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On the Use of Phase and Energy for Musical Onset
Detection in the Complex Domain
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Abstract—We present a study on the combined use of energy
and phase information for the detection of onsets in musical sig-
nals. The resulting method improves upon both energy-based and
phase-based approaches. The detection function, generated from
the analysis of the signal in the complex frequency domain is sharp
at the position of onsets and smooth everywhere else. Results on
a database of recordings show high detection rates for low rates
of errors. The approach is more robust than its predecessors both
theoretically and practically.

Index Terms—Attack transients, audio, complex domain,
energy, music, onset detection, phase.

I. INTRODUCTION

T EMPORAL segmentation of audio into note events is
useful for a range of audio analysis, editing and synthesis

applications. Examples may include automatic transcription,
content analysis and nonlinear time-scale modification and
pitch-shifting. The segmentation task is especially difficult for
complex mixtures including both percussive and nonpercussive
onsets. In musical signals, let us assume notes to be events
defined by the temporal concatenation of an attack transient: a
short and unpredictable segment characterized by fast changes
in the intensity, pitch or timbre of the sound [1]; followed
by the steady-state of the signal, where it is stationary, thus
easily predictable. An onset can be defined as the instant when
the attack transient begins, thus marking the beginning of the
note. Typically, note onset detection schemes use energy-based
approaches, often involving frequency weighting [2]. In recent
years, this has been extended to include subband schemes such
as [3], [4].

Here, we depart from the basic theory of energy-based onset
detection, extending our analysis to include phase information,
then combining both methods in a complex domain approach
that improves experimental results while providing a more ro-
bust theoretical framework.

II. ENERGY-BASED ONSET DETECTION

Usually, the introduction of a new note leads to an increase
in the energy of the signal. In the case of strong percussive note
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attacks, such as drums, this increase in energy will be very sharp.
For this reason, energy has proved to be a useful, straightforward,
and efficient metric by which to detect percussive transients,
and therefore certain types of note onset. The local energy
of a frame of the signal is defined as

(1)

where is the hop size, the hop number and is the sum-
mation variable. Taking the first difference of produces
a detection function from which peaks may be picked to find
onset locations. This is one of the simplest approaches to note
onset detection. The idea can be extended to consider frames of
an FFT.

Let us consider a time-domain signal , whose STFT is
given by

(2)

where is the frequency bin index and
is a finite-length sliding window. It follows that the magnitude
difference between consecutive FFT frames is then

(3)

This measure, known as the spectral difference, can be used to
build an effective onset detection function (an implementation
based on this can be found in [5]). Energy-based algorithms
are fast and easy to implement, however their effectiveness
decreases when dealing with nonpercussive signals and when
transient energy overlaps in complex mixtures. Energy bursts
related to transient information are more noticeable at higher
frequencies as the “tonal” energy is usually concentrated at
lower frequencies, masking the effect of these variations on
the signal content.

III. PHASE-BASED ONSET DETECTION

The Short-Time Fourier Transform of the signal, , can
also be defined in terms of a group of sinusoidal oscillators
with time-varying amplitudes and phases (with
unwrapped phases denoted as ). During the steady-state
part of the signal these oscillators will tend to have constant
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frequencies. Therefore, the difference between two consecutive
unwrapped phase values must remain constant between frames.
For the oscillator1 that is

(4)

where is the estimated unwrapped phase for the current
frame. Ideally, a target phase can be defined as

(5)

where is the frequency of the sinusoid. However, only
synthesized sounds in artificially-controlled conditions behave
like this. For real sounds we expect a deviation phase to be added
to the target in order to generate the estimated unwrapped phase.
This deviation can be calculated as

(6)

where the function princarg maps the phase to the range.
By calculating the estimated unwrapped phase as

(7)

and substituting (5), (6), and (7) in (4), we can obtain values for
the difference of unwrapped phase values. Collecting all terms
into the right-hand side of (4), we can obtain an expression for
the phase deviation between target and the real phase values in
a given frame

(8)

will tend to zero if the current phase value is close to the esti-
mated value and will deviate significantly from zero otherwise.
The latter is the case for most oscillators during attack transients.

Let us extend this analysis to the distribution of phase devi-
ations for all oscillators within one analysis frame. Let us call

the probability density function of our data set on a
particular frame . During the steady-state part of the signal
most values are expected to be concentrated around zero, cre-
ating a sharp distribution. On the other hand, during attack tran-
sients, the corresponding distributions will be flat and wide. In
[6], these observations are quantified by calculating the inter-
quartile range and the kurtosis coefficient of the distribution.
Here, we propose measuring the frame-by-frame spread of the
distribution as

(9)

Measuring is a fast and reliable approach to generating
a detection function. Phase-based onset detection offers an alter-
native to common energy-based methods, overcoming detection
constraints for soft onsets. However, the method is susceptible to
phase distortion and to the variations introduced by the phase of
noisy components (usually related to low-energy values which
are therefore ignored).

IV. DETECTION OF ONSETS IN THE COMPLEX DOMAIN

There are a number of reasons that justify combining phase
and energy information for onset detection: while energy-based
approaches favor strong percussive onsets, phase-based ap-
proaches emphasize soft, “tonal” onsets; the two methods are

1For clarity, the subindex k is not included in the equations of Section III.

more reliable at opposite ends of the frequency axis; the infor-
mation they gather behaves in a similar statistical manner. A
first attempt to combine these approaches was presented in [7].
Then, measures of spread for both distributions were simply
multiplied, compensating for instabilities in either approach
and producing sharper peaks for detected onsets. However,
this analysis does not imply a fully combined approach where
energy and phase information is simultaneously analyzed.
This can only be achieved in the complex domain as will be
explained in the following.

For locally steady state regions in audio signals, we can
assume that frequency and amplitude values remain approxi-
mately constant. In the Sections II and III it has been shown
that by inspecting changes in either frequency and amplitude,
onset transients can be located. However, by predicting values
in the complex domain, the effect of both variables can be
considered. Let us assume that, in its polar form, the target
value for the bin of the STFT is given by

(10)

where the target amplitude corresponds to the magni-
tude of the previous frame , and the target phase

can be calculated as the sum of the previous phase and
the phase difference between preceding frames

(11)

We may then consider the measured value in the complex
domain from the STFT

(12)

where and are the magnitude and phase of the current
STFT frame. By measuring the Euclidean distance between
target and current vectors in the complex space, as shown in
Fig. 1(a), we can then quantify the stationarity for the bin as

(13)

Summing these stationarity measures across all , we can
construct a frame-by-frame detection function as

(14)

Equation (14) can be simplified by mapping onto the real
axis (forcing ), such that

(15)

This implies rotating the phasors, as shown in Fig. 1(b), so
that can be represented using the phase deviation (8)

(16)

Let us consider the difference between this complex domain
prediction approach and the basic amplitude difference measure
in (3). This can be rewritten as

(17)
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Fig. 1. Phasor diagram in the complex domain showing the phase deviation
between target and current vector, and the Euclidean distance between them:
(a) normal diagram and (b) rotated diagram.

With the mapping onto the real axis of , (13) becomes

(18)

For the case of

(19)

Therefore is only equal to when is
equal to zero, e.g., when the phase prediction is “good.” In that
case, only the energy difference is being taken into account. In
the case of , the phase deviation from the prediction
is taken into account. constitutes an adequate detection
function showing sharp peaks at points of low stationarity. Fig. 2
depicts the detection function for a section of a guitar signal.
The figure also gives examples of phase and amplitude used in-
dividually. The complex domain approach is clearly less noisy,
therefore simplifying the task of peak-picking and allowing a
more robust detection.

V. QUANTITATIVE ANALYSIS

A. Peak-Picking

To enhance the selection of peaks in the detection functions,
the median filter is used to obtain an adaptive threshold
curve . This is calculated as the weighted median of

Fig. 2. Spectrogram of a music signal (upper) and onset detection functions
using phase-based (upper-middle), energy-based (lower-middle) and the
proposed complex-domain (bottom) approaches.

an -length section of the detection function around the
corresponding frame, such that

(20)

and are constant values, however while the latter is only a
scaling factor, variations of the former largely affect the good
and false detections ratio. Reference [8] demonstrated the ef-
fectiveness of the median filter for the thresholding of peaks in
detection functions generated from music.

B. Onset Results

Experimental results compare the three presented approaches
to onset detection: the spread of the distributions of spectral
differences and phase deviations, and the complex-domain
approach. The spread measure is used as it was found to be the
most efficient and effective as shown in [7]. The experiments
were performed on a 1065-onsets database of hand-labeled
music segments.

For all methods, Fig. 3 displays the percentage of good
detections versus the percentage of false positives for
and different values (scaled by ). Better performance
shifts the curve up and leftwards. The complex-domain
approach outperforms the other two methods. Its curve’s
optimal point2 is above those of the
spectral difference and the phase deviation

. It reaches the highest values of correct
detections and is only outperformed by the energy method
at the bottom of the plot. For low detection rates the spectral
difference outperforms the phase deviation, that presents high
rates of false positives.

Table I shows results according to onset types: pitched
nonpercussive (e.g., bowed strings), pitched percussive (e.g.,
piano), nonpitched percussive (e.g., drums) and complex
mixtures (e.g., pop music). Results are obtained by using the
optimal value (scaled by ) for each method in each case
(from the corresponding performance curve). Results support
that, for most cases, combining energy and phase information
outperforms either approach alone. The only exceptions being
firstly, the PNP case where the phase method performs best,

2The point representing the fewest errors for a given � by being closest to
100% correct detections and 0% false positives
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Fig. 3. Percentage of onset detections versus percentage of false positives for
different values of � (the peak-picking threshold): using complex-domain, phase
deviation, and spectral difference detection methods.

TABLE I
ONSET DETECTION RESULTS FOR: PITCHED NON-PERCUSSIVE (PNP), PITCHED

PERCUSSIVE(PP), NON-PITCHED PERCUSSIVE (NPP) SOUNDS AND COMPLEX

MIXTURES (CMIX). COLUMNS SHOW THE CORRESPONDING � VALUES

(SCALED BY �10 ), AND THE PERCENTAGES OF CORRECT DETECTIONS

(OK) AND FALSE POSITIVES (FP) PER METHOD

as quantifying only tonal changes is best for music with soft
onsets; and secondly, the PP case where the phase-based algo-
rithm returns less false positives than the complex-domain (at
a higher total error rate). Spectral difference and phase-based
methods are prone to under and over-detections (due mostly
to amplitude modulations and overlapping for the first, and to
phase distortion and frequency modulations for the second)
especially when dealing with complex mixtures.

Fig. 4 shows how the complex-domain approach also provides
better time localization for onsets. It shows percentages of good
detections for different comparison windows (between target
and detected events) on a database of acoustic recordings
of MIDI-generated piano music (thus minimizing the error
introduced by hand-labeling). The optimal values for pitched-
percussive music were used. It supports quantitatively the
argument made (Section IV) regarding the sharpness of the
different detection functions. These results demonstrate that
the theoretical robustness of the complex-domain approach
implies also a practical advantage over the other methods.

Finally, Table II analyzes computational expense of the
algorithms. Computational cost is calculated using the quantity
of FLOPS (floating point operations) per frame (averaged across
different executions), where the values have been normalized
such that the computational cost of performing the FFT alone
is set to 1. For all three methods, the increase in computation
over the basic FFT algorithm is small enough to allow real-time
implementation. The most expensive algorithm, the complex-
domain method, is only 1.32 times the cost of the phase-based
algorithm, the fastest of them all.

Fig. 4. Percentage of good detections for different lengths of the comparison
window (ms): using complex-domain, phase-based and spectral difference
detection methods. � values correspond to the PP case in Table I.

TABLE II
COMPUTATIONAL COST PER FRAME FOR EACH METHOD NORMALIZED TO THE

LOAD OF THE FFT ALGORITHM

VI. CONCLUSIONS

Energy-based onset detection schemes perform well for
pitched and nonpitched music with significant percussive
content. On the other hand, phase-based onset detection
approaches provide better results for strongly pitched signals
(even for “softer” onsets), while being less robust to distortions
in the frequency content and to noise. In the complex domain,
both phase and amplitude information work together, offering
a generally more robust onset detection scheme. Therefore, the
presented theory for the complex domain approach to onset
detection is not just an evolution of the spectral difference and
the phase-based approaches, but a more general framework, in
which the others are particular cases. From the practical point of
view, it is straightforward to implement while remaining com-
putationally cheap. Additionally, it proves effective for a large
range of audio signals, as experimental results corroborate.
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