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ABSTRACT 
This study addresses the use of short-time phase spectra in 
automatic speech recognition (ASR). Two recent studies 
[1,2] have proposed two group delay based spectral 
representations. Here we propose three new group delay 
based representations and compare usefulness of all these 
representations in an ASR experiment. We show that two of 
the representations we propose perform better, contain 
equivalent or complementary information to that of the 
power spectrum and are potentially useful for improving 
ASR performance. 

1. INTRODUCTION 

In most state-of-the-art ASR systems, amplitude/power 
spectrum has been the preferred component of the Fourier 
Transform (FT) for feature extraction. However, recent 
studies on speech perception report the importance of phase 
information [3]. 

By its nature, the phase component of the FT spectrum 
is in a wrapped form and the first derivative of the 
unwrapped phase spectrum, i.e. the group delay function, is 
much easier to study and process. The main difficulties in 
reliable phase spectrum estimation and unwrapping are 
mostly related with the zeros of the signal's z-transform 
close to the unit circle, which cause spikes on the derivative 
of the phase spectrum (group delay) [1]. Methods to remove 
these spikes are required in order to be able to use the FT 
phase information in ASR.  

Two recent studies address this problem and propose 
two group delay based features: modified group delay [1] 
and product spectrum [2]. In this study, we introduce three 
new group delay based representations and compare all five 
representations (and the power spectrum for reference) in an 
ASR experiment. The results show that two of the 
representations that we propose provide good results and 
contain equivalent or complementary information to the 
power spectrum that is potentially useful for improving ASR 
performance. 

The sections are planned as follows: section 2 presents 
the source of problem in group delay processing, the group 
delay representations proposed in [1,2] and the 
representations that we propose in this study. In section 3, we 
briefly define feature extraction procedures for ASR based on 
group delay representations (the reader is referred to [2] for 
more detailed information). Section 4 is dedicated to ASR 
experiments and finally in section 5, we discuss the results.  

 
Figure 1: Geometric interpretation of spikes in group delay 
function at frequency locations close to a root/zero of the z-
transform polynomial. 

2. GROUP DELAY REPRESENTATIONS 

2.1 Difficulties In Group Delay Processing 
For a given discrete time digital signal x(n), the z-transform 
polynomial, X(z), can be expressed using an all-zero 
representation as:  
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where Zm are the roots of the z-transform polynomial. The 
FT, which is simply the z-transform computed on the unit 
circle, can be expressed as:  
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where the radius ρ=1. Each factor in Eq. 1 corresponds, in 
the z-plane, to a vector starting at Zm and ending at ejθ(ω). As 
illustrated in Fig. 1, the group delay, i.e. the rate of change in 
the phase component, is very high at frequency bins very 
close to a root/zero of the z-transform polynomial and 
becomes ill-defined when the zero coincides with a 
frequency bin. 

For actual windowed speech signals, many zeros appear 
to be very close to the unit circle. The effect of zeros close to 
the unit circle can easily be observed both on amplitude 
spectra (as dips) and group delay functions (as large spikes). 
For the amplitude spectrum a spectral envelope with formant 
peaks is still observed/available with the presence of dips due 
to the zeros. Unlike amplitude spectrum, the group delay 
function is effected to an extend that the spikes hide the 
actual vocal tract phase/group delay information (see Fig. 2 
for an example). Therefore, it is necessary to find means of 
avoiding such spikes in the group delay function for using it 
in feature extraction for ASR systems. Below, we present two 
methods from recent literature followed by our three methods 
for the estimation of group delay representations, which can 
be further processed for feature extraction. 

 



2.2 Modified Group Delay Function (MODGDF) [1] 
The group delay function can be expressed as:  
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where X(ω) and Y(ω) denote to the FT of x(n) and nx(n) 
respectively, R and I refer to real and imaginary parts [2]. 
This formulation is quite useful since there is no need for 
phase unwrapping, which is often referred to be 
problematic, and group delay can be directly computed 
using the FT transform only. In [1], the authors propose the 
so-called modified group delay function (MODGDF), which 
is a modified version of Eq. 2:  
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where the term |X(ω)| is replaced by its cepstrally smoothed 
version S(ω) in order to reduce spikes on the group delay 
function. This is because the term |X(ω)| in the denominator 
in Eq. 2 gets very small when there exists a zero very close to 
the unit circle. In addition, two new parameters are 
introduced: α and γ which need to be fine-tuned according to 
the environment. In all tests/plots of this study, we have set 
the parameters as in [1], namely α=0.4 and γ=0.9. These 
smoothing parameters also reduce the effect of the spikes on 
the group delay function to some extend. 

2.3 Product Spectrum (PS) [2] 
In [2], another group delay based representation is proposed. 
It is a version of Eq. 2 where the denominator, which is 
considered to be the source of spikes, is removed. The 
product spectrum Q(ω) is defined as the product of the power 
spectrum and the group delay function: 
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2.4 Group Delay of GCI-Synchronously Windowed 
Speech (GDGCI) 

Recently, we have shown that smooth group delay functions 
can be directly computed from speech signals if windowing 
is appropriately [4]: window centred at glottal closure instant 
(GCI) and smaller than two pitch periods. In our 
computations, we use a Blackman window function though 
other types are possible, e.g. Gaussian or Hanning-Poisson. 
Such a windowing operation results in grouping the zeros 
across the unit circle but not on it, therefore avoiding most of 
the spikes. GDGCI is referring to the group delay function 
computed using Eq. 2 on GCI-synchronously windowed 
speech data. GCI detection is achieved by processing the 
centre-of-gravity evolution signal obtained by shifting an 
analysis window on the speech signal as described in [5]. 

2.5 Chirp Group Delay of GCI-Synchronously 
Windowed Speech (CGDGCI) 

After tests on noisy real speech data, we have observed that 
GCI-synchronous windowing cannot guarantee a completely 
zero-free region on the unit circle. The zeros related to the 

noise signal component may appear on the unit circle and 
introduce extra spikes. In addition, the size of window 
appears to be a problem for very high pitch speech: an error 
to include more than two pitch periods in the speech frame 
results in zeros due to periodicity on the unit circle. For this 
reason a two-step method is proposed: suppression of zeros 
outside the unit circle (which are mainly due to the glottal 
flow component of speech [6]) and computation of the phase 
derivative on a circle outside the unit circle from the 
remaining zeros using Eq. 1. 

The roots of a high degree polynomial can be efficiently 
obtained by searching for the eigenvalues of the associated 
companion matrix [7]. The procedure provides enough 
accuracy to carry reliable spectral analysis. Unfortunately, 
such algorithm for estimating polynomial roots is 
computationally demanding. 

In order to obtain a very smooth group delay function 
with well-resolved formant peaks, it is useful to compute the 
group delay function on a circle other than the unit circle in 
the z-plane. Equivalently, one can compute the group delay 
function of a chirped version of the signal, i.e. multiplied by 
a decaying exponential whose damping parameter is solely 
related to the actual circle radius ρ. It results in the GCI-
synchronous chirped group delay function (CGDGCI). In [6], 
we have shown that vocal tract formants can be estimated 
easily by tracking the peaks of CGDGCI. The choice of the 
radius ρ of the z-transform computation circle is a 
compromise between having smooth/blurred or 
detailed/spiky spectral representation. The value ρ=1.12 is 
observed to be a good choice.  

2.6 Chirp Group Delay of The Zero-Phase Version 
(CGDZP) 

Finally we propose another group delay function, for which 
heavy computation of polynomial roots is not necessary. 
Again the procedure contains two steps: computation of the 
zero-phase version of the signal (inverse FT of |X(ω)|) and 
computation of the CGD on the circle with ρ=1.12 using the 
chirp z-transform.  

Conversion to zero-phase guarantees that all of the 
zeros occur very close to the unit circle therefore the 
resulting chirp group delay representation is very smooth 
with well-resolved formant peaks. However, the phase 
information is destroyed for this case, therefore the 
representation contains only the information available in the 
amplitude spectrum but formant peak resolutions appear 
with higher resolution.  

Figure 2: Time-domain signal of a 30 ms speech frame and 
its group delay function. The frame example is extracted 
from the noise-free utterance “mah_4625'' of the test set A 
of the AURORA-2 [8] and corresponds to vowel /i/ in word 
“6”. 



2.7 Comparison of Proposed Methods via Spectral Plots 
Fig. 2 presents a typical time-domain speech signal and its 
group delay function. As expected, the group delay function 
computed directly on the speech frame contains mainly 
spikes and resonance information cannot be observed. In 
Fig. 3, we present the five group delay based representations 
together with the power spectrum for this speech frame. The 
formant peaks appear with high resolution in GDGCI, 
CGDGCI and CGDZP. GDGCI includes a spike at high 
frequencies due to a zero, which cannot be avoided by only 
GCI-synchronous windowing. As more noise was added to 
signals, such spikes would be more frequent, therefore the 
robustness of GDGCI to noise is rather low. Thanks to zero 
removal techniques and zero-phasing, CGDGCI and CGDZP 
are more robust to noise.  

In Fig. 4, we also present spectrogram plots obtained 
using the described group delay representations as well as the 
classical power spectrum. The formant tracks can be well 
observed on all of the spectrograms except for MODGDF, 
and PS is very close to PowerS as already shown in Fig. 1 of 
[3] and in Fig. 3 above. GDGCI representation is vague to 
some level. This is mainly due to the fact that unvoiced 
frames include spikes with large amplitudes that force a low 
contrast on the plots. Actually, the group delay functions 
computed on unvoiced frames mostly do not contain 
resonance information but random spikes. GDGCI and 
CGDGCI are actually the two representations that really 
suffer from this problem. 

These observations suggest that the representations have 
some potential in an ASR framework. The main concern is if 
they can provide complementary information to the power 
spectrum and improve performance. 

3. COMPUTATION OF FEATURES FOR ASR 

The most common feature extraction for ASR systems 
consists of computing power-based Mel-frequency cepstral 
coefficients (MFCC) [9], that is, a Mel filterbank is applied 
to the power spectrum and an inverse discrete cosine 
transform (IDCT) is computed on the logarithm of its 

outputs. The main reason for such processing is to capture 
the essential shape of the power spectrum with a few 
coefficients well conditioned for pattern recognition. A 
similar scheme can be applied to the group delay functions in 
order to derive phase-based feature extractions for ASR 
systems. The simplest approach consists in replacing the 
power spectrum in the MFCC algorithm by the group delay 
representation computed via one of the analysis techniques 
described in the previous section. 

In this work, we use a Mel filterbank with 24 triangular 
filters and 12 IDCT coefficients are computed for 30 ms 
frames shifted by 10 ms. Note that the logarithm is not 
applied on the outputs of the filterbank when fed with a 
phase spectrum. These coefficients are augmented with the 
frame log-energy and their (delta-)delta coefficients. We 
finally come up with six feature extractions: MFCC as a 
reference and five group delay based methods. 

4. ASR EXPERIMENTS 

4.1 ASR system 
The ASR system that is considered in this work relies on the 
STRUT toolkit [10]. It merely consists of three blocks. First, 
the feature extraction chops the discrete speech signal into 
overlapping frames and computes for each frame a set of 
acoustic coefficients using one of the algorithms described in 
the previous sections. Next, the acoustic coefficient vectors 
are fed into the acoustic model that is here based on the Multi 
Layer Perceptron (MLP) / Hidden Markov Models (HMM) 
paradigm [11]. In this framework, the phonemes of the 
language under consideration are modelled by HMM's whose 
observation state probabilities are estimated as the outputs of 
a MLP. Such an acoustic model is trained beforehand in a 
supervised fashion on a large speech database containing a 
few hours of phonetically segmented speech material. 
Finally, the word decoder searches for the most likely word 
sequence given the sequence of probability vectors for all the 
frames. Here, the search is constrained by a phonetic lexicon 

 
Figure 3: Power spectrum (PowerS) and group delay
representations for the speech signal frame in Fig. 2. 

 
Figure 4: Spectrogram plots of the noise-free utterance 
“mah_4625a”. Only the first half of the signal that to the 
digit utterance “46” is presented. 



and a word grammar, which together define all the authorized 
sequences of phonemes. Here, the search is performed as a 
one-pass frame-synchronous Viterbi algorithm [9] without 
any pruning constraints. 

4.2 Speech Database 
The AURORA-2 database [8] was used in this work. It 
consists of connected English digit utterances sampled at 
8kHz. More exactly, we used the clean training set, which 
contains 8440 noise-free utterances spoken by 110 male and 
female speakers, for building our acoustic models. These 
models were evaluated on the test set A. It has 4004 different 
noise-free utterances spoken by 104 other speakers. It also 
contains the same utterances corrupted by four types of real-
world noises (subway, babble, car, exhibition hall) at various 
signal-to-noise ratios (SNR) ranging from 20dB to -5dB. 
During the recognition experiments, the decoder is 
constrained by a lexicon reduced to the English digits and no 
grammar is applied. 

4.3 Experimental Results 
Tab. 1 gives the word error rates (WER) for the ASR system 
tested with the feature extractions described in section 3. 
Errors are counted in terms of word substitutions, deletions 
and insertions, and error rates are averaged over all noise 
types. The results are also provided when combining MFCC 
feature extraction with the others (rightmost figure for every 
noise level and feature extraction). The combination is 
simply performed by taking a weighted geometric average of 
the probability outputs of the combined acoustic models: 

λλ −⋅= 1
2112 ppp  

where p12, p1 and p2 denote the combined probability and the 
probability provided by the two combined acoustic model, 
respectively. The combination parameter λ takes its value in 
the range (0,1) and is optimised for every combination. 

5. DISCUSSIONS AND CONCLUSIONS 

Our main target in this study is to test if a phase/group delay 
representation carries equivalent or complementary 
information to that of the power spectrum in the framework 
of feature extraction for ASR systems. The results presented 
in Tab. 1 shows that the group delay representations 
CGDGCI and CGDZP have this potential: the rightmost 
values compared to the MFCC-only results are in all cases 
lower except for the extreme noise setting SNR=-5dB. 

In our in-detailed analysis, we have observed that the 
GDGCI, which is the pure group delay function computed on 

GCI-synchronous data without further processing, mainly 
suffers from window size problems (including several pitch 
periods result in zeros on the unit circle). In addition, GDGCI 
and CGDGCI do not carry reliable information for unvoiced 
frames. 

The AURORA-2 task was chosen for its simplicity and 
ease of comparison to the already available results in [2]. 
Further experiments will be performed on other tasks in order 
to confirm the present results about the usefulness of phase 
information for ASR systems. 
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Table 1: Performances of ASR system for various feature extraction on the AURORA-2 task. Results are given in terms of 
word error rate (WER) in percent. For every SNR value, the rightmost value corresponds to the case where the actual 
feature extraction is combined with MFCC as described in section 4.3. 
 

SNR (dB) Feature 
Extraction ∞ 20 15 10 5 0 -5 

MFCC 1.9 – 6.7 – 18.6 – 45.2 – 75.1 – 88.8 – 91.5 – 
MODGDF 3.2 2.1 12.3 8.5 25.6 23.9 50.8 52.7 80.8 79.5 97.1 89.5 99.8 91.5 

PS 2.0 1.9 6.7 6.7 19.4 18.6 45.3 44.4 75.5 74.6 89.0 88.5 92.2 91.6 
GDGCI 8.8 2.1 32.8 7.8 49.4 16.8 69.0 36.0 88.3 64.4 98.6 88.0 100.0 96.1 

CGDGCI 3.2 1.8 12.3 5.8 25.6 12.2 50.8 29.1 80.8 58.0 97.0 83.8 99.8 93.8 
CGDZP 1.8 1.7 5.8 5.0 12.2 10.4 29.4 24.8 62.6 52.7 88.7 82.3 97.6 91.1 
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