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The K distribution has been used as a flexible tool for the modelling 
of S A R  data over non-homogeneous areas. It is characterized by three 
real-valued parameters; one of these parameters, the number of looks, 
is related to the kind of processing the raw data suffer in order to 
become an image. This distribution has been mostly used for one look 
data. 

In this paper the multilook case is considered for both quadratic and 
linear detections. A closed (recursive) computational form is provided 
for the K cumulative distribution function, as well as the estimators 
derived from the substitution method. The sensitivity of the cumulative 
distribution function, with respect to possible discretkations of the 
parameters due to limitations imposed by the recursive form is dis- 
cussed. 

The recursive form form of the cumulative distribution function of 
K multilook random variables is used to perform the Kolmogorov- 
Smimov (KS) test of goodness of fit over SAFUZX data. It is shownthat, 
mainly for forest data, the fit with the K multilook distribution is supe- 
rior to some of other distributions that frequently appear in the litera- 
ture. Specifically, the use of the normal distribution for this kind of data 
is discarded systematically. 

1. INTRODUCTION 
The precise knowledge ofthe statistical properties of S A R  data plays 

a central role in image processing and understanding. These properties 
canbeusedtodiscriminatedifferenttypes oflanduse(see,forinstance, 
Beaudoin et al, 1990. 1992; Yanasse et al, 1993). 

Several studies have been conducted in order to relate physical fea- 
tures and statistical properties of S A R  data (Lopes et al, 1990). In order 
to do this, some distributions are considered. 

For 1-look data and homogeneous targets, a common hypothesis is 
the Exponential and Rayleigh distributions, for quadratic and linear 
detections, respectively. When the observed region cannot be assumed 
as homogeneous, other distributions are considered. Among these, the 
K distribution has received attention in the literature (se, for example, 
Tackeman, 1980; Jackeman-Pusey, 1973, 1976; Jao, 1984). 

When the processing is multilook, aiming at noise reduction, several 
problems appear: whenever the sum of independent and exponentially 
distributed random variables has a quite known distribution, the 
Gamma distribution, the convolution of Rayleigh distributions has no 
closed form. The use of the multilook K distributions (intensity and 
amplitude) has been restricted in the literature due to, possibly, the lack 
of a closed and computationally feasible form of the cumulative dis- 
tribution function. 

When the multilook case is considered, the K distributions becomes 
a three-parameter case of the class of scale distributions. In this paper 
the following results are provided: a careful derivation of the K-ampli- 
tude and K-intensity distributions, their densities and cumulative dis- 
tribution functions, and the estimators of their parameters; once these 
elements are stablished, the sensitivity of these distributions with 
respect to the discretization of their parameters is studied; the problems 
encountered to implement the cumulative distribution function of these 
distributions are commented; finally, it is shown how these distribu- 
tions are useful to the fitting of non-homogeneous areas of SAR data. 

2. SAR IMAGE FORMATION OF INHOMOGENEOUS 
REGIONS 

A multiplicative model is commonly adopted for SAR image forma- 
tion (Caves, 1993). This model assumes that the observed value in 
every pixel is the outcome of a random variable Z, defied as the prod- 
uct between the random variables X and Y ,  where X represents the ran- 
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dom variable modelling the terrain backscatter and Y represents the 
random variable modelling the speckle. i.e., Z = X . Y.  Different dis- 
tributions for X and for Y yield different models for the observed data 
Z(w) = z. Intensity variables shall be denoted with subscript “I”, and 
amplitude variables with subscript “A”. 

For homogeneous regions, the backscatter is considered constant. 
Therefore, the distribution of Z is a rescaled version of the distribution 
of Y ,  which is usually assumed as r -Gamma- (convolution of Ray- 
leighs, resp.) for intensity (amplitude, resp.). A convolution of Ray- 
leighs could be conveniently approximated by a & -Square Root of 
Gamma- distribution (see Yanasse et al, 1993, for the parametric con- 
ventions used in this paper). 

The basic hypothesis that governs the modelling of inhomogeneous 
regions is that their backscatter is not constant, though it can be mod- 
elled by a convenient distribution. In this work, following (Ulaby- 
Craig Dobson, 1989), it will be assumed that XI - r(a,n) if the pro- 
cessing is quadratic, and that XA - @ (a.1) if it is linear. In this sec- 
tion, the K distributions will be introduced in a merely notational man- 
ner; their definitions and properties wiU be presented in Section 3. 
2.1 OneLook Case: In this case, the speckle noise is usually considered 
exponentially or Rayleigh distributed, depending on the kind of pro- 
cessing. 
2.1 a Intensity: When the image is in intensity, the backscatter is multi- 
plied by the outcome of a standard Exponential random variable, i.e., 
Y,  - $(l). In this manner, holds that 

where /? = a/A = E(ZI), and Wl(a,B) is called K-intensity-one- 
look distribution with parameters a and B. 
2.l.a.iAmplitude: When the image is in amplitude, the backscatter is 
multiplied by the outcome of a standard Rayleigh random variable, i.e., 
YA - %(l). In this manner holds that: 

where fi = a/n = E(Zi), and SDLl(a,@) is called K-amplitude one- 
look distribution with parameters a and /?. 
2.1.b Multilook Case: In this case, again, the speckle has the distribu- 
tion of the mean of n independent identically distributed random vari- 
ables, namely Y = n - x:= Yi. The number n is often called nuin- 
ber of looks. 
2.1.b.i Intensity: Each random variable Yi in the aforementioned mean 
has a standard exponential distribution, therefore YI - r(n, n) .  Then, 
holds that: 

where @ = a/A = E(Z,),and Wn(a,@) iscalledK-intensity n-looks 
distribution with parameters a and B. 
2.l.b.ii Amplitude: Each random variable Yi has a standard Rayleigh 
distribution. Since there is no closed form for the distribution of such 
sum of random variables, it is customary to make the approximation- 
that leads to a Square Root of Gamma distribution. Therefore, 
n1’2YA - @ (n, 1) and it can be proved that: 

Notice that, with the presented approximation, holds that ZA = &. 
3. THE K DISTRIBUTIONS, THEIR ESTIMATORS AND 

SCALE PROPERTIES 
The aforementioned manner to derive Wn(a, /?)  distributedrandom 

variables (i.e., through the use of a multiplicative model) is not the only 

ZI = X I .  YI - Wl(a,/?), 

- ZA = XA * YA Wl(a,@),  

ZI = X ,  * YI - Wn(a,/?), 

z, = XA . YA - %n(a,@). 



one. These random variables could also be defined as those constructed 
by the use of the mixture model presented in (Teich-Diament, 1989) in 
the following manner for the intensity me :  let the random variable 
modelling the returned signal, conditioned on the backscatter. be 
Gamma distributed: (Z, I X, = x) - l"(n,n/x). In this manner, 
E(ZI I X ,  = x )  = x. If the backscatter has a Gamma distribution. i.e, 
ifX, - r(a,n),thenZ, - Wn(a.B).ThisdefintionoftheKinte~ity 
distribution is equivalent to the previously presented since, if 
(Z, I XI = x )  - r ( n , n / x )  then. defining (Z,' I XI = x )  = xZ, 
holds that ( Z i  I X I  = x) - r(n,n);  now, letting XI - r(a,A), it is 
immediate that Z, - r(a,n) T(n,n), which is the defhtion of 
Xm(a,B) distributed random variables given in 2.1.b.i As stated 
in 2.l.b.ii, ZA = and, therefore, the equivalence also holds for the 
amplitude distribution. 
3.1 Intensity Random Variables 

The random variable Z,is said to have K-intensity n-looks distribu- 
tion with parameters a E R + ,  /? E R+ and n € R +  (in symbols 
Z - Wn(a,/?)) if its density is given, for every x E R, by: 
fZ,k a ,  B, n )  = 

where Kv denotes the modiFied Bessel function of the third kind and 
order v .  It is possible to see that its r-th order moments are given by: 

A remarkable property oi thib distribution, as presented in equa- 
tion (1), is the commutativeness of the parameters a and n. This prop- 
erty, and a convenient discretization of one of these parameters, will 
allow the obtention of a feasible computational -recursive- form of the 
cumulative distribution function of Wn(a,#?) distributed random vari- 
ables. In order to obtain this function, the following notation will be 
used: 8, = aand13~ = n,orOl = nand0 - a.Thechoicebetween 
these two reparameb-izations, and its imphcations in terms of CPU 
required time and precision, will be discussed later. 

It can be proved that the cumulative distribution function of such ran- 
dom variable is given, for every x € R, by: 

2. - 

~ ~ , ( x ;  e,, B, 0,) = 

The hypothesis of 0, E N, instead of 8, E R + is required in order 
to obtain the previous expression in a closed form. Writing 
v = 10, - 821, k = 2n - 1 and z = 2 4 m ,  it can be shown 
(Yanasse et al, 1993) that: 

where: 
-zv+l K,+,(Z) if k = 1, 

g ( v , k , z )  = ( k  - 1) (2v + k - 1) g ( v , k  - 2 , 4  + { -- ,v+k K ~ + , ( Z )  - ( k  - 1) Z~+~- 'K , (Z)  else. 

The number of required recursions in order to compute a single value 
Fzl(x; e,, b, 8,) is 8,. Therefore, the best choice of reparametrization, 
under the computational speed criterion. is 8, = max(a.n} and 
8, = [min(a,n)]. However, this choice may lead to undesirable 
errors in the computation of the cumulative distribution functions (see 
Section 4.). 
3.1 .a Estimators for the Parameters of the Intensity K Distribution: 
The estimator of /? based on the first sample moment is #? = hl, the 
sample mean. In order to obtain the moments estimators of a and n it 
is necessary to solve a system of equations; this system yields the solu- 
tion h = (- B f m/(2A), where: 

2 2 "  A = 2h2 - h1m2 - h1h3 

4 2  3 3  4 C = hlh2 - 8h1h2 - 2h1h2h3 + l6h2 + 
2 2 2  -8hlh2h3 + h1h3. 

One estimator of a, obtained by the moments method, is: 

n + 1) 
2 2 '  a =  

A(h2 - AI) - hl 
3.1.b Scale Properties of the Intensity K Distribution: Let 
U' - Wn(a, 1), then the random variable defied as U = BU', with 
B E R + ,  has a Wn(a,#?) distribution. Therefore, the parameter /3 
could be called the scale parameter of this of distribution. 
3.2 Amplitude Random Variables 

The random variable Z A  is said to have K-amplitude n-looks dis- 
tribution with parameters a E R + ,  #I E R +  and n E R, (in sym- 
bols Z - !K&n(a,B, n)) if its density is given, for every x E R, by: 

It is possible to see that its r-th order moments are given by: 

Using the same reparkefrization used in the derivation of equa- 
tion (2), the cumulative distribution function of such random variable 
isgivenby F%(x2; .),with FZ,asdefinedforthe~n(el,B, 8,)distrib- 
uted random variables. 
3.2.a Estimators for the Parameters of the Amplitude K Distribution: 
The estimators of a, p and n by the substitution method are given by 
/3 = h z  and by the solution of the following system of equations: 
n 

3.2.b Scale Properties of the Amplitude K Distribution: Let 
U' - SGAn(u, l), then the random variable defined as U = @U', 
with /? E R + , has a 96An(a. #?) distribution. Therefore, the parameter 
8 = @ could be called the scale parameter of this distribution. 
4. THE EFFECT OF PARAMETERS DISCRETIZATION ON 

THE K AMPLITUDE DISTRIBUTION FUNCTION 
Equation (2) was derived under the restriction of an integer parame- 

ter, i.e. 8, E N. In order to assess the difference between calculating 
the cumulative distribution function of K distributions using that form 
and the function without that restriction, a measure between distribu- 
tions is used. The distance in variation between cumulative distribu- 
tions functions D l  and D2 is defied as 
d(D,, D2) = sup,,,lDl(x) - Dz(x)l. Using this measure, it is pos- 
sible to compare Fz( * ; a, B, n)  with FZ(. ; a, p, [nl), being n any real 
number. The parameter #l is fixed in this study since, using the scale 
properties of this distribution presented in Section 3.2.b, it is immedi- 
ate to infer whatever happens with the function in the other values. 

Figure 1 shows the maximum difference, for a E [l, ..., 203, 
between F z A ( .  ; a, 8, n) and F z A ( .  ; a, B, [n]), which always occurs in 
the values n - 1/2 E N. The smaller (bigger, respectively) the value 
of n (a, resp.) the bigger the difference between distributions. For 
n = 1 the difference is almost independent of a, and of the order of 
10 - '. The authors intend to study the influence of these values in the 
KS test, when equation (2) is used to calculate the cumulative distribu- 
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tion function of K-distributed random variables. 
The presented results show that the “mputational” choice 

8, = max{a,n}and02 = [min{a,n}lmayleadtolargervaluesof 
the distance in variation d(F(a,/?,  n), F(8,,/?, 02)) than the altemative 
one, namely, 8, = max{a,n} and 8, = [min{a,n}]. In this way, 
these two alternatives offer a tradeoff between required CPU time and 
precision. 

5. APPLICATIONS OF THE K DISTRIBUTION TO SAR 
IMAGE ANALYSIS 

As it was previously mentioned, the K distribution is useful for the 
modelling of non-homogeneous areas. In (Yanasse et al., 1993) several 
distributions are fitted to homogeneous (non-forest: NF) and non-ho- 
mogeneous (forest: F) data, obtained by the SAREXcampaign over the 
Tapaj6s area, Brazil, and for bands HH and W. 

After a visual segmentation of the image, several samples (64 from 
forest and 37 from non forest) were taken. These samples were fitted, 
after parameter estimation, by the following distributions: the Normal 
(N), Weibull (W), Gamma (G), Square Root of Gamma (SG), Log- 
Normal (LN). Beta (B) andK-amplitude 5 looks (KA5). The p-values 
of the KS tests were calculated, and those distributions for which the 
sample was fitted at at least p = 0.01 were recorded. 

Table 1 presents the percentage of samples, from HH and W bands 
and types of land use, that not rejected the considered distribution for 
the KS test at the 1% level. It is quite evident that the Normal distribu- 
tion is quite inadequate for forest (non-homogeneous data) and both 
bands, whilst the Beta, Square Root of Gamma and K-amplitude dis- 
tibutions fit these data well. Though it is common to assume that mul- 
tilook data can be well fitted by the Normal distribution, it is clear that 
this is not the case for the considered data. The K distribution is also 
superior to the Gamma, Weibull and Log-Normal distributions for 
both bands and forest samples. 
TABLE 1. Percentage of samples not rejected by the KS test, at the 
1% significance level. 

Figure 2 shows the relation between the estimated value 6 and the 
p-value of the KS test for the corresponding U 5  distribution. The 
samples shown in this figure were all fitted by the U 5  distribution at 
at least the 1% level. Those values 6 2 100 were set to 6 = 100. 
Clearly, it can be concluded that the estimated parameter 6 discrimi- 
nates well these two classes. The same discriminatory property of the 
estimated parameter 6 was observed in those samples that do not pass 
the KS test at the 1% level, not shown in the figure. 

In (Yanasse et al, 1993) the discriminatory capabilities of other mea- 
sures (cceficient of variation, mean, parameters of other distributions, 
etc.) are studied. 
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Figure 1. 
Maximum distance in variation between FzA(.  ; a, B. n)  and 

FZ, (. ; a ,  B. [nl) 

Figure 2. 
KS p-values vs. 6 of the 9645 distribution: “+” (NF-HH), 
“x” (NF-W), “0” (F-HH) and “*” (p-W) samples. 
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