7].
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Besides, one of the main drawbacks when using externally such sensors in electrical equipment

with self-shielding, according with its constructive nature, is that it may modify and/or mitigate the

EM generated by PD activity inside the enclosure [8]. This happens in the case of power transformers,

where part of the insulation system susceptible to the presence of PD is within this physical structure.

In this regard, some studies have been addressed in order to establish the effect of shielding in the

attenuation suffered by EM waves when pulses from inside are acquired from outside the transformer

tank [8,9]. However, these papers have not taken into account the design of the sensor, and the

resonance frequencies of the transformer tank, which vary according to the geometry and size of the

structure [10], and the activity of different PD sources inside and outside the power tank.

In this paper, resonant wire antennas are justifiably selected to study the frequency behaviour

of a transformer tank model when measuring PD, both from outside and inside the enclosure.

With this aim, sequentially, test objects generating internal PD and surface PD inside the tank

(vacuole in Nomex and twisted pair) and surface PD outside the tank (insulator) are acquired from

antennas deployed inside and outside the enclosure to study their emissions in the UHF range.

With post-processing and analysis of the measurements it will be possible to identify the main

effects of a rectangular enclosure in PD propagation through a shielding such as a tank of a power

transformer, which it contributes to a better characterization of the type of sources in this type of

electrical equipment.

2. Selection of Antennas

To select accurately an antenna to measure EM emissions due to PD activity, it is necessary to

know the main parameters that define its behaviour. Some of the most important are: Directivity, Gain,

Bandwidth and Scattering parameters or S-parameters. Being S11 = (Za−Z0)
(Za+Z0)

the reflection coefficient,

that indicates how much power is reflected from the sensor (frequency characteristic), where Za is the

load input impedance of the antenna and Z0 is the 50 Ω impedance from the acquisition system.

And the transmission parameter S21, to obtain the frequency response of an emitter-transmitter

radiofrequency (RF) system [11,12].

As it is known, disc couplers are the most common RF sensors for PD measurements in GIS and

they are being slightly used in research models of power transformers [13]. However, the absence

in the High-Voltage (HV) laboratory of a real power transformer including these sensors in which

carry out the measurements, makes as requirement the use of a model of a transformer tank. A disc

sensor has much sensitive response than a monopole antenna. However, the aim of the paper in

this regard is to find an economical, alternative and easy to be implemented design antenna model

to test with it. For this reason, the authors use low cost antennas such as monopoles due to their

easy manufacturing. These kinds of antennas have been used in research for PD measurements such

as in transformers [14,15], as well as, in GIS substation models [16] and inverters feeding electrical

motors [17].

According to the antenna theory and design [12,18], the length of the antenna defines its main

frequency resonance. Besides, a monopole antenna is half of a dipole antenna, thus, the definition of

its first resonance is depicted as the Equation (1) and its first resonance is at λ/4.

fr =
c

l4
(1)

where λ = c/ fr and l is the length of the antenna. Being c the speed of light, 3 × 108 ms−1, and fr the

resonance frequency of the antenna in Hz.

Besides, the resonances for a monopole, given from the first one (λ/4) occur for λ/2, 3λ/4 and

λ, according to [12].

With the aim of selecting the best configuration of a monopole, in this paper four lengths are

analysed and their theoretical results are shown in Table 1. The requirements for the antenna selection

were a suitable frequency response with the smallest possible length to avoid electrical hazards.
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Table 1. Theoretical resonance frequencies for monopole antennas.

Monopole antenna fr(λ/4) (MHz) fr(λ/2) (MHz) fr(3λ/4)
(MHz)

fr(λ) (MHz)

1 cm 7500 15000 22500 30000
5 cm 1500 3000 4500 6000
10 cm 750 1500 2250 3000
16.5 cm 454 910 1364 1820

As described in experimental setup (Section 5), the measurement equipment used can reach up

to 2.5 GHz, so the resonances that can be measured are gray as marked in Table 1. The frequency

resonances for the 1 cm monopole cannot be measured, so its used is discarded. In addition, the

oscilloscope only can represent the first resonance of the 5 cm monopole, thus this antenna is also

rejected. With respect to the 16.5 cm monopole, although it has their frequency resonances into the

analysed bandwidth, its high length can produce electric hazard due to contact with the feeding of

the setup or with energized electrode of the test object. Moreover, this drawback can be increased in

real power transformers with the possibility of electrical contact with their windings, so this sensor

is also discarded. Thus, the length of the monopole elected is 10 cm, even more, it has its three first

resonances below than 2.5 GHz band, so it could measure energy from PD with less risk of electric

hazard than the 16.5 cm monopole.

An Agilent E8364B network analyser (NA) is used to measure the frequency response (S11

parameter) for the monopole antenna. Likewise, this kind of resonant antennas could be improved

by introducing a ground plane at its terminal so that it works as dipole antenna. Thus, to evaluate

the performance of the sensor, the measurements with the NA was carried out with and without a

ground plane. The main advantage of a dipole antenna is to have the double gain and directivity than

a monopole antenna with the same length. Thus, for a λ/4 dipole its gain is G λ
4
≃ ecd3.286 dB and

its directivity D λ
4
= 5.167 dB, only applicable for their resonance frequencies at λ/4, λ/2, 3λ/4 and

λ. Where ecd is the radiation efficiency of the antenna, being ecd ≃ 1 at the frequency resonances of

monopoles and dipoles sensors [12,18].

In Table 2, it is shown the resonance frequency values for the 10 cm antenna with and without a

ground plane together with the relative error (RE) between the theoretical value and the experimental

measure. Note that a λ/4 monopole or dipole antenna has the same theoretical frequency resonances,

so the comparison between the results of calculations for the monopole (dipole) can be carry out with

those obtained from measurements on dipole. Besides, it can be observed that the match between

the resonances calculated theoretically, Table 1, and the experimental results using a ground plane is

better than those obtained without the ground plane, Table 2. In addition, when a monopole or dipole

type antenna is used, sometimes, the resonant frequencies are shifted with respect to the theoretical

ones [11].

In this case, the dipole antenna has a better match of the frequency resonances with the

theoretical calculation made in Table 2, with an error between [−15,+15]%. These results are

contrasted with those obtained in [11], where the frequency response of a 10 cm monopole antenna

with and without ground plane is quite similar, however the power spectrum is greater for the dipole

antenna than that obtained at their analogous resonant frequencies (approximately at 750 MHz and

1500 MHz) for the monopole.

In Table 2, RE below than 15% are gray marked. Negative values mean that the theoretical value

is below than the experimental one, while a positive number is interpreted as the theoretical frequency

has a value above the measure. The 10 cm monopole with ground plane has a RE below than 15%

for all the resonance frequencies measured, while a RE above 29% is obtained for the same antenna

without ground plane. Thus, a 10 cm monopole with ground plane dipole antenna sustained with a

tripod, as in Figure 1, is selected for the measurements.



Sensors 2016, 16, 148 4 of 18

Table 2. Experimental values of the resonance frequencies of the 10 cm antenna working as dipole or

monopole antenna for λ/4, λ/2, 3λ/4 and λ.

fr(λ/4) fr(λ/2) fr(3λ/4) fr(λ)

Antenna Monopole Dipole Monopole Dipole Monopole Dipole Monopole Dipole

10 cm MHz 530 640 1060 1730 1385 2150 2137 2600
% 29 15 29 −15 38 4 29 13

Figure 1. 10 cm monopole with ground plane.

3. Power Transformer Tank

In order to have a representative model of a real enclosure for an oil-immersed power

transformer, [19], a 30 × 30 × 50 cm tank made of steel plates of 5 mm thickness are constructed

to carry out PD measurements in RF. The material and thickness are selected according to those used

in a power transformer 15 kV/420 V of 25 kVA deployed in distribution networks.

For a first approximation, this scale construction is suitable to reproduce the same

electromagnetic effects that can be found in an empty transformer tank. The upper cover has two

entrances separated 30 cm, which allow one, the passage of the high-voltage electrode in the tank to

feed the indoor test object and the other input for an antenna deployment. These holes are 3 cm in

diameter and are protected by a Teflon hollow cylinder serves to prevent electrical contact between

the housing, grounded, and the test object that is placed inside the tank. Finally, a cork layer is used as

a mechanical fit between the tank and the cover, just as in distribution transformer tanks. The Teflon

hollow cylinder and the layer between metal and cork acts as dielectric windows for signals in RF.

The model is represented in Figure 2 with the front wall erased for a better understanding.

592

39
2

31
0

300

510

5

3
1
0

Figure 2. Dimensions of the tank, in mm.
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In next subsections, it is shown the behaviour of the power transformer tank implemented

considered as rectangular resonant cavity, their theoretical frequency resonances and their

measurements when PD activity it is taken into account.

The Tank as a Rectangular Resonant Cavity

A transformer tank is a rectangular structure that has an electromagnetic behaviour as a resonant

cavity [12]. So, when there is PD activity inside the cavity, multiple reflections create stationary waves

between its conductive metal walls which generate resonance frequencies. These stationary waves are

the transverse magnetic (TM) and transverse electric (TE). TM has no components of magnetic fields

in the direction of propagation Hz = 0, but being nonzero its electric field component, Ez. While, TE

wave, has no components of the electric field in the direction of propagation Ez = 0, but with nonzero

components of magnetic field, Hz.

To designate the distribution of a stationary wave TM and TE for axis x, y, z of a resonant cavity,

subindex mnp, are used. For the calculation of these modes, the following equation is used [10,20]:

( frc)mnp =
1

2π
√

µǫ

√

(mπ

a

) 2
+
(nπ

b

) 2
+
( pπ

c

) 2
(2)

where frc is the resonance frequency of the cavity, µ = 4π × 10−7 Hm/A the permeability of vacuum,

ǫ = 8.85 × 10−12 F/m the permittivity of vacuum and a, b, c the dimensions of the tank in m.

Equation (2) is used to calculate the frequencies in which the rectangular cavity resonates and to

compared these frequencies with their measurement in next subsection.

Assuming that the maximum length of a transformer tank corresponds to the z-axis propagation,

width with the x-axis and height with the y-axis, then it is possible to calculate the results of the

resonance frequencies ( frc)mnp, according to Equation (2), for transverse electric modes, TEmnp, and

transverse magnetic, TMmnp. This equation is applied to the tank geometry studied for calculating

their resonant frequencies. The first resonance frequency is obtained at 583 MHz.

To have a measure of these frequencies to be compare with its theoretical calculations, the

transmission parameter S21 is measure to obtain the frequency response of the tank. For the

acquisitions, the Agilent E8364B network analyser and two antennas are used, thus, one injects energy

in the tank by sweeping the frequency of the NA between 500 MHz and 2500 MHz and the other acts

as a receiver. Figure 3 shows the positions of the antennas deployed inside the tank through the

cavities on the top cover.

Figure 3. Two 10 cm monopole antennas with ground plane and an Agilent E8364BD network

analyser for the measurement of the S21 parameter of the tank.
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In Figure 4 the S21 parameter measured with two 10 cm monopoles with ground plane together

with the network analyser is shown.

Figure 4. S21 parameter (frequency response of the tank) measured with two 10 cm dipoles.

The calculated frequency resonances, their modes, the resonances measured ( frc)mnp (MHz),

their power (dB) and the ER between frequencies calculated and measured are shown in Table 3 up

to 2000 MHz. When there is no mode or no measurement of a resonance frequency it is represented

by a dash (−) in Table 3.

Table 3. Frequency resonances for a 30 × 30 × 50 cm cavity in 500–2000 MHz.

( frc)mnp

(MHz)
Calculated

TMmnp TEmnp ( frc)mnp

(MHz)
Measured

Power
(dB)

RE (%)

583 − 011, 101 560 −26 3.89
707 110 − 655 −41 7.30
768 111 111 765 −11 0.34
780 − 012, 102 787 −43 −0.83
927 112 112 967 −29 −4.35
1029 − 013, 103 1032 −8 −0.31
1043 − 021, 201 1048 −6 −0.45
1117 120, 210 − 1105, 1122 −6, −35 1.10, −0.42
1144 113 113 1145 −8 −0.11
1157 121, 211 121, 211 1165 −12 −0.71
1165 − 022, 202 1180, 1222 −29, −10 −1.25, −4.86
1268 122, 212 122, 212 1270 −6 −0.16
1299 − 014, 104 1285, 1310 −7, −24 1.09, −0.84
1344 − 023, 203 1348 −5 −0.27
1392 114 114 1402 −13 −0.73
1413 220 − − − −
1434 123, 213 123, 213 1435 −8 −0.05
1445 221 221 − − −
1529 − 031, 301 1522 −10 0.43

( frc)mnp

(MHz)
Calculated

TMmnp TEmnp ( frc)mnp

(MHz)
Measured

Power(dB) RE (%)

1535 222 222 1540 −15 −0.31
1561 − 024, 204 1552, 1560 −10, −6 0.57, 0.06
1580 130, 310 015, 105 1578, 1590 −7, −6 0.13, −0.63
1608 131, 311 131, 311 1602 −8 0.39
1614 032, 302 − 1620 −17 −0.34
1639 124, 214 124, 214 1628, 1635 −15, −10 0.67, 0.24
1657 115 115 1658 −11 −0.05
1675 225 225 1665 −6 0.61
1690 132, 312 132, 312 1688 −23 0.12
1748 − 033, 303 1778 −34 −1.71
1802 230, 320 025, 205 − − −
1818 133, 313 133, 313 − − −
1826 231, 321 231, 321 1842 −14 −0.86
1853 224 224 1842 −14 0.62
1867 − 016, 106 1860 −43 0.37
1870 125, 215 125, 215 − − −
1899 232, 322 232, 322 1902 −12 −0.17
1920 − 034, 304 − − −
1933 116 116 1932 −23 −0.03

Experimentally, almost all modes calculated theoretically are obtained, except at

high-frequencies, where resonances are not reproduced.

The dominant resonance mode corresponds to TE011 and TE101. The first resonance for the

dominant transverse mode corresponds to TM110. In this cavity, these modes are reproduced at

583 MHz and 707 MHz, TE and TM, respectively. When they are measured with the network

analyser, the first TE mode is obtained at 560 MHz with a RE of 3.89%, compared with the theoretical

values, and −26 dB, where the negative value indicates emitted power inside the tank. Besides, the

first TM mode has its resonance frequency at 655 MHz with a RE of 7.30% and power of −41 dB,

this high energy value received, is because the antenna has its first resonance at 640 MHz as it is

mentioned above.

As it is shown in Figure 4, experimentally, not all modes are excited in the resonant cavity

for frequencies above 2300 MHz. Assuming that the network analyser emits the same power at all

frequencies, then the receiving or transmitting antenna, are not able to excite the frequencies within
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the tank. However, for lower frequencies, the tank is capable of resonating in the most theoretically

calculated modes in Table 3.

When the tank resonance modes are measured, there are mainly two factors that affect the result.

First, the modes defined by the structure. To obtain these resonances, a frequency sweep is done with

the network analyser up to 2500 MHz. The second is the frequency response of the antenna used, that

must be matched for all the bandwidth required. However, the hole size to accommodate the antenna

on the tank and its geometry do not allow to deploy an antenna that meets these requirements. By

restriction of size, and to have a cheaper antenna than a disc-coupler to do the measures, a monopole

antenna is used because can also be deployed inside the empty model tank through the holes and can

acquire energy up to 2250 MHz for the 10 cm in length antenna.

In the experimental measurements with the transformer tank model, almost all their own

theoretical frequencies of a rectangular resonant cavity of the same dimensions are obtained, as shown

in Table 3 [10]. To study only the effect that the tank has on PD propagation, the tank model unfilled of

oil and without placing a magnetic core and windings therein it is used for measuring discharge with

the antennas. Inside, it is expected to measure the direct wave of the discharge and the pulses reflected

in the shield walls that excite their resonant frequencies. Outside, it is intended to receive power

content from frequencies with the higher energy, mitigated by the enclosure, which goes through the

holes in the top and the joints between the cover and the walls. These components depend on the

frequency response of the test object emitting and the resonance frequencies that allows the cavity.

4. Test Objects

To study the effect of the transformer tank in the RF propagation of the PD, three types of test

objects are used and measurements are carried out sequentially to ensure repeatability. First, Nomex

paper is located inside the tank ensuring that the activity from internal PD occurs inside the tank. The

second test object generates surface PD in a twisted pair deployed into the tank. Finally, PD surface

are measured on an insulator located on the tank cover.

• Internal PD are the most harmful for the insulation system and their detection is essential

to carry out proper maintenance based on the condition of the electrical equipment [21,22].

Internal discharges occur in defects, holes, into the insulating systems with low dielectric

strength. The accomplishment of vacuoles in a solid insulation can be a difficult task, for

example in epoxy, due to requires raising its temperature and inject air bubbles through a

needle. The main drawback is that it is not possible to control the geometry of the hole and,

also the needle always leaves a return path in the material. As a solution to these problems,

the idea of segmenting the solid insulation in several layers is used, drilling by a needle the

intermediate sheet to generate a cylindrical imperfection in the insulation. Each of these layers

must be cut it with the same shape to be fitted inside the oil vessel in which it is housed, and

they are glued so that when performed the hole it is aligned. Finally, when the vacuole is done,

the needle leaves a burr to be removed from the material.

The test object for internal PD is housed in a glass vessel with a steel bases, that can be connected

to ground. This vessel contains mineral dielectric oil Nytro Taurus, used in high-power

transformers. Inside the vessel are 11 insulating layers and above them an electrode made of

steel which connects a cable to apply voltage to the sample. Insulating layers are laminated

flexible Nomex, F-20.08 Triplex electrical insulation manufacturer Royal-Diamond, Figure 5a.

This material is a sheet coated on both sides with polyester fibres. In its practical application,

is inserted in windings of transformers, motors and generators subjected to high-mechanical,

dielectric and thermal requirements. Each of those 11 layers has a thickness of 0.35 mm, 3 core

layers are perforated with a needle to create a small cylindrical cavity diameter of 1 mm and a

length of 1.05 mm. In addition, the assembly is placed in a plastic bag and the air is removed

with a vacuum machine. Thus, it is to ensure that this vacuole has the dielectric constant in
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vacuum that is lower than that of the insulating material. Therefore, internal PD can occur in

the cavity at voltage levels relatively small.
• Surface PD appear between two dielectrics, usually between the insulation system and air.

Pollution or moisture, e.g., in insulators, may accelerate the process fetterless of this type

of discharge and can even lead to a short-circuit between the overhead line and the tower

connected to ground. As another example, when PD are produced in the insulated phase

feeding a power transformer, they can cause a fault between the input line and the tank, leading

to equipment out of service.

A twisted pair of copper wire type Pulse Shield SD and manufactured by Rea Magnet Wire

Company is used Figure 5b. Its enamel consists of an insulating layer of resin polyamide-imide

modified and an over layer of modified polyester (THEIC) trishydroxyethyl isocyanurate. The

set has a thickness of 1 mm and can withstand temperatures up to 220 ◦C with a lifetime of

20,000 h and voltage levels until failure 5.7–11 kV.

(a)

Nomex
(b) Twisted pair (c) Bushing

insulator

Figure 5. Test objects: (a) Nomex 4-3-4 submerged in oil, (b) twisted pair of copper wire type Pulse

Shield SD, 23.5 × 12 cm with a central twist of 13.5 cm and (c) bushing insulator with an electrode in

the top, 21 × 8 cm.

Finally, it is used a bushing insulator made of porcelain commonly used in medium voltage

transformers, Figure 5c. To obtain PD over its surface it is contaminated with saline and the

measurements are carry out once moisture has disappeared. This kind of polluted environments

are a very common situation in overhead lines in coastal areas. Some of the agents that pollute

these elements are dust, bird droppings, rain, ice and, near the sea provisions, damp and

saline environment. In locations with a high probability of contamination, the possible activity

of this type of discharge can be critical and measures should be taken. In locations with a

high-probability of contamination, the possible activity of this type of discharges can be critical

and their measure should be taken into account.

5. Experimental Setup

At the very beginning, the type of discharges are previously confirmed using the commercial

TechImp PD Check, its software PD Base and a High-Frequency Current Transformer (HFCT) with

the indirect circuit, according to IEC-60270 standard [23]. For the measurements with the antennas,

RG-223 coaxial cables 5 m long, with BNC connectors are used. The cables are connected to a

Tektronix DPO 7254 oscilloscope 5 GS/s and the set-up is represented in Figure 6.

For these tests, two antennas, one inside and one outside the tank are deployed to determine

the influence of shielding in PD propagation both inside and outside. As is indicated in Section 2,

two antennas of 10 cm in length with a ground plane will be used to have comparable sensors inside

and outside. The antenna inside the tank is located 30 cm from the test object and the second is

placed outside the tank at the same distance, to have the same time-delay between pulses. When the
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bushing insulator is used, it is placed over the tank and equidistant to the outer antenna, which is

also located at 30 cm, to be consistent with the others’ experiments. Figure 7 shows the arrangement

of the setup, which is the same for all experiments, of the antennas and the tank for measurements

with the insulator. As it is shown, both antennas are supported by a tripod that prevents movement.

Nomex or 

twisted pair 

objects

Inner 

antenna

Tank

HV source 

up to 15kV

HV transformer

100 kV 1 nF

Teflon 

hollow 

cylinders 

5 GS/s Tektronix

DPO 7254

oscilloscope

Inner 

antenna 

input

Outer 

antenna 

input

Bushing
Outer  

antenna

Figure 6. Experimental set-up scheme for the PD acquisitions for the three test objects.

Bushing
Inner 

10 cm 

monopole

Outer 

10 cm

monopole

Figure 7. Layout of 10 cm monopole antennas with ground plane, inside and outside the tank, to

measure surface PD from the bushing insulator at 12 kV.

6. Experimental Measurements and Results

6.1. Influence of the Tank in PD Measurements with Antennas

The measurement campaigns are made with 50 pulse acquisitions at 5 GS/s with a time window

of 0.5 µs in the oscilloscope channels where the antennas are connected. For each pulse, the fast

Fourier transform (FFT) was calculated using a rectangular window. Each frequency component n-th

from the FFT was scaled to calculate the root-mean-square (RMS) and squared to obtain the power

spectrum Pfn
, in V2, of the signal at frequency fn, being A fn

the FFT amplitude, Equation (3) [8].

Pfn
=

(

A fn
2

√
2

)

(3)
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In order to compare significant bands of frequency, several intervals are selected for each test object

depending on the frequency components. Equation (4) is used to obtain the accumulative power in

bands ∆P[ fL , fH ] in V2 in various intervals between a lower and higher frequency values, fL and fH ,

respectively.

∆P[ fL , fH ] =
fH

∑
n= fL

(

A fn
2

√
2

)

(4)

Equation (5) is used to calculate the signal-to-noise ratio (SNR) for the accumulative power when PD

are acquired and when no voltage is applied. When SNR > 1 then the background noise power is

lower than the PD power in the [ fL, fH ] band.

SNR =

(

∆PPD
[ fL , fH ]

∆Pnoise
[ fL , fH ]

)

(5)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
-7

-4

-2

0

2

4
x 10

-3

A
m

p
lit

u
d
e
 [

V
] 

 

 

Background noise antenna inside

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
-7

-4

-2

0

2

4
x 10

-3

Time [s]

A
m

p
lit

u
d
e
 [

V
] 

 

 

Background noise antenna outside

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5

x 10
9

10
-10

10
-9

10
-8

10
-7

Frequency [Hz] 

P
o

w
e

r 
[V

2
]

 

 

Background noise antenna inside
Background noise antenna outside

FM 

88-108 MHz
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Wi-Fi 

2400 MHz

(b)

Figure 8. Background noise measured inside and outside the tank, (a) pulses and (b) spectrum with

continuous sinusoidal noise from communications identified.

For the noise acquisition in the laboratory, no voltage was applied and the synchronization was

performed with the AC 50 Hz line voltage of the oscilloscope. In Figure 8a a background noise pulse

is represented for both inner and outer antennas. Additionally, the averaged spectrum of 50 pules

of each antenna are compared in Figure 8b and the sinusoidal signals from communication systems

such as:

• Modulated frequency (FM) radio
• Digital television (TV)
• Global System for Mobile communications (GSM)
• Wireless Fidelity (Wi-Fi)

are depicted. The frequency response inside the tank for FM, TV and GSM at 900 MHz are mitigated,

however, the spectrum power is quite similar for both for GSM at 1800 MHz, 2110−2170 MHz and

Wi-Fi sources.

Once the pulses from noise have been acquired, then the PD activity for each test object was

measured. The voltage level was raised above the voltage ignition, vi, for which PD activity start, up

to set the applied voltage, va, Table 4. The measurement was carried out after 10 min to ensure a stable

emission activity of PD and with a trigger level slightly above the noise level. The Phase-Resolved

PD (PRPD) pattern for each PD source is registered as explained in the previous section and they are

represented in Figure 9.
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Table 4. Ignition and applied voltages for the test objects used.

Test Object vi (kV) va (kV)

Nomex 9 13
Twisted pair 0.65 0.76

Porcelain insulator 10 12

(a) PRPD Nomex (b) PRPD twisted pair (c) PRPD bushing

insulator

Figure 9. PRPD patterns: (a) Internal PD in Nomex 4-3-4 submerged in oil, (b) surface PD in twisted

pair and (c) surface PD in bushing insulator.

6.2. Internal PD in Nomex Inside the Tank

Figure 10a shows an internal PD pulse for Nomex measured by both antennas. Their spectrum

compared to background noise are depicted in Figure 10b,c, inside and outside the tank, respectively.

As might be expected, the signal for the inner antenna has more components in UHF than those

measured outside the enclosure, which are mitigated due to the lost of its energy when the pulse is

rebounding inside the tank [24].
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Figure 10. (a) Internal PD pulses in Nomex paper at 13 kV inside the enclosure acquired by the

inner and outer antennas and their average power spectra compared with the noise inside (b) and

outside (c).

As it is shown in Figure 10b,c, there is a power increase below the frequency of the first

resonance mode TE011, TE101 = 560 MHz, mainly at 450 MHz. All these components of the

spectrum are due to the characteristics of the direct emission radiated of this type of internal PD
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at these frequencies [8], the frequency response of the antenna and the resonance characteristic of

the enclosure.

For the power spectrum calculated for the pulses acquired with the antenna outside the tank, it

can be seen that no significant power is received from the PD above 1.2 GHz, so the tank acts as a

low pass filter. Furthermore, the content of power at 450 MHz is also received outside and mainly up

to 400 MHz. Indeed, more power below 400 MHz is received outside the tank than inside. This can

be due to the cable to ground of the enclosure which act as an antenna whose length radiate in these

frequency ranges when the PD leave the cavity conductively through the ground path.

Finally, the first two resonance modes are marked, TE011, TE101 = 560 MHz and TM110 = 655 MHz

in Figure 10b,c verifying that they can be measured from outside the tank under these circumstances.

Table 5 compares the first resonance modes for Nomex inside and outside the tank. As can be

expected, in both cases, the peak power values are greater inside than outside. To compare which has

the highest magnitude, the power inside is divided by the power outside (Ratio), so values greater

than 1 mean that the mode has higher power inside the tank and viceversa.

Table 5. Peak values for first TE and TM modes inside and outside the tank for internal PD in Nomex.

Modes Power (V2)

Inside Outside Ratio
TE011, TE101 = 560 MHz 8.1 × 10−4 5.9 × 10−4 1.4
TM110 = 655 MHz 2.4 × 10−5 3.3 × 10−6 7.3

Table 6 presents the accumulated power measured with the inner and outer 10 cm monopoles.

In this case, three bands are analysed with their SNR: up to 300 MHz where there is the main

contribution in power from the outer antenna; 300–1200 MHz, where there are the first resonance

modes and; 1200–2500 MHz, where no PD radiation is received from outside. Focused on the

300–1200 MHz band, the ratio for the inner antenna is 166.5 while outside is 35.5, so it could be

measured the the resonances inside the tank from outside with a high SNR. In Table 6, also the two

first modes are included as example of comparison, with high values for the measure inside the tank.

Up to 300 MHz, the ratio outside 214.3 is much greater than inside 2.6, so this components are not

coming from inside the enclosure. From 1200–2500, the power is greater inside with a ratio of 6.8 than

outside, 1.1, thus their low power can not come out the enclosure.

Table 6. Accumulated power and SNR for internal PD in Nomex inside the tank when measured with

the inner and outer monopoles of 10 cm.

Antenna Power (V2)

13 kV 0 V SNR
Inside ∼300 MHz 3.4 × 10−4 1.3 × 10−4 2.6
Outside ∼300 MHz 1.4 × 10−3 6.3 × 10−6 214.3
Inside 300–1200 MHz 6.6 × 10−2 4 × 10−4 166.5
Outside 300–1200 MHz 8.3 × 10−4 2.3 × 10−5 35.5
Inside 1200–2500 MHz 4.4 × 10−3 6.4 × 10−4 6.8
Outside 1200–2500 MHz 5.4 × 10−5 4.9 × 10−6 1.1

6.3. Surface PD in a Twisted Pair Inside the Tank

In Figure 11a surface PD pulses with the twisted pair inside the tank are shown from inside and

outside. For the inner antenna, the pulse has high amplitude than outside the enclosure.

The spectrum of noise compare with PD obtained with both antennas are shown in

Figure 11b,c. Inside the tank, the power is concentrated mainly between 500–1100 MHz
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with a maximum high-power peak value of 3 ×10−3 V2. First resonance modes are

marked on figures for these frequencies. Besides, it can be shown that there are other

frequency components in two distinguished bands, the first up to 100 MHz and, the

second, above 1100 MHz. In the second band, the power is concentrated between

1100–1400 MHz, 1500–1800 MHz and at 2100 MHz, with a peak value of 3 ×10−3 V2 at

1700 MHz. As in the previous experiment, the power spectrum of the PD outside the tank

is not increased above 1.2 GHz, receiving only the GSM and Wi-Fi emissions at 2.1 GHz and

2.4 GHz, respectively. Besides, an increase in power for the range of 500–1100 MHz due to PD activity

in the tank is observed. Up to 150 MHz, there is a power increase from PD with a similar maximum

power level as inside, taking values of 10−5 V2. Note that, in the 150–500 MHz range, there is a power

increase outside the tank that is not shown from inside due to the different scales used. This is because

the pulse inside is 20 times greater than outside the tank, thus the high-scale needed to represent the

inside pulse not allows enough resolution to identify low power components in the order of 10−6 V2

because its peak power is at 5 × 10−3 V2.
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Figure 11. (a) Surface PD pulses in twisted pair at 760 V inside the enclosure acquired by the inner

and outer antennas and their average power spectra compared with noise inside (b) and outside (c).

In Table 7 the first resonance modes for twisted par test object measured inside and outside the

tank are compared. As expected, for both, the peak power values are greater inside than outside.

Table 7. Peak values for first TE and TM modes inside and outside the tank for surface PD in

twisted pair.

Modes Power (V2)

Inside Outside Ratio
TE011,TE101 = 560 MHz 1.5 × 10−4 6.6 × 10−6 22.7
TM110 = 655 MHz 3.8 × 10−7 1.9 × 10−7 2

Table 8 presents the accumulative power measured with the 10 cm monopoles. The three

more significant intervals are: up to 500 MHz, where power from PD is seen outside and not from

inside; 500–1200 MHz; and 1200–2500 MHz. Note that the intervals analysed are different within

experiments depending on the frequency content nature in each test object. In this case, inside, the

most representative band of power is 500–1200 MHz with a ratio of 158.6 which it is also measured
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from outside with a good SNR of 29.1 making it possible to measure the power content of the

first resonances of the tank, excited by this type of PD, from outside and with a good SNR. Thus,

discriminating the bands in which the kind of PD emits power, it is possible discern, in this case, if

there is a concrete kind of discharges into the tank. Outside, the power contents of the first band up

to 500 MHz has a higher SNR, 186.3, however this effect is only representative up to 100 MHz from

inside Figure 11b. From 1.2 GHz, the tank do not allow to leave out radiation from inside.

Table 8. Accumulated power and SNR for surface PD in twisted pair inside the tank when measured

with the inner and outer monopoles of 10 cm.

Antenna Power (V2)

760 V 0 V SNR
Inside ∼500 MHz 2.6 × 10−4 2.1 × 10−4 1.2
Outside ∼500 MHz 1.7 × 10−4 9 × 10−7 186.3
Inside 500–1200 MHz 5.1 × 10−2 3.2·10−4 158.6
Outside 500–1200 MHz 2.1 × 10−5 7.3 × 10−7 29.1
Inside 1200–2500 MHz 1.1 × 10−3 6.9 × 10−4 1.7
Outside 1200–2500 MHz 1.5 × 10−6 1.2 × 10−6 1.3

6.4. Surface PD in an Insulator on the Tank Cover

Figure 12a shows pulses for surface PD on the insulator supported on the cover tank. Spectra

of noise and PD are represented in Figure 12b,c from inside and outside the enclosure, respectively.

Inside and outside, this type of PD have a frequency distribution with a large content of power up

to 300 MHz and between 300–1200 MHz as can be seen in, Figure 12b,c and in this second band

is precisely where the first tank resonant modes are. It should be expected that external signals

can not be measured inside the tank, but this is not so, and the distribution of power measured

inside and outside is quite similar. Into the tank, resonances are observed and their power content is

amplified for values above 1200 MHz. Below 300 MHz, the power is markedly amplified inside the

tank compare to outside. This may be because the antenna is located in the hole of the cavity and the

insulator above the tank, so the sensor can receive the pulse directly, as well as the noise level received

inside has an order of magnitude lower than that received outside, thereby increase the SNR.

Table 9 represent the first resonance modes with each peak value of the tank measured inside

and outside the tank. In this case, the first TE mode has higher power inside the tank than outside,

while the first TM mode is lower inside, as expected. This trend it is not comply with the expectations

for the TE mode. It is because the power takes very low values in the order of 10−8 V2 and the

measurement error is significant.

Table 9. Peak values for first TE and TM modes inside and outside the tank for surface PD on insulator.

Modes Power (V2)

Inside Outside Ratio
TE011,TE101 = 560 MHz 7.5 × 10−8 3.3 × 10−8 2.3
TM110 = 655 MHz 4.8 × 10−8 8.8 × 10−8 0.5

Table 10 shows the cumulative power for the spectrum calculated inside and outside the tank

in three representatives bands for this test object: up to 300 MHz, wherein the PD power decays;

from 300 MHz to 1200 MHz, where the first resonances are; and 1200–2500 MHz band in which PD

have low power. Inside the tank, most of the power received is located up to 300 MHz, and it is

noteworthy that the tank amplifies the value of the power in this band. This can be attributed to the

ground system of the enclosure of the model tank, which gives a poor RF shielding comparing with
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Figure 12. (a) Surface PD pulses on insulator at 12 kV outside the enclosure acquired by the inner

and outer antennas and their average power spectra compared with the noise inside (b) and outside

(c) the enclosure.

the grounding in a real power transformer. In the band 300–1200 MHz, the SNR has the same order

of magnitude for both, inside and outside, however it is greater the power of the PD received from

outside, as expected. Finally, the power contained in the last interval is approximately equal from

both sensors.

Table 10. Accumulated power and SNR for surface PD in insulator over the tank when measured

with the inner and the outer 10 cm monopoles.

Antenna Power (V2)

12 kV 0 V SNR
Inside ∼300 MHz 7.1 × 10−6 4.1 × 10−8 171.5
Outside ∼300 MHz 4.8 × 10−6 3.0 × 10−7 16
Inside 300–1200 MHz 2.9 × 10−6 1.1 × 10−7 27.1
Outside 300–1200 MHz 6.7 × 10−6 2.1 × 10−7 32.3
Inside 1200–2500 MHz 6.2 × 10−7 2.8 × 10−7 2.2
Outside 1200–2500 MHz 4.2 × 10−7 2.4 × 10−7 1.7

7. Discussion

Though in the previous section the important findings when comparing the spectrum of the

three tests samples are mentioned, it is important to state any information that is found as a result

comparing their spectra and SNRs at different frequencies. Thus, in Figure 13 are compared the PD

spectra inside and outside the tank for the three test objects. The base values for the PD spectra

inside for Nomex, Figure 13a and for the twisted pair Figure 13b is clearly lower than from outside.

However, in the insulator case, Figure 13c, the spectrum takes similar shape and base magnitudes.

Table 11 shows the comparison of SNR for the three test objects in three different frequency

bands: up to 500 MHz, 500–1200 MHz and 1200–2500 MHz. For the first band, the SNR is clearly

greater than 1 for the three samples and from inside and outside expect inside the tank for the

twisted pair, due to the PD pulses have great power than this effect attributable to the set-up. In the

500–1200 MHz band, where the first resonances are, it is shown that it is possible to measure this

frequency components from both sides of the tank enclosure. Finally, the 1200–2500 MHz band is

mitigated outside the enclosure with SNR closers to unit.
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Figure 13. Average power spectra for PD measured from inside and outside the tank in (a) Nomex,

(b) twisted pair and (c) insulator.

Table 11. SNRs for the three test objects measured from inside and outside.

Antenna Object SNR

Nomex 51.5
Inside ∼500 MHz Twisted pair 1.2

Insulator 127
Nomex 131

Outside ∼500 MHz Twisted pair 186.3
Insulator 17.4
Nomex 204

Inside 500–1200 MHz Twisted pair 158.6
Insulator 30.8
Nomex 13.7

Outside 500–1200 MHz Twisted pair 29.1
Insulator 27.8
Nomex 6.48

Inside 1200–2500 MHz Twisted pair 1.7
Insulator 2.04
Nomex 1.06

Outside 1200–2500 MHz Twisted pair 1.3
Insulator 1.38

In real power transformers, one of the most important problems to carry out PD detection with

the UHF method is the necessity to locate a sensor inside the tank or in dielectric windows of its

enclosure, such as the oil drain valve. These necessities are very problematic and usually require

switching-off the electrical asset and remove some part of oil. Besides, real transformers have a star

point connected to the neutral that is piped outside the tank through the bushing to avoid the galvanic

connection between the active part of the windings and the tank. Thus, the tank shields the impulses.



Sensors 2016, 16, 148 17 of 18

However, the model tank used in this work does not have a real grounded system that made the tank

be really like a screen for the pulses. Thus, the model tank acts as an emitter at VHF and the outer

antenna can register its effect.

8. Conclusions

Partial discharge measurements performed inside the model of a transformer tank show that

the spectrum of the received signals are influenced by several factors. The first is the cavity,

which depending on its dimensions allowing a certain resonant modes that have power for certain

frequencies. The second is the frequency response of the antenna. The third depends on the PD type.

When the EM emission comes out, the tank acts as a low-pass filter with a cut-off frequency of about

1.2 GHz, so that the outer antenna is not able to receive power from the PD above this frequency.

Furthermore, it was found that a higher power content may appear outside than inside, below

300 MHz, and this is attributed to the ground cable of the enclosure which behaves as an antenna

that amplify the PD radiation below 300 MHz. When the insulator is located outside the tank, similar

power below 300 MHz is measured inside than outside, this could be due to the insufficient EM

enclosure of the tank model. In this case, similarly than with the other test objects, resonance modes

of the tank are excite and the cumulative power has the same order of magnitude both inside and

outside in the 500–1200 MHz range. These results suggest that taking into account only the power

spectrum of the PD, it is not trivial to identify the kind of PD source and additional studies in future

must be carried out. In this sense, it will be intended to have a voltage reference to represent the

PRPD pattern to identify the type of source in each case. However, this requires the use of another

hardware to carry out the measurements in order to capture both, fast pulses in the order of ns, such

as PD, synchronizing with the AC voltage reference in the order of ms, so a synchronized acquisition

system with uncouple channels, with different frequency sample will be required. In future research,

it would be necessary to deploy artificial defects with similar PRPD distributions as those described

in this work in a real power transformer to measure its PD activity in UHF with various sensor

arrangements. Future research will be a step forward in this research area and will allow for applying

the knowledge acquired in this paper for application in the field.
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