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On the Use of Multitone Techniques for Assessing
RF Components’ Intermodulation Distortion
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Abstract—A comprehensive analysis of various techniques
currently used for assessing microwave components’ nonlinear
distortion behavior is presented in this paper. The output of
a third-order system subject to a two- or three-tone input is
given, and then used as the comparison reference for studying the
response to a general multitone or random excitation. Theoretical
results thus obtained allowed the generalization of standard two-
tone intermodulation (IMD) figures of merit, to multitone IMD
ratio, multitone or noise adjacent channel power ratio, and noise
power ratio (NPR). This approach proved that normal NPR tests
produce optimistic results that can be as large as 7 dB when
evaluating in-band co-channel power interference.

Index Terms—Intermodulation distortion, nonlinear systems.

I. INTRODUCTION

A LTHOUGH two-tone measurements still represent the
industry standard in intermodulation (IMD) distortion

characterization, today, engineers seek alternative test proce-
dures closer to the system’s final operation regime [1], [2].
In fact, microwave circuits intended for telecommunications
applications are expected to handle one or more carriers mod-
ulated with nonnull information signals, i.e., finite bandwidth
excitations, which are generally modeled as multitone spectra.

The derivation of a set of analytic expressions capable
of describing the system’s response under any number of

tones is thus a very useful result, as it would allow the
integration (and comparison) of the more usual ways of IMD
characterization: under two-, three-tone, general multitone,
and band-limited noise. Unfortunately, the number of possible
frequency combinations among a general set oftones is so
large, which makes the problem intractable in analytical form
even for the simplest case of IMD on third-order memoryless
systems. Although some computer routines were already pro-
posed to make these combinatory calculations [3], [4], they
can not provide qualitative information useful for studying the
IMD generation process or for comparison purposes between
the various distortion figures of merit.

One possible way of simplifying this problem is to restrict
the input excitation. The first thing that comes to mind is
to consider all tones of equal amplitude. That is not too
restrictive, as such a spectrum encounters many practical
applications like distortion noise tests [5] (which generally use
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band-limited white noise) or modern CDMA mobile commu-
nications signals [2], [6]. The second simplifying assumption
is to consider a frequency arrangement where all the tones
are equally spaced. This resolves the output mixing products
ordering problem faced whenever uncommensurated tones
are dealt with. The drawback associated with the uniform
frequency mapping is that now there will be various products
falling on the same position, which may be added in voltage
or power. As it will be shown in the following sections, this
may be overcome if all input tones are supposed to have
uncorrelated phases.

A work by Leffel [7] already proposed a first set of
formulas to compute the number of mixing products appearing
in a certain position inside (or close to) the input signal,
for such an excitation spectrum. However, those results still
suffer from several limitations. First, they assume that co-
channel distortion is always measured within a notch and, thus,
neglected all the products involving the nullified tone. Second,
characterization of adjacent channel distortion is restricted to
the amplitude of the tone closer to the input spectrum. This
obviates important adjacent channel power ratio (ACPR) cal-
culations, either of total integrated spectrum regrowth power
or of integrated power in a prescribed bandwidth [6]. Finally,
those formulas are expressed in terms of recursive summations
(which makes them difficult to apply and justifies the tables
of values also given) and some of them were derived from a
trial-and-error empirical basis.

The first goal of this paper is to derive a more general and
rigorous mathematical result valid for both two-tone, multi-
tone, or noise excitations. That will be used to discuss the most
important types of distortion specs in the microwave field,
and to provide comparison relations of practical significance
between these alternative IMD figures of merit.

To accomplish that, first the reference cases of two and three
tones are analyzed in Section II. Section III generalizes those
results to an input composed of tones of equal amplitude
and uniformly separated in frequency. Section IV analyses the
system’s response to random inputs, and Section V integrates
the results obtained for continuous and discretized spectra.
Finally, Section VI is dedicated to the comparison of the
most important IMD figures of merit, and Section VII presents
conclusions.

II. TWO- AND THREE-TONE INTERMODULATION

RESPONSECALCULATIONS

The analytical development that follows uses the formalism
of Volterra–Wiener techniques [8]. It is based on the statement
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that a nonlinear system with or without mem-
ory, which is stable and its nonlinearities are differentiable
in their domains, can be represented by a truncated Volterra
series expansion around some quiescent point. Thus, assuming
the input is composed by , equally separated tones of
the form

(1)

where tone frequencies are given by
and , the

output can be written as

(2a)

in which the are the th-order output responses given by

(2b)

This expression states that the output signal will be com-
posed of a set of mixing products whose frequency is a
linear combination of the input and whose amplitude is
proportional to the number of different ways that each product
can be generated as follows:

(3)

where all are positive or null integers and represent the
number of times frequency enters in the desired mixing
product.

Therefore, the output spectral lines will also be equally
separated by , and its amplitude will be proportional to
the multinomial coefficient [9]

(4)

where is the order.
As was said, in (1), the input tones were considered

equally spaced in frequency and having a phase ofrelative
to a common reference. Although defining relative phases of
different frequency signals may sound strange, it allows the
simultaneous treatment of two distinct spectrum generation
arrangements. In the first one, it is assumed that all
were created by frequency synthesis from a single reference.
Thus, they are all harmonically related to that reference,
and relative phases are clearly defined. On the other case,
each has a different reference, their frequencies or phases
are uncorrelated, and each of the have to be considered
as a random variable. This is equivalent to a set of
uncommensurated tones.

If one is interested in studying system’s response up to
order , only the first nonlinear transfer functions (NLTF’s)

have to be known. In this context,
nonlinear distortion is often classified as small- or large-signal
distortion, whether an expansion up to third order is or is
not sufficient to describe the system with enough accuracy.
In telecommunications systems of practical interest, where
linearity is a prime concern, an expansion up to third order gen-
erally gives all the required information [2], [9]. This assumes
signal excitation reasonably below output power saturation or,
in more practical terms, up to the 1-dB compression point.
Thus, it becomes clear from (2) that a signal composed of
three different tones is enough to completely characterize all
of the first three NLTF’s. Obviously, if this characterization is
to be done by laboratory measurements, must be
selected among all possible combinations inside the band of
interest. Thus, if it is clear that a two-tone test is not sufficient
to uniquely identify , it should also be evident
that, provided the excitation is always kept in the small-
signal range (high carrier-to-distortion-ratios required), there
is no theoretical benefit in increasing the number of excitation
tones beyond three. Furthermore, in systems where is
a memoryless mapping or in which operation bandwidth is
very small compared to the system’s available bandwidth, and
low-frequency behavior is constant for all possible baseband
products, do not depend on frequency. Even
a continuous wave (CW) test should then be enough for
system identification. The problem with this procedure is that
third-order products would appear at as co-
channel power interference (CCP), which is indistinguishable
from the much larger linear response , and at

, which usually falls outside the useful bandwidth
and, thus, is strongly affected by bandpass behavior.

In fact, the simplest way to generate in-band third-order
products at frequencies distinct from the linear response is to
excite the system with two equal amplitude tones atand
( such that input power is ). The in-
band mixing products would then appear at ,

, , , but
also at and .
According to (2) and (4)

(5)

and

(6)

Thus, from the measurement of , ,
one can evaluate and, therefore, assess system’s
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. Also, assuming that is negligible
compared to ( follows a 1-dB/dB straight
line), output third-order intercept point for can be
calculated as

(7)

which stands 4.77 dB above the third-order intercept point for
.

Another more demanding way of doing the characterization
is to use an excitation of three equal amplitude tones

of equally spaced frequencies , ,
and , and then rely on composite triple-beat (CTB) products.
Some extra care must now be taken because, contrary to the
previous two-tone test, the phase (or frequency) correlation
between the three tones, , and does matter. Indeed, for
example, for at , contributes with a
phase of , and , ,
and all contribute with a phase of . If ,

, and are uncorrelated, these two groups add in power,
while if they were correlated, they would add up linearly. The
same happens with measured at , for
which has a phase of , while

contributes with .
Nevertheless, it is still possible to relate two- and three-

tone excitation results. Assuming uncorrelated phases and a
memoryless system, can be given by

(8)

and

(9)

while is

(10)

and

(11)

Thus, knowing and the system’s linear response,
it is possible to predict CTB behavior or, conversely, one
can deduce two-tone test responses from CTB measurements.
However, again keep in mind that if the system has memory,
these conclusions may not be necessarily true.

Another interesting conclusion that may be drawn from
these three-tone test results is that CCP can never be fully
observed, but simply inferred. Note, for instance, the results
of (10), where at was calculated. depends
not only on the adjacent tones , , but also on itself.
This implies that the measurement of full power will
be masked by , while the common action of making

null will dramatically perturb , reducing its value
by 8.87 dB for the same amount of output power. If CCP at

was to be studied, the situation would even be more severe,
as it is shown that all terms of depend on . (In fact,
if tone was disabled, the experience would be converted
into a conventional two-tone test of and , which cannot
produce any mixing product between the two).

A generalization of these results to a multitone input spec-
trum composed of equally spaced, but uncorrelated, tones
is not too difficult, although requiring some laborious combi-
natory calculations.

III. M ULTITONE IMD RESPONSECALCULATIONS

Consider an input spectrum composed ofequally space
tones like (1), whose positive frequencies can be given by

; , which excites a third-
order memoryless system. In this case, do
not depend on frequency and, thus, .
According to (2b), the system’s output frequencies will be
given as all possible combinations

of the input frequencies , where is the order of the
system’s component in the Volterra series sense. Therefore, the
system’s third-degree term generates two distinct
frequency clusters, one around the excitation spectrum and
another at the third harmonic. The former, herein represented
by , includes new adjacent tones below the input
spectrum ,
new adjacent tones above the input spectrum

, and tones exactly at the input
frequencies . The cluster near
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Fig. 1. Output signal spectrum of a third-order nonlinear circuit excited by
K equally spaced tones of constant amplitude.

third-harmonic, like the ones produced by the second-degree
terms are out-of-band products and, thus, are usually discarded
in narrow-band microwave applications.

To calculate the amplitude of each of these generated tones,
it is necessary to first evaluate the number of different mixing
products appearing on each position, and then adding up them
linearly or quadraticaly (in voltage or power) according to their
phase relation. For that, we will divide the generated spectrum
according to the above classification and then present formu-
las for the corresponding mixing products. These formulas
were derived using straightforward, but lengthy, combinatory
calculus, which is the reason why their development will
not be discussed here. Their proofs can be found in the
Appendix.

In general, there will be th-order mixing products involv-
ing only one input frequency or involving

such of tones
, which may fall into the same output frequency po-

sition. However, each of these sets has a distinct multinomial
coefficient and is affected by a different phase arrangement.
For example, although and
correspond to the same frequency , there are six different
ways in which the first may be constructed, while there are
only three ways for the second. Furthermore, the phase of the
first is , while it values for the second, no
matter each input tone considered for. If the input tones
are not correlated in phase, these two mixing products can not
be added linearly and, thus, it results are convenient to derive
distinct expressions for each of these frequency arrangement
types.

A. Number of Third-Order In-Band Mixing Products

A rapid glance on the output spectrum generation process
may allow the conclusion that third-order clusters will be
symmetric. The symmetry axis for the in-band mixing products
corresponds exactly to the middle of the excitation spectrum

. Therefore, it is only necessary to study cases where
for adjacent channel products and

for co-channel mixing products,
as shown in Fig. 1.

1) Number of Adjacent Channel Mixing Products
: At adjacent channel position

, there may appear mixing products of
type A, in which , or B, in which .
The multinomial coefficient for type A is and B is

, thus ACP at

Fig. 2. Division of the input spectrum into two blocks of tones, for comput-
ing the number of co-channel mixing products.

and where:

Type A:

(12)

Type B:

(13)

where , and is the remainder of .
It can be shown that for , these expressions

coincide with the sum of the recursive equation presented by
Leffel in [7].

2) Number of Co-Channel Mixing Products
: At co-channel position

, there may appear mixing products of
type A, in which , B, in which , C,
in which , or even D, in which .
The multinomial coefficient for types A and C is , and
for B and D . Since we are interested in calculating
the number of co-channel products that fall on position, it
will be useful to divide the input spectrum in two different
blocks: of tones and of
positions, as is shown in Fig. 2.

The mixing products that fall on may then be seen as
including an upper adjacent power channel (ACP) from the
first block, lower ACP from the second, and CCP of mixing
frequencies from both and . This approach enables the use
of the formulas already presented for the first two cases

Type A and

(14)

Type A and

(15)

Type A and

(16)

Then

(17)
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where , and .

Type B and

(18)

Type B and

(19)

Then

(20)

where , and .

Type C and

(21)

and

Type D (22)

IV. NONLINEAR DISTORTION RESPONSE TORANDOM INPUTS

Another common way of evaluating the component’s non-
linear distortion performance is by performing a noise test
[2].

According to the previous scenario, in this section, we
will restrict our analysis to a third-order memoryless system,
subject to a narrow bandwidth signal. The random signal
is assumed to have zero mean with Gaussian probability distri-
bution and , as its auto-correlation and power
spectrum density functions, respectively [10]. The system’s
output will also be random and, thus, its power spectrum
density function can be deduced from the auto-correlation
function, [2], [8]:

(23)

By calculating the Fourier transform of , the power
spectrum density function of becomes

(24)

in which is a Dirac delta function at dc, and the operator
represents spectral convolution.
For common practical tests, such as noise power ratio

(NPR), excitation signals are usually band-limited white
Gaussian noise with, or without a notch. Thus, in the
following, we will calculate of such a random input
where is

elsewhere.
(25)

Using (24), we found that components falling inside,
or close to, the input bandwidth are

elsewhere (26)

where , and .
A rapid glance over this expression shows that, due to

constant input spectrum density and the successive convolution
process, third-order components present a parabolic pattern,
except the term , which
is constant in frequency. In fact, it is indistinguishable from
the flat linear response. Note, however, that it is indeed part
of third-order response, as its amplitude exhibits a cubic
dependence on total normalized driving power . The
other term, which appears at the input band and is
proportional to , may origin some confusion as
it seems a second-order in-band component, dependent on
the first- and third-degree coefficients of the nonlinearity,
but not on the more natural second-degree. The reason
for that resides on the quadratic (average power) nature of
the spectrum density function. That term is really the cross
product of the output fundamental power
and describes the existing correlation between the first-order
response and part of the third-order response.

In macroscopic terms, the role played by
is to describe

gain compression or expansion—AM–AM—(if a nonlinear
system with memory were considered, that component
would also lead to AM–PM conversion) and system’s loss
of sensitivity to one weak signal due to the presence of a
stronger one. The remaining parabolic term constitutes the
origin of what is normally called IMD, spectral regrowth,
or adjacent channel power, observed in real systems subject
to random inputs.

Another more revealing conclusion that may be gathered
from those results refers to common NPR tests. For that
purpose, consider now that a slice of infinitesimal bandwidth

was cut off from the driving spectrum at a certain .
Since a finite power density spectrum presumes null power in
a vanishing bandwidth, total input power is unaltered. Also,
it can be easily understood that all components will
tend to the previous as tends to zero. Thus, if
one was measuring noise density power exactly within the
notch, the results would remain essentially unaltered, except
since is null, both measured first-order response
and third-order term
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are zero. This means the impact of measured third-order
nonlinear distortion when the notch is present, compared to
the untouched excitation, tends to (27), shown at the bottom of
this page, which can vary from 5.64 dB in the middle of input
bandwidth to 6.99 dB in its extremes
( or ). Therefore, despite the observed
unaltered spectral regrowth, which may support the intuitive
idea that a narrow bandwidth notch has no impact on the in-
band distortion, this method induces a misleading evaluation
that can be as optimistic as 7 dB.

V. GENERALIZATION OF MULTITONE EXCITATION

In this section, we discuss the use of multitone signal excita-
tions to simulate NPR tests. Beyond the direct interest that this
analysis has, it also provides a very useful insight to distortion
generation under noise or multitone excitations. To do that, we
now consider a driving signal composed oftones, which can
be understood as the discrete representation of the band limited
power spectrum density function of the previous section. Thus,
each tone will have a constant amplitude of

(28)

which corresponds to total integrated power of in
one of the divisions of . When tends to infinity,

goes to zero, this input tends to the power density
spectrum of (25), and the results of Section III must coincide
with the ones of Section IV. This is equal to saying that the
following limit must equal previously calculated

(29)

where is the number of different mixing products
appearing on and is the nonlinearity degree.

Before proceeding with the application of Section III’s
results, it is necessary to discuss the tones’ phase correlation.
In order to consider the statistics central limit theorem as a
justification to use a tones signal as a reasonable approx-
imation of a Gaussian distributed random process [10], it is
necessary to guarantee that each of the tones is a random
variable independent from all the others. Thus, each tone
should have a random phase that is completely uncorrelated
to all the others, which implies that the tones must be
generated from distinct source references. (Such an uni-
formly located multitone spectrum is equivalent to another one
composed of uncommensurated tones). If a pseudorandom
(periodic and deterministic) signal is used to generate the
input tones, uncorrelated phases are not granted, and the test

should be performed by averaging partial results obtained with
various phase arrangements. (That also applies for computer
simulations of NPR.)

Considering then uncorrelated tones, normalized power
of co-channel tones at becomes

(30)

which, when tends to zero, is approximately equal to

(31)

For the adjacent channel tones, we have

(32)

and

(33)

Beyond the proof of consistency between the results of
the previous sections, these expressions provide two other
interesting conclusions.

First, the comparison between pairs , , and
, allows an error analysis that support the

statement, many times gathered from laboratory observation,
that a reduced number of uncorrelated tones (usually in the
order of ten [11]) is sufficient to simulate a continuous noise
spectrum. In fact, when the limit was taken, first-order terms
in and were neglected in comparison to second-order
ones in , , and . Thus, and despite the fact that
the approximation error changes with position , roughly
speaking, we can expect an error of less then 1 dB in power
when is greater then ten.

(27)
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Fig. 3. Three-dimensional view of ACP and CCP distortion components when no in-band tone is shut down (corrected NPR).

Fig. 4. Three-dimensional view of ACP and CCP distortion components as measured within a notch (usual NPR).

The second conclusion is that co-channel interference,
which was modeled by the term

in the noise analysis, is represented in the
multitone excitation by mixing products of Types C and D:

or . Therefore,
eliminating tone to read there co-channel distortion
corresponds to eliminate about mixing products in a
total of about , which, again,
corresponds to an error from 5.64 dB for to 7 dB
when .

Figs. 3 and 4 illustrate these two situations of NPR eval-
uation as a function of the number of input tones. The
first one represents ACP and CCP as would be observed if no
tone were shut down, while the second shows the observed
result measured within the notch. The referred difference in
measured CCP is obvious.

VI. COMPARISON BETWEEN VARIOUS IMD
FIGURES OF MERIT

In this section we will derive some relational formulas for
various IMD figures of merit, e.g., IMD ratio (IMR), ACPR,

co-channel power ratio (CCPR), and NPR, obtained under
two-tone multitone and band-limited white Gaussian noise
excitations. They will be expressed in terms of two-tone IMR,
although they can be easily referred to using (7), derived
in Section II.

For comparison purposes, we will consider all driving
signals as having a constant input power of , which
corresponds to an amplitude of per tone
in a -tone excitation or to a spectrum density function of

in a bandwidth.

A. IMR

IMR is herein defined as the ratio between linear output
power per tone and output power of adjacent channel tones.
Thus, IMR for a two-tone test is

(34)

while for a -tone excitation

(35)
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and for a noise input

(36)

The minimum value of for large, which
tends to , is obtained for and
values .

B. ACPR

ACPR is considered to be the ratio between total linear
output power and total output power collected in the upper
or lower adjacent channel. Thus, ACPR for the two-tone test
must double , while for the -tone input, it is

(37)

and for a random input, it is (38), shown at the bottom of
this page.

C. CCPR

CCPR is defined here as the ratio between total linear
output power and total distortion power collected in the input
bandwidth. Two-tone CCPR is, consequently,

(39)

and for the -tone input, it is (40), shown at the bottom of
this page.

When the input is band-limited white Gaussian noise,
is then (41), shown at the bottom of this page.

D. NPR

According to the usual definition, NPR is the ratio between
the linear output power spectrum density to the power spec-
trum density measured within a prelocated notch. If a multitone
signal is used to estimate NPR, power spectrum densities
should be substituted by powers per tone. Since a two-tone
test does not produce any mixing product between the exciting
tones, can not be defined. For a -tone test, NPR is

(42)

where and are defined as in Section III.
For a noise test, NPR is

(43)

(38)

(40)

(41)
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Fig. 5. Relation between multitoneACPRM , IMRM , CCPRM ,
NPRM (K=2), andIMR2 versus the number of input tones.

is minimum in the middle of the input bandwidth
where it values

and is maximum in the extremes

Fig. 5 summarizes these results by showing ,
, , and usual (measured in the middle

of operation bandwidth) normalized to as a function of
the number of input tones . The asymptotic behavior shown
for large corresponds to the random input. As expected
for theory, the random approximation is completely fulfilled
(the error is within 0.5 dB), except perhaps for usual
(where it is still 2 dB below its asymptotic value), if a number
of discrete tones larger than ten is considered.

VII. CONCLUSION

In conclusion, the proposed formulas for the analysis of
in-band mixing products that arise in a memoryless third-
order system, subject to a multitone or band-limited white
noise, allowed us the comparison between standard two-tone
IMD and, more general specs, like ACPR or NPR. Also, the
discussion on co-channel distortion power under either noise
or multitone stimuli induced the counter-intuitive conclusion
that no matter the notch width, it has a nonnegligible impact
on measured distortion. Indeed, it was shown that usual NPR
tests can produce misleading co-channel distortion evaluations
that can be as optimistic as 5.6 or 7 dB in the middle or the
extremes of the input bandwidth, respectively.

APPENDIX

The objective here is to give a proof of the expressions
presented for the number of in-band mixing products generated
in a memoryless third-order system driven by equally
spaced tones. Beyond the natural objective of those proofs,

they were herein presented as they also provide an insight
onto how the expressions were derived.

The method of proof follows mathematical induction. First,
the expression under proof is shown to apply for a simple
excitation of three tones, and then it will be shown to apply for

tones, provided that it also applies for a general number
of input tones. Since the expressions’ validity for a three-
tone input is immediately proven by comparing their results
with the coefficients of (8) to (11), it will be omitted. The latter
part of the proof will be achieved by calculating the increment
in the number of mixing products that fall on test position,
imposed by the addition of a new input tone , ,
and comparing the results of the expression under proof for
and , i.e., showing that .

A. Number of Adjacent Channel Mixing Products

1) Adjacent Channel Mixing Products of Type A:For ACP
products , , and

, where , is given
by (12). must equal , where

is the increment in newly generated mixing products
that fall on position , due to the addition of a new input tone
at . Since we are studying mixing products of the form

, only can be made equal to ,
as would not produce any product on , and
products where are already included in

. Thus, the number of new combinations , which
verify is such that

while

Therefore,
or or even

. Thus, and
. It is now straightforward to show

that is indeed equal to .
2) Adjacent Channel Mixing Products of Type B:For ACP

products , , and
, where , is

given by (13). Once again, only can be made equal to
because would not produce any product

on . Thus, the number of new combinations , which
verify is such that

Therefore, . This means only one
new mixing product involving tone will be generated
and . In can be easily verified that
indeed equals .

B. Co-Channel Mixing Products

1) Co-Channel Mixing Products of Type A:Since mixing
products of types and are, in fact, ACP products from
each of the blocks in which the input tones were grouped,
their expressions were already proven.
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The number of Type co-channel mixing products, i.e.,
combinations that arise from beats involving tones of the two
blocks, is given by (16). The products now under study have
the form , , ,
and , where . If a new input
tone is inserted in position , the left-hand-side block
will be unchanged, maintaining its tones, but the right-
hand-side one will have one more tone or a dimension of

. Therefore, to determine the number of new mixing
components involving , only can be made equal to
that frequency, and it may be concluded that

or

Since is a constant, this means there will be an
unique new pair for each . Thus, the total number
of newly generated products of Type involving will
be exactly equal to six times the number of possible different

or . This, in turn, really proves that
.

If, on the other hand, a new tone is inserted on the left-hand-
side block, this block will now extend from to
since the test point will be shifted one position to the right,
becoming . The right-hand-side block will maintain its
dimension of tones. Therefore, in this new case, we have
to prove that .
To calculate , we must recognize that now only

can be made equal to the new tone and, thus,

or

Once again, there will be only one possible for each
, which means that the number of new mixing products will

equal the number of or . Thus, ,
which, in fact, implies

.
2) Co-Channel Mixing Products of Type B:The number of

co-channel mixing components of type B were again derived
as ACP products of type B, whose expression was already
proven above.

3) Co-Channel Mixing Products of Type C:Equation (21)
represents the number of co-channel mixing products falling
on , where and .

The insertion of a new tone will contribute with six
new products to . Therefore, and, in fact,

.
4) Co-Channel Mixing Products of Type D:As can be

seen from (22), the number of products that fall on
is three, independent on .

Accordingly, should be zero, and really, the insertion
of a new tone cannot contribute to this type of mixing
product since it involves only the tone .
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