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For decades, difference scores have been widely used in studies of con- 

gruence in organizational research. Although methodological problems 
with difference scores are well known, few viable alternatives have 

been proposed. One alternative involves the use of polynomial regres- 
sion equations, which permit direct tests of the relationships difference 

scores are intended to represent. Unfortunately, coefficients from poly- 
nomial regression equations are often difficult to interpret. We used 

response surface methodology to develop an interpretive framework 

and illustrate it using data from a well-known person-environment 

study. Several important findings not reported in the original study 

emerged. 

For decades, difference scores have been widely used in both micro and 

macro organizational research. Typically, these scores have consisted of the 

algebraic, absolute, or squared difference between two component measures 

(e.g., Alexander & Randolph, 1985; Dougherty & Pritchard, 1985; French, 

Caplan, & Harrison, 1982; Rice, McFarlin, & Bennett, 1989; Tubbs & Dahl, 

1991; Turban & Jones, 1988) or the sum of absolute or squared differences 

between profiles of component measures (e.g., Drazin & Van de Ven, 1985; 

Gresov, 1989; Rounds, Dawis, & Lofquist, 1987; Sparrow, 1989; Turban & 

Jones, 1988; Vancouver & Schmitt, 1991; Venkatraman, 1990; Venkatraman 

& Prescott, 1990; Zalesny & Kirsch, 1989). In most cases, difference scores are 

used to represent congruence (i.e., fit, match, similarity, or agreement) be- 

tween two constructs, which is then viewed as a predictor of some outcome 

(Edwards, 1991; Mowday, 1987; Wanous, Poland, Premack, & Davis, 1992; 
Van de Ven & Drazin, 1985). 
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As is widely known, difference scores suffer from numerous substantive 

and methodological problems (Cronbach & Furby, 1970; Edwards, in press; 

Johns, 1981). An alternative procedure involves the use of polynomial re- 

gression equations containing the component measures composing the dif- 

ference and certain higher-order terms, such as the squares of both compo- 
nent measures and their product (Edwards, in press). These equations per- 
mit a researcher to avoid many problems associated with difference scores 

but nonetheless obtain direct tests of conceptual models relevant to the 

study of congruence. Despite their advantages, polynomial equations often 

yield results that are difficult to interpret, particularly when their coeffi- 

cients deviate from patterns corresponding to difference scores, as is usually 
the case (Edwards, 1992, in press; Edwards & Harrison, 1993). These inter- 

pretive difficulties are likely to prevent the widespread use of polynomial 

regression equations in the study of congruence, even though their use over- 

comes longstanding problems with difference scores. 

This article provides a systematic framework for testing and interpreting 

polynomial regression equations within the study of congruence in organ- 
izational research. This framework draws from response surface methodol- 

ogy (Box & Draper, 1987; Khuri & Cornell, 1987), which permits precise 

description and evaluation of three-dimensional surfaces corresponding to 

polynomial regression equations. We illustrate the application of the frame- 

work using data from the classic study of person-environment (P-E) fit by 
French, Caplan, and Harrison (1982). 

POLYNOMIAL REGRESSION AS AN ALTERNATIVE TO 

DIFFERENCE SCORES 

Edwards (1991, in press; Edwards & Cooper, 1990) has described the 

polynomial regression procedure, showing how polynomial regression equa- 
tions avoid problems with difference scores but permit direct tests of the 

relationships difference scores are intended to represent. This is illustrated 

by the following regression equation, which uses an algebraic difference as 

a single predictor (e.g., French et al., 1982; Kernan & Lord, 1990; Vance & 

Colella, 1990; Wanous & Lawler, 1972): 

Z = bo + b(X - Y) + e. (1) 

In this equation, X and Y represent the two component measures comprising 
the difference, Z represents an outcome measure, and e represents a random 

disturbance term. The positive sign on b1 indicates that the difference be- 

tween X and Y is positively related to Z (see Figure la). Expanding this 

equation yields: 

Z = bo + b1X - b1Y + e. (2) 

This expansion shows that Equation 1 implies a positive relationship be- 

tween X and Z and a negative relationship between Y and Z (Figure lb), with 

the constraint that the coefficients on X and Y are equal in magnitude but 
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opposite in sign. The following equation relaxes this constraint, allowing the 

coefficients on X and Y to take on whatever values maximize the variance 

explained in Z: 

Z = bo + b1X + b2Y + e. (3) 

A somewhat more complicated equation uses the squared difference 

between two component measures (e.g., Caplan, Cobb, French, Harrison, & 

Pinneau, 1980; Dougherty & Pritchard, 1985; Tsui & O'Reilly, 1989): 

Z = bo + bl(X 
- 

)2 + e. (4) 

The positive sign on b1 indicates that Z increases as the difference between 

X and Y increases in either direction (Figure lc). Expanding this equation 

yields: 

Z = bo + 
blX2 

- 
2biXY + b1Y2 + e. (5) 

This equation shows that a squared difference implies positive coefficients 

of equal magnitude on X2 and Y2 along with a negative coefficient twice as 

large in absolute magnitude on XY (Figure 1d). This equation also shows that 

Equation 4 implicitly contains curvilinear and interactive terms without 

appropriate lower-order terms (Cohen, 1978). Relaxing the constraints in 

Equation 5 and adding lower-order terms yields: 

Z = bo + b1X + b2Y + b3X2 + b4XY + b5Y2 + e. (6) 

This equation shows that a squared difference imposes four constraints: (1) 
The coefficient on X is 0, (2) the coefficient on Y is 0, (3) the coefficients on 

X2 and y2 are equal, and (4) the coefficients on X2, XY, and Y2 sum to 0; 

given the third constraint, this is equivalent to stating that the coefficient on 

XY is twice as large as the coefficient on either X2 or Y2, but opposite in sign 
(cf. Edwards, in press). As will be shown later, Equation 6 can be used to test 

these constraints as well as to depict surfaces substantially more complex 
than that corresponding to the squared difference (Figure ld). 

Studies using the polynomial regression procedure (Edwards, 1992, in 

press; Edwards & Harrison, 1993) have yielded two general findings. First, 
most relationships of interest can be depicted using either a linear or a 

quadratic equation (Equations 3 and 6, respectively). Second, the constraints 

difference scores impose on these equations are usually rejected, making it 

necessary to interpret coefficients from the unconstrained linear and qua- 
dratic equations. Although interpreting coefficients from linear equations is 

relatively straightforward, coefficients from quadratic equations are often 

difficult to interpret, particularly when they deviate from the pattern im- 

plied by the squared difference (see Equation 5), as is usually the case. 

Unfortunately, studies using the polynomial regression procedure have of- 

fered little guidance for interpreting coefficients from quadratic equations 
when the constraints imposed by the squared difference are rejected. 

To illustrate the difficulty of interpreting coefficients from quadratic 

regression equations, Table 1 reports six equations analyzed by Edwards and 
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FIGURE la 

Two-Dimensional Algebraic Difference Function 
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Harrison (1993). These equations used measures of the actual amount (X) 
and the desired amount (Y) of two job dimensions, job complexity and 

quantitative work load, to predict various measures of psychological strain. 

For comparison, we report results from the constrained equation for the 

squared difference (Equation 4) as well as from the unconstrained quadratic 

equation (Equation 6). 
Results from all six constrained equations show that the coefficient from 

Equation 4 was positive and highly significant, suggesting that strain in- 

creased as the actual amounts of job complexity and quantitative work load 

deviated from desired amounts in either direction, as in Figure lc. However, 
coefficients from the unconstrained equations did not correspond to the 

pattern predicted by the squared difference, which is as follows: (1) nonsig- 
nificant coefficients on X and Y; (2) positive coefficients of equal magnitude 
on X2 and Y2; and (3) coefficients on X2, XY, and y2 that sum to 0. A formal 
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FIGURE lb 

Three-Dimensional Algebraic Difference Function 
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test of these constraints is presented in the last column of Table 1, which 

compares R2 values from the constrained and unconstrained equations. In all 

six cases, the R2 from the unconstrained equation was significantly higher 
than that from the constrained equation (p < .05), indicating that the con- 

straints imposed by the squared difference were rejected. 
The preceding results show that none of the unconstrained quadratic 

equations reported in Table 1 indicate a surface that corresponds to the 

squared difference (Figure ld). Although the signs of the coefficients on X2, 

XY, and Y2 were usually as predicted, the coefficient on y2 was significant 
in only one case, and coefficients on X and Y were often significantly dif- 

ferent from 0. Because these coefficients did not follow the pattern corre- 
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FIGURE lc 

Two-Dimensional Squared Difference Function 
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sponding to the squared difference, the joint relationship of X and Y with 

strain cannot be adequately depicted in two dimensions (i.e., Figure Ic), but 

instead must be viewed as a three-dimensional surface. Unfortunately, for 

most researchers, simply inspecting the signs and magnitudes of these co- 

efficients reveals little as to the shape of the surface they represent. Of 

course, the coefficients can be used to plot the surface, but doing so would 

provide little basis for formally describing and testing the properties of the 

surfaces. This requires a more detailed and rigorous approach. 

A FRAMEWORK FOR INTERPRETING QUADRATIC REGRESSION 

EQUATIONS IN THE STUDY OF CONGRUENCE 

Response surface methodology (Box & Draper, 1987; Khuri & Cornell, 

1987) provides the basis necessary for describing and testing the essential 
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FIGURE ld 

Three-Dimensional Squared Difference Function 
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features of surfaces corresponding to quadratic regression equations. We 

focused on three key features of these surfaces. The first is the stationary 

point (i.e., the point at which the slope of the surface is 0 in all directions), 
which corresponds to the overall minimum, maximum, or saddle point of 

the surface. The second feature is the principal axes of the surface, which 

run perpendicular to one another and intersect at the stationary point. For 

convex surfaces,1 the upward curvature is greatest along the first principal 

1 A quadratic surface is convex if a line connecting any two points on the surface lies on or 

above that surface, whereas a quadratic surface is concave if a line connecting any two points 
on the surface lies on or below that surface (Chiang, 1974: 255). 
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TABLE 1 

Results for Constrained and Unconstrained Equationsa 

Difference in R2s 

Between Constrained ^ 
Constrained Equation Unconstrained Equationonstr d 

and Unconstrained CL 

Job Dimension Outcome (X - Y)2 R2 X Y X2 XY y2 R2 Equations 

Job complexity Job 0.131** .073** -0.082 -0.117* 0.131** -0.216** 0.068 .140** 11.89** 

dissatisfaction 

Job complexity Work load 0.108** .037** 0.103 -0.226** 0.212** -0.207** 0.023 .100** 10.68* 

dissatisfaction 

Job complexity Boredom 0.193** .116** -0.467** -0.023 0.154** -0.206** 0.124** .301** 40.51** 

Job complexity Depression 0.048** .027** 0.023 -0.029 0.060** -0.099** 0.014 .044** 2.83* 

Job complexity Anxiety 0.056** .032** 0.096** -0.009 0.047** -0.153** 0.044 .058** 4.19** 

Quantitative Work load 0.402** .171** 0.377** -0.455** 0.402** -0.401* -0.110 .322** 34.35** 

work load dissatisfaction 

a Equations are from Edwards and Harrison (1993). N ranged from 617 to 625. For columns labeled X, Y, X2, XY, and Y2, table entries are unstandardized regression 
k 

coefficients for equations with all predictors entered simultaneously. For the remaining two columns, R2 is the squared multiple correlation coefficient, and the difference 

in R2s between the constrained and unconstrained equations is an F-test with four numerator degrees of freedom. 
* 

p < .05 

**p < .01 

CD 

nc 
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axis and least along the second principal axis. For concave surfaces, the 

downward curvature is least along the first principal axis and greatest along 
the second principal axis. For saddle-shaped surfaces, the upward curvature 

is greatest along the first principal axis, and the downward curvature is 

greatest along the second principal axis. Finally, the third feature is the slope 
of the surface along various lines of interest, such as the principal axes and 

the line along which the component variables are equal (the Y = X line). 
To illustrate these three features, Figures 2a-2d present four hypothet- 

ical surfaces, along with their corresponding quadratic equations. For each 

surface, contour lines are drawn on the X,Y plane to help clarify the shape 
of the surface. The stationary point and principal axes are also projected onto 

the X,Y plane, provided they lie within the range of the component mea- 

sures. For these examples and the equations that follow, component mea- 

sures are depicted in scale-centered form, that is, centered at their scale 

midpoints. Doing so simplifies certain calculations and facilitates the inter- 

pretation of the coefficients on X and Y, which then represent the slope of 

the surface at the center of the X,Y plane, where the origin of the x- and 

y-axes is located (Aiken & West, 1991; Edwards, in press; Jaccard, Turrisi, & 

Wan, 1990). It should be noted that these surfaces are not intended to rep- 
resent the findings of a particular study or body of literature, but rather to 

illustrate how hypotheses from various areas of organizational research can 

be portrayed in terms of quadratic regression equations and their corre- 

sponding three-dimensional response surfaces. 

Figure 2a represents a hypothetical relationship between supervisor- 
subordinate value similarity and organizational commitment (Chatman, 
1991; Liedtka, 1989; Meglino, Ravlin, & Adkins, 1989, 1992; Reichers, 1986; 
Vancouver & Schmitt, 1991). The surface is concave and resembles a rising 

ridge, with its first principal axis running along the Y = X line. The second 

principal axis crosses the first at the point X = 10, Y = 10 (representing the 

stationary point), well outside the range of the component measures. Over- 

all, the surface depicts three basic effects. First, commitment is higher when 

supervisor and subordinate values are similar to one another than when they 
differ, as indicated by the downward slope of the surface on either side of the 

Y = X line. Second, commitment is higher when supervisor and subordinate 

values are both high than when both are low, as shown by the positive slope 

along the Y = X line. Third, in all cases in which supervisor and subordinate 

values match, a joint increase in value levels has a diminishing effect on 

commitment, as indicated by the slight downward curvature along the Y = 

X line. Although studies of value similarity have typically not examined the 

latter two effects, they are theoretically plausible and can be directly tested 

with the methods described here. 

Figure 2b depicts a hypothetical relationship between job demands, job 
decision latitude, and strain (Karasek, 1979; Karasek & Theorell, 1990; Warr, 

1990). The first principal axis runs along the Y = -X line and intersects the 

second principal axis at the point X = - 3.16, Y = 3.16, just beyond the left 

corner of the X,Y plane. As one moves away from the stationary point along 
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FIGURE 2aa 

Hypothetical Surface for Supervisor and Subordinate 

Values Predicting Organizational Commitment 

(Z = 5 + .1X + .1Y- .05X2 + .09XY- .05Y2) 
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a On the X,Y plane, the dotted line running diagonally from the near corner to the far corner 

represents the Y = X line, and the dotted line running diagonally left to right represents the 

Y = -X line. When the principal axes cross the X,Y plane within the range of the X and Y 

measure, the first principal axis is represented by a solid line and the second principal axis is 

represented by a dashed line. 
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FIGURE 2ba 

Hypothetical Surface for Job Demand and Job Decision Latitude 

Predicting Strain (Z = 3 + .3X - .3Y + .025X2 - .045XY + .025Y2) 
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a On the X,Y plane, the dotted line running diagonally from the near corner to the far corner 

represents the Y = X line, and the dotted line running diagonally left to right represents the 

Y = -X line. When the principal axes cross the X,Y plane within the range of the X and Y 

measure, the first principal axis is represented by a solid line and the second principal axis is 

represented by a dashed line. 
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FIGURE 2ca 

Hypothetical Surface for Actual and Desired Job Enrichment Predicting 
Work Motivation (Z = 5 + .3X - .1Y- .06X2 + .04XY - .06Y2) 
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a On the X,Y plane, the dotted line running diagonally from the near corner to the far corner 

represents the Y = X line, and the dotted line running diagonally left to right represents the 

Y = -X line. When the principal axes cross the X,Y plane within the range of the X and Y 

measure, the first principal axis is represented by a solid line and the second principal axis is 

represented by a dashed line. 
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FIGURE 2da 

Hypothetical Surface for Pay Received by Self and Other Predicting 

Propensity to Leave (Z = 3 - .35X + .1Y + .025X2 - .025XY + .025Y2) 
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a On the X,Y plane, the dotted line running diagonally from the near corner to the far corner 

represents the Y - X line, and the dotted line running diagonally left to right represents the 

Y = -X line. When the principal axes cross the X,Y plane within the range of the X and Y 

measure, the first principal axis is represented by a solid line and the second principal axis is 

represented by a dashed line. 
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the first principal axis, the surface is positively sloped and somewhat con- 

vex. In essence, the surface indicates that strain is lowest when job demands 

are low and job decision latitude is high but increases at an increasing rate 

as job demands increase and job decision latitude decreases. The surface 

also indicates that strain is essentially constant when job demands match job 
decision latitude, as shown by the minimal slope along the Y = X line. 

Figure 2c shows a hypothetical relationship between actual job enrich- 

ment, desired job enrichment, and work motivation (Cherrington & England, 
1980; Hackman & Oldham, 1980; Kulik, Oldham, & Hackman, 1987). The 

surface is concave and slightly elliptical, with its first principal axis running 

parallel to the Y = X line but displaced to the right, into the region where X 

is greater than Y. The second principal axis intersects the first at the point X 
= 2.5, Y = 0, just inside the right edge of the X,Y plane. Overall, the surface 

indicates three effects. First, motivation increases as actual enrichment in- 

creases toward desired enrichment but begins to decrease when actual en- 

richment has moderately exceeded desired enrichment (in this case, by 2.5 

units). Second, motivation is generally higher when actual and desired en- 

richment are high than when both are low. Third, when actual and desired 

enrichment are both high (in this case, about 1.25 units), motivation begins 
to decrease, suggesting that intense involvement may eventually lead to poor 
mental health, burnout, and other conditions deleterious to motivation (Ku- 
lik et al., 1987). 

Finally, Figure 2d depicts the hypothetical effects of the pay received by 
oneself and a referent other on one's propensity to leave (Dittrich & Carrell, 

1979; Oldham, Kulik, Ambrose, Stepina, & Brand, 1986; Scholl, Cooper, & 

McKenna, 1987; Summers & Hendrix, 1991; Telly, French, & Scott, 1971). 
The surface is convex, with its first principal axis running parallel to the Y 

= -X line but intersecting the second principal axis at the point X = 8, Y 

2, well outside of the X,Y plane. As one moves along the Y = X line, the 

surface is sloped downward and slightly convex. Overall, the surface indi- 

cates three effects. First, propensity to leave is notably greater for conditions 

of underpayment than for conditions of overpayment. Second, when the pay 
received by oneself and a referent other both increase equally, one's propen- 

sity to leave decreases. Third, as one moves up the pay scale, successively 

larger increases in pay received by both parties are required to produce a unit 

decrease in propensity to leave. 

Ideally, the preceding examples would have been based on results from 

empirical studies of congruence that examined three-dimensional surfaces. 

Unfortunately, most studies of congruence have focused on two- 

dimensional relationships. That focus compelled us to derive plausible hy- 

potheses from the literature to illustrate how relationships of interest in 

organizational research can be meaningfully depicted in terms of quadratic 

regression equations and their associated response surfaces. These surfaces 

show not only the effects of congruence between the component measures, 
but also other substantively meaningful effects, such as slope and curvature 

along the principal axes and the Y = X line, shifts in surface maxima or 

1590 December 

This content downloaded from 152.2.176.242 on Wed, 03 Feb 2016 18:33:43 UTC
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


Edwards and Parry 

minima away from the Y = X line, and so on. These examples also show that 

the location of the stationary point and principal axes and the slope of the 

surface along various lines of interest provide the core information necessary 
to interpret most surfaces. Fortunately, these features can be readily calcu- 

lated from coefficients obtained from quadratic regression equations, as 

shown below. 

Locating the Stationary Point and Principal Axes 

Formulas expressing the stationary point and principal axes in terms of 

regression coefficients were derived from equations reported by Khuri and 

Cornell (1987). For a quadratic regression equation, the X,Y coordinates of 

the stationary point (Xo, Yo) are: 

b2b4 - 2bib5 
Xo0= 4b b25 (7) 

4b3b5 - b4 

and 

_ bb4 - 2b2b3 

Yo 4b3b5 - b 
2 

Note that when the equality 4b3b5 = b2 holds, Equations 7 and 8 are unde- 

fined, meaning that the surface has no stationary point. This condition im- 

plies one of two types of surface, depending on the values of b3, b4, and b5. 
If any of these coefficients is nonzero, the surface is either a ridge with a 

constant slope along its first principal axis or a trough with a constant slope 

along its second principal axis. If b3, b4, and b5 equal 0 simultaneously, the 

surface is a plane (e.g., Figure lb). In this case, the interpretation of the 

surface is straightforward and does not require the framework described 

here. 

The first and second principal axes can be expressed as lines in the X,Y 

plane. The equation for the first principal axis can be written as 

Y = Plo + P1X. (9) 

The equation for p11 is 

b5 - b3 + (b3 - b5)2 + b 

Pii b (10) 
P4 

Two properties of Equation 10 are worth noting. First, when b3 and b5 are 

equal (as implied by the squared difference), Equation 10 reduces to Ib4j/b4. 
In this case, p11 equals either 1 or - 1, depending upon whether the sign of 

b4 is positive or negative. Second, when b4 equals 0, both the numerator and 

denominator of Equation 10 become 0, rendering it undefined. In that case, 
one of three implications regarding the first principal axis of the surface 

pertains: if b3 is greater than b5, the first principal axis has a slope of 0 and 

runs parallel to the x-axis. If b3 is less than b5, the first principal axis has a 
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slope of infinity and runs parallel to the y-axis. Finally, if b3 and b5 are equal, 
the surface is a symmetric bowl or cap (depending on whether b3 and b5 are 

positive or negative), and no unique set of axes can be identified. 

Once X0, Yo, and p,1 have been calculated, P1o can be calculated using 
the following formula: 

Pio Yo - P11X (11) 

Note that if Pll equals 0, P1o equals Yo, indicating that the first principal axis 

runs parallel to the x-axis and intersects the y-axis at the point Yo. 
The equation for the second principal axis can be written as 

Y = P20 + P21X. (12) 

The equation for P21 is 

b5 - b3 - \/(b3 - b)2 + b2 
P21 b4 (13) 

Note that the equation for p21 is identical to that for Pll, except that the 

sign preceding the expression the expression /(b3 - b5)2 + b4 is reversed. 

Hence, when b3 and b5 are equal, Equation 13 becomes equivalent to 

-Ib4l/b4. Consequently, if b4 is positive, P21 equals -1, whereas if b4 is 

negative, P21 equals 1. Analogously, if b4 equals 0 and b3 is greater than b5, 
the slope of the second principal axis is infinity, whereas if b4 equals 0 and 

b3 is less than b5, the slope of the second principal axis is 0. As before, if b4 

equals 0 and b3 and b5 are equal, the surface has no unique set of principal 
axes. 

Once Xo, Yo, and P21 have been calculated, P20 can be calculated as 

follows: 

P2o = Yo - p21Xo. (14) 

The preceding equations can be used to locate the principal axes in 

reference to the x- and y-axes. However, other information regarding the 

location of the principal axes may also be relevant. For example, congruence 
researchers often hypothesize that some outcome, such as job satisfaction or 

company performance, is maximized at the point of "perfect fit" (e.g., Drazin 

& Van de Ven, 1985; Rice et al., 1989). This hypothesis implies a ridge with 

its first principal axis running along the Y = X line, meaning that Pio = 0 

and Pii = 1. If P11 differs from 1, the surface is rotated off the Y = X line. 

If the quantity -plo/(l + P11) differs from 0, the surface is shifted laterally 

along the Y = -X line, with its first principal axis intersecting that line at 

the point X = -po/(l + P11), Y = plo/(l + Pl). In either case, the hy- 

pothesis that the first principal axis runs along the Y = X line is rejected. 

Congruence researchers also hypothesize that certain outcomes, such as 

psychological strain and turnover, are minimized at the point of perfect fit 

(e.g., Dittrich & Carrell, 1979; French et al., 1982). This hypothesis implies a 

trough with its second principal axis running along the Y = X line (Figure 
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Id), meaning that P20 = 0 and P21 = 1. As before, if p21 differs from 1, the 

surface is rotated off the Y = X line, whereas if the quantity - 20/(1 + P21) 

differs from 0, the surface is shifted laterally along the Y = -X line, with its 

second principal axis intersecting that line at the point X = - P20/(1 + P21), 

Y = p20/(1 + P21). Again, either result would indicate that the second prin- 

cipal axis deviates from the Y = X line. 

Calculating Slopes Along Lines of Interest 

The slope of the surface along a given line in the X,Y plane can be 

calculated by substituting the expression for that line into Equation 6. For 

example, most congruence hypotheses incorporate the assumption that the 

slope of the surface along the Y = X line is 0, meaning that Z is the same at 

all points along the line of perfect fit. The expression for this line in the X,Y 

plane is simply Y = X. Substituting X for Y in Equation 6 yields the fol- 

lowing: 

Z = bo + b1X + b2X b3X2 + b4X2 + b5X2 + e 

= bo + (b3 + b2)X (b3 + b + b5)X2 + e. (15) 

As Equation 15 shows, the slope along the Y = X line at the point X = 0 

(and, by construction, Y = 0) is given by the sum of b1 and b2, and the 

curvature along that line is given by the sum of b3, b4, and b5. If either of 

these sums differs significantly from 0, the hypothesis that the surface is flat 

along the Y = X line is rejected. 
Studies of congruence are also often concerned with the slope of the 

surface along the Y = -X line (running perpendicular to the Y = X line). 
For example, hypotheses derived from P-E fit theory often state that strain 

increases on either side of the point of perfect fit (e.g., French et al., 1982). 
Such hypotheses imply a parabolic surface that is U-shaped along the Y = 

-X line, with its turning point at Y = X. The slope of the surface along that 

line can be calculated by substituting -X for Y in Equation 6: 

Z = bo + b1X - b2X + b3X2 - b4X2 + b5X2 + e 
= bo + (b - b2)X + (b3 

- b4 + b5)X2 + e. (16) 

If the quantity (b3 - b4 + b5) is greater than 0, the surface is curved upward 

along the Y = -X line, and if the quantity (b1 - b2) equals 0, the surface is 

flat at the point X = 0, Y = 0 (the origin of the x- and y-axes). Taken together, 
these results would indicate the hypothesized slope along the Y = -X line. 

Slopes along the principal axes are calculated in a similar manner. For 

example, the slope along the first principal axis can be determined by sub- 

stituting P1o + p1lX for Y in Equation 6: 

Z = bo + b1X + b2(pio + p1X) + b3X2 + b4X(plo + pl1X) 
+ b5(pio + p11X)2 + e 

= b bo + b2 b5p2o + (bl + b2p11 + b4pla + 2b5PloPll)X 
+ (b3 + b4p11 + b5p21)X2 + e. (17) 
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As Equation 17 shows, the slope at the point where X = 0 (that is, where the 

first principal axis crosses the y-axis) is given by the quantity (b1 + b2p11 + 

b4P10 + 2b5p10Pl), and the curvature is given by (b3 + b4p11 + b5p21). The 

slope along the second principal axis can be calculated by replacing p1o and 

P11 with P20 and P21, respectively, in Equation 17, which yields the follow- 

ing: 

Z = bo + b1X + b2(p20 + P21X) + b3X2 + b4X(P20 + P21X) 
+ b5(P20 + P21X)2 + e 

= bo + b22 + bp2 + (bl + b2P21 + b4P20 + 2b5P20P21)X 
+ (b3 + b4p21 + b5p21)X2 + e. (18) 

Tests of Significance 

Tests of significance for expressions involving linear combinations of 

regression coefficients, such as those preceding X and X2 in Equations 15 

and 16, can be readily conducted because the standard errors for these ex- 

pressions can be derived using ordinary rules for calculating the variance of 

a linear combination of random variables (e.g., DeGroot, 1975; Neter, 

Wasserman, & Kutner, 1989). However, expressions involving products and 

ratios of regression coefficients, such as formulas for the stationary point, 

principal axes, and slopes along the principal axes, cannot be tested using 
conventional procedures because formulas for the standard errors of these 

expressions are not generally available (Peddada, 1992). 
When the formula for the standard error of an expression is unavailable, 

nonparametric procedures, such as the jackknife and bootstrap, are applica- 
ble (Efron, 1982; Efron & Gong, 1983; Tukey, 1958). For this article, we used 

the jackknife for its computational ease and demonstrated ability to approx- 
imate known standard errors (Efron & Gong, 1983; Peddada, 1992). The 

procedure used to compute standard errors using the jackknife is described 

in the Appendix. 

AN EMPIRICAL EXAMPLE 

To illustrate the framework described here, we used data from the clas- 

sic person-environment fit study conducted by French and colleagues (1982) 
and reanalyzed by Edwards and Harrison (1993). Regression coefficients 

from the six equations reported in Table 1 were used to calculate the sta- 

tionary points, principal axes, and slopes along four lines, including Y = X, 
Y = -X, and the first and second principal axes. We tested the slopes along 
the Y = X and Y = -X lines using standard procedures for linear combi- 

nations of regression coefficients (Neter et al., 1989) and tested the slopes 

along the principal axes and the locations of the stationary points and prin- 

cipal axes using the jackknife procedure. Tables 2 and 3 present results of 

these analyses, and Figures 3a-3f show plots of all six surfaces (for job 

complexity, we reversed the scaling of the x- and y-axes to permit a better 

view of the surfaces). 
To interpret the results for each surface, we proceeded as follows. First, 
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TABLE 2 

Stationary Points and Principal Axesa 

Stationary Point First Principal Axis Second Principal Axis 

Job Dimension Outcome Xo YO Pio Pio P20 P21 

Job complexity Job dissatisfaction -3.272 -4.356 - 6.804 - 0.748* * 0.018 1.337 * 

Job complexity Work load dissatisfaction -1.832 -3.258 -4.067 -0.442** 0.890* 2.264**b,c 

Job complexity Boredom 3.592** 3.090** 6.196** -0.865** -1.064 1.157** 

Job complexity Depression -0.343 -0.191 - 0.408 - 0.633** 0.350 1.580** 

Job complexity Anxiety 0.466 0.916** 1.372* -0.980** 0.440 1.021** 

Quantitative work load Work load dissatisfaction -0.785* -0.634 -0.905 -0.345** 1.641** 2.900**b'c 

a N ranged from 617 to 625. For columns labeled Xo and Yo, table entries are coordinates of the stationary point in the X,Y plane. For columns 

labeled plo and P11, table entries are the intercept and slope of the first principal axis in the X,Y plane; and for columns labeled P20 and P21, table 

entries are the intercept and slope of the second principal axis in the X,Y plane. Standard errors for all values were estimated using the jackknife 

procedure described in the Appendix. 
b For this surface, the slope of the second principal axis (P21) differed significantly from 1 (p < .05). 
c For this surface, the quantity 

- 
p2/(1 + P21) was significantly less than 0 (p < .05), indicating a lateral shift of the second principal axis along 

the Y = - X line into the region where X is less than Y. 
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TABLE 3 

Slopes Along Lines of Interesta 

First Principal Second Principal 
Y = X Y = -X Axis Axis 

Job Dimension Outcome ax ax2 ax ax 2 ax ax2 ax ax2 

Job complexity Job dissatisfaction -0.198** -0.017 0.035 0.416** -0.238** -0.036 

Job complexity Work load dissatisfaction -0.123* 0.029 0.329** 0.442** -1.118 0.258** -0.498 -0.136 

Job complexity Boredom -0.490** 0.071* -0.444** 0.484** -0.578** 0.080* 

Job complexity Depession -0.006 -0.024 0.051 0.173** 0.088 0.128* -0.042 -0.061 

Job complexity Anxiety 0.088* -0.062** 0.105 0.244** -0.223 0.239* 0.059 -0.064** 

Quantitative work load Work load dissatisfaction -0.078 -0.109 0.831** 0.693** 0.827* 0.527** -2.652 -1.690 

a N ranged from 617 to 625. For each line, a, repesents the computed coefficient on X, and a,2 represents the computed coefficient on X2. For 

example, for the Y = X line, ax represents (b, + b2) and ax2 represents (b3 + b+4 b5) (see Equation 17). We derived standard errors for slopes along 
the Y = X and Y = -X lines using standard rules for the variance of a linear combination of random variables and calculated standard errors for 

slopes along the principal axes using the jackknife procedure described in the Appendix. The slope along a principal axis is not reported when the 

axis does not cross the X,Y plane in the range of the component measures. 
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we examined the coordinates of the stationary point to determine whether 

the surface was centered at the origin of the x- and y-axes (that is, the point 
X = 0, Y = 0). Next, we examined the intercepts and slopes of the principal 
axes of the surface. Tests of whether the slopes of the principal axes differed 

from 0 were supplemented by tests of whether the slope of the second prin- 

cipal axis (p21) differed from 1 and whether the second principal axis was 

shifted laterally along the Y = - X line, as indicated by the quantity - p2/(1 
+ P21). We conducted these additional tests because P-E fit theory states that 

strain is minimized when actual and desired amounts of job attributes are 

equal (French et al., 1982), implying a U-shaped surface with its second 

principal axis (the region of minimum strain) running along the Y = X line 

(Figure ld). Third, we examined the slope of the surface along the Y - X and 

Y = -X lines. Slopes along the principal axes were also considered when 

the principal axes differed from the Y = X and Y = -X lines but still passed 

through the X,Y plane within the range of the X and Y measures. Although 
this procedure emphasized only a subset of the results reported in Tables 2 

and 3, the remaining results can be examined to obtain a more complete 

understanding of each surface. 

The surface for actual and desired job complexity predicting job dissat- 

isfaction (Figure 3a) was saddle-shaped, with its stationary point located at 

X = - 3.272, Y = -4.356, just beyond the far-back corner of the X,Y plane. 
The first principal axis did not cross within the range of the component 
measures, but the second principal axis passed almost exactly through the 

origin of the x- and y-axes, at the center of the X,Y plane. The slope of the 

second principal axis was slightly greater than 1 (p 21 = 1.337), indicating a 

modest but nonsignificant counterclockwise rotation of the surface off the Y 

= X line. Along the Y = -X line, the surface was convex (a2 = 0.416, p < 

.01) but was flat at the origin (ax = 0.035, n.s.). Taken together, these results 

indicated that, for a given level of actual job complexity, job dissatisfaction 

was minimized when actual and desired job complexity were equal and 

increased in either direction. Further analyses showed that the slope of the 

surface along the Y = X line was negative and linear (a = - 0.198, p < .01; 

ax2 = -0.017, n.s.; see Table 3), thereby indicating that job dissatisfaction 

was lower when actual and desired job complexity were both high than 

when both were low. 

The surface for actual and desired job complexity predicting work load 

dissatisfaction (Figure 3b) was also saddle-shaped, with its stationary point 
at X = - 1.832 and Y - - 3.258, just beyond the back edge of the X,Y plane. 
The slope of the second principal axis was significantly greater than 1 (p21 
= 2.264, p < .01), indicating a counterclockwise rotation off the Y = X line. 

In addition, the quantity -p20/(1 + P21) was significant and negative 

(-0.273, p < .05), indicating a modest lateral shift along the Y = -X line 

into the region where X is less than Y. The slope of the surface along the Y 
= X line was negative and essentially linear (ax = -0.123, p < .05; a2 = 

0.029, n.s.), whereas the slope along the Y = -X line was convex (ax2 = 

0.442, p < .01) and positive at the origin (ax = 0.329, p < .01). In contrast, 
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FIGURE 3a 

Job Complexity Predicting Job Dissatisfactiona 

L) 

3- 

a On the X,Y plane, the dotted line running diagonally from the near corner to the far corner 

represents the Y = X line, and the dotted line running diagonally left to right represents the 

Y = -X line. When the principal axes cross the X,Y plane within the range of the X and Y 

measures, the first principal axis is represented by a solid line and the second principal axis is 

represented by a dashed line. 

the slope along the second principal axis was not significant (ax = -0.498, 

ax2 = -0.136, both n.s.). Taken together, these results indicate a surface 

much like that for job dissatisfaction, with two exceptions. First, when ac- 

tual and desired job complexity were both low, work load dissatisfaction 

tuladdsrdjbcop e i ywrbthl,wor loa d isstifcto 
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FIGURE 3b 

Job Complexity Predicting Work Load Dissatisfactiona 
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a On the X,Y plane, the dotted line running diagonally from the near corner to the far corner 

represents the Y = X line, and the dotted line running diagonally left to right represents the 

Y = -X line. When the principal axes cross the X,Y plane within the range of the X and Y 

measures, the first principal axis is represented by a solid line and the second principal axis is 

represented by a dashed line. 

was lowest when actual job complexity exceeded desired job complexity; 
but when actual and desired job complexity were both high, work load 

dissatisfaction was lowest when actual job complexity fell short of desired 

job complexity. Second, work load dissatisfaction was somewhat greater 

,3 
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FIGURE 3c 

Job Complexity Predicting Boredoma 

3 

2 

1 

N- 

O 

CQ 0 

-1 

-2 

-3 

a On the X,Y plane, the dotted line running diagonally from the near corner to the far corner 

represents the Y = X line, and the dotted line running diagonally left to right represents the 

Y = -X line. When the principal axes cross the X,Y plane within the range of the X and Y 

measures, the first principal axis is represented by a solid line and the second principal axis is 

represented by a dashed line. 

when actual job complexity exceeded desired job complexity than when it 

fell short of desired job complexity. 
The surface for actual and desired job complexity predicting boredom 

(Figure 3c) was convex, with its stationary point at X = 3.592, Y = 3.090, 
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FIGURE 3d 

Job Complexity Predicting Depressiona 

z 

/ 13 

0 

a On the X,Y plane, the dotted line running diagonally from the near corner to the far corner 

represents the Y = X line, and the dotted line running diagonally left to right represents the 

Y = -X line. When the principal axes cross the X,Y plane within the range of the X and Y 

measures, the first principal axis is represented by a solid line and the second principal axis is 

represented by a dashed line. 

just outside the near corner of the X,Y plane. The slope of the second prin- 
cipal axis was 1.157, representing a slight but nonsignificant rotation from 

the Y = X line. The slope along the Y = X line was slightly convex (aX2 = 

0.071, p < .05) and negative at the origin (ax = - 0.490, p < .01), whereas the 0.071, p < .05) and negative at the origin (ax =z -0.490, p < .01), whereas the 
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FIGURE 3e 

Job Complexity Predicting Anxietya 
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a On the X,Y plane, the dotted line running diagonally from the near corner to the far corner 

represents the Y = X line, and the dotted line running diagonally left to right represents the 

Y = -X line. When the principal axes cross the X,Y plane within the range of the X and Y 

measures, the first principal axis is represented by a solid line and the second principal axis is 

represented by a dashed line. 

slope along the Y = -X line was more notably convex (aX2 = 0.484, p < .01), 
with a moderate negative slope at the origin (ax = - 0.444, p < .01). Taken 

together, these results indicated that boredom increased as actual job com- 

plexity deviated from desired job complexity and that boredom was lower 
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FIGURE 3f 

Quantitative Work Load Predicting Work Load Dissatisfactiona 

a On the X,Y plane, the dotted line running diagonally from the near corner to the far corner 

represents the Y = X line, and the dotted line running diagonally left to right represents the 

Y = -X line. When the principal axes cross the X,Y plane within the range of the X and Y 

measures, the first principal axis is represented by a solid line and the second principal axis is 

represented by a dashed line. 

when actual and desired job complexity were both high than when both 

were low. The slight upward curvature along the Y = X line also indicated 

that, as actual and desired job complexity both decreased, boredom in- 

creased at an increasing rate. 
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The surface for actual and desired job complexity predicting depression 

(Figure 3d) was saddle-shaped, with its stationary point at X = - 0.343, Y = 

- 0.191, near the origin of the x- and y-axes. The slope of the first and second 

principal axes did not differ from - 1 and 1, respectively (p11 = - 0.633, p21 
= 1.580), indicating no appreciable rotation off the Y = -X and Y = X 

lines. The surface was flat along the Y = X line (ax = - 0.006, ax2 = -0.024, 
both n.s.) and convex along the Y = -X line (ax = 0.051, n.s., aX2 = 0.173, 

p < .01). Overall, these results essentially indicated that depression in- 

creased as actual job complexity deviated from desired job complexity. This 

finding is corroborated by the difference in the R2 between the constrained 

and unconstrained equations reported in Table 1, which, although statisti- 

cally significant, was relatively small (.017). 
The surface for actual and desired job complexity predicting anxiety 

(Figure 3e) was also saddle-shaped, with its stationary point at X = 0.466, Y 

= 0.916, shifted somewhat from the origin along the y-axis. The slopes of the 

first and second principal axes (p1l and P21) were - 0.980 and 1.021, respec- 

tively, corresponding very closely to -1 and 1. However, the intercept of 

the first principal axis differed from 0 (plo = 1.372, p < .05), a finding 

that, combined with the location of YO, indicated a lateral shift along the 

y-axis. The surface was convex along the first principal axis (ax2 = 0.239, 

p < .01) but essentially flat where it crossed the y-axis (ax = -0.223, n.s.). 

In contrast, the surface was slightly concave along the Y = X line (a2 
= 

- 0.062, p < .01), with a modest positive slope where it crossed the y-axis 

(ax = 0.088, p < .05). These results indicated that anxiety increased as 

actual job complexity deviated from desired job complexity and also that 

anxiety was higher when actual and desired job complexity were both mod- 

erate (in this case, about .7 units) than when they were both either high 
or low. 

Finally, the surface for actual and desired quantitative work load pre- 

dicting work load dissatisfaction (Figure 3f) was saddle-shaped, with its 

stationary point at X = -0.785, Y = -0.634, shifted slightly downward 

along the Y = X line. The slopes of the first and second principal axes (Pll 
and P21) were -0.345 and 2.900, respectively, indicating a marked counter- 

clockwise rotation. In addition, the quantity -p20/(1 + P21) was significant 
and negative (-0.421, p < .05) indicating a lateral shift along the Y = -X 

line into the region where X is less than Y. The surface was convex along the 

first principal axis (ax2 = 0.527, p < .01) and positively sloped where it 

crossed the y-axis (ax = 0.827, p < .05). In contrast, the surface was concave 

along the second principal axis and negatively sloped where it crossed the 

y-axis, but neither ax nor ax2 was significant, due to the sizable jackknife 
estimates of their standard errors. Essentially, these results indicated that, 
when actual and desired work load were below their scale midpoints, work 

load dissatisfaction increased as actual work load deviated from desired 

work load, but when actual and desired work load were above their scale 

midpoints, work load dissatisfaction was lowest when actual work load was 

somewhat less than desired work load. In addition, work load dissatisfaction 
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was higher when actual work load exceeded desired work load than when it 

fell short of desired work load. 

DISCUSSION 

This article presents a general framework for testing and interpreting 

quadratic regression equations within the study of congruence in organiza- 
tional research. These equations avoid many problems with difference 

scores but permit direct tests of conceptual models difference scores are 

intended to represent (Edwards, in press). Unfortunately, these equations 
often yield patterns of coefficients that are difficult to interpret, particularly 
when models specified a priori are not supported. The framework presented 
here shows how coefficients from quadratic regression equations can be 

used to comprehensively describe and test the surfaces they imply. Thus, 
this framework clarifies the interpretation of quadratic regression equations 
and permits rigorous evaluation of conceptual models relevant to the study 
of congruence, including models that are substantially more complex than 

those represented by difference scores. 

The incremental contribution of the framework presented here may be 

seen by comparing our results to those reported by French and colleagues 

(1982; see also Caplan et al., 1980), who analyzed the relationship between 

P-E fit and strain using various transformations of algebraic and squared 
difference scores. French and colleagues concluded that the functional form 

relating actual and desired job complexity to the five indexes of strain re- 

ported in Table 1 was essentially U-shaped. They elaborated this general 
conclusion by stating that too little job complexity exhibited a stronger re- 

lationship with boredom, whereas too much job complexity exhibited stron- 

ger relationships with work load dissatisfaction, depression, and anxiety. 
French and colleagues also reported that the functional form rebuting actual 

and desired quantitative work load to work load dissatisfaction was 

U-shaped, with stronger effects for excess work load. 

Subsequent reanalyses by Edwards and Harrison (1993) using the poly- 
nomial regression procedure (Edwards, in press) indicated that, with few 

exceptions, the constraints imposed by the difference scores used by French 

and colleagues were rejected. Plots of the surfaces corresponding to the 

equations reported in Table 1 suggested various deviations from the surface 

indicated by the squared difference (Figure Id), such as slopes along the Y 
= X line, lateral shifts, and counterclockwise rotations. However, Edwards 

and Harrison were forced to base their conclusions primarily on visual in- 

spection of these surfaces because the framework presented here was un- 

available. 

By applying this framework, we can now draw firm conclusions regard- 

ing the surfaces corresponding to the equations reported in Table 1. For 

example, consistent with the findings reported by French and colleagues 

(1982), all six surfaces were U-shaped, evidenced by the significant, positive 
coefficients on ax2 along the Y = -X line (or, for rotated surfaces, along the 

first principal axis). Furthermore, excess job complexity and quantitative 
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work load exacerbated work load dissatisfaction, as shown by the lateral 

shifts in these surfaces along the Y = -X line, into the region where X is less 

than Y. However, contrary to French and colleagues' findings, the functions 

relating actual and desired job complexity to boredom, depression, and anx- 

iety were essentially symmetric. This is shown by the locations of the second 

principal axes of these surfaces, which did not deviate from the Y = X line 

(P21 and the quantity - p20/(1 + P21) did not differ significantly from 1 and 

0, respectively). In addition, the surfaces relating job complexity and quan- 
titative work load to work load dissatisfaction were rotated counterclock- 

wise, indicating that, when actual and desired amounts of these job dimen- 

sions were low, a slight excess minimized work load dissatisfaction, 
whereas when actual and desired amounts were high, a slight deficiency 
minimized work load dissatisfaction. Furthermore, several surfaces were 

sloped along the line of perfect fit (the Y = X line), including a positive slope 
for actual and desired job complexity predicting anxiety and negative slopes 
for actual and desired job complexity predicting job dissatisfaction, work 

load dissatisfaction, and boredom. These additional findings, although not 

reported by French and colleagues, are nonetheless consistent with P-E fit 

theory, which suggest that strain may vary along the Y = X line and be 

minimized at points other than perfect fit (Caplan, 1983; French et al., 1982; 

Harrison, 1978, 1985). By applying the framework presented here in other 

studies of congruence, researchers are likely to find theoretically relevant 

effects that have previously gone undetected. 

The framework presented here was illustrated using paired measures of 

individual-level constructs. This framework can, however, be readily ap- 

plied to other forms of congruence research. For example, numerous studies 

have examined congruence between organization-level constructs, such as 

technology and structure (Alexander & Randolph, 1985; Dewar & Werbel, 

1979; Fry & Slocum, 1984), an organization and its environment (Anderson 
& Zeithaml, 1984; Miller, 1991), and actual and ideal scores on measures of 

organizational strategy (Venkatraman, 1990; Venkatraman & Prescott, 1990) 
or structure (Drazin & Van de Ven, 1985; Gresov, 1989). Naturally, the effects 

of congruence between these constructs can be readily examined using the 

framework described here, because this framework is applicable to measures 

of any paired constructs of interest in congruence research. 

Furthermore, many studies have examined the effects of congruence 

along multiple dimensions, usually expressed in terms of a profile similarity 
index (e.g., Drazin & Van de Ven, 1985; Gresov, 1989; Rounds et al., 1987; 

Sparrow, 1989; Turban & Jones, 1988; Venkatraman, 1990; Venkatraman & 

Prescott, 1990; Zalesny & Kirsch, 1989). Unfortunately, using profile simi- 

larity indexes to represent congruence introduces numerous methodological 

problems (Cronbach, 1958; Edwards, in press; Johns, 1981; Lykken, 1956; 

Nunnally, 1962). Many of these problems can be avoided by examining 

congruence not between entire profiles, but between specific, paired dimen- 

sions, using quadratic regression equations to depict the hypothesized rela- 

tionship (Cronbach, 1958; Edwards, 1993). If separate equations are used for 

each pair of dimensions, the framework presented here can be directly ap- 
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plied. If multiple pairs are included in the same equation, the framework can 

be applied to coefficients from terms corresponding to each pair. In this case, 

the surface represented by each pair of dimensions represents the joint ef- 

fects of those dimensions on the dependent variable, holding the effects of 

all other dimensions constant. 

Although the framework presented here should prove useful in future 

studies of congruence, it nonetheless has several shortcomings. First, some 

aspects of the framework, particularly the jackknife procedure, are compu- 

tationally intensive. In most cases, this should not pose major difficulties, 

given the widespread availability of high-speed computers. Second, the 

framework relies on numerous tests of significance, which may inflate Type 
I error rates. This may be controlled using the Bonferroni correction (Harris, 

1985) or more powerful alternatives, such as the sequential procedures de- 

scribed by Holm (1979) and Holland and Copenhaver (1988). 

Third, the jackknife procedure tends to overestimate known standard 

errors (Efron & Gong, 1983). This problem is accentuated by the presence of 

outliers, which may dramatically influence coefficient estimates and hence 

increase the variability of the coefficient estimates yielded by the jackknife 

procedure. This problem can be minimized by screening data for influential 

cases prior to analysis and either eliminating them or, if a large number is 

detected, modeling them separately using an indicator variable (Belsley, 

Kuh, & Welsch, 1980). 

Fourth, like any application of regression analysis, this framework is 

based on the assumption that the component variables are measured without 

error (Pedhazur, 1982). This assumption can be relaxed when structural 

equations modeling is used (Bollen, 1989; Joreskog & Sorbom, 1988). The 

resulting structural coefficients can be interpreted using the framework pre- 
sented here, with the caveat that the x-, y-, and z-axes represent latent con- 

structs rather than manifest variables. However, procedures for estimating 
structural coefficients on curvilinear and interactive terms are rather com- 

plex and have yet to attain widespread use (Bollen, 1989; Hayduk, 1987; 

Kenny & Judd, 1984). Furthermore, the jackknife procedure would require 

recalculating the sample covariance matrix N times, adding significant com- 

putational requirements when large samples are used. At this stage, perhaps 
the most advisable procedure is to ensure that component measures are 

highly reliable prior to analysis, thereby minimizing problems resulting 
from measurement error at subsequent stages (Edwards, in press). 

A final issue is the interpretation of regression coefficients on lower- 

order terms, such as b1 and b2 in Equation 6, in the presence of higher-order 
terms. These coefficients are scale-dependent, meaning that adding or sub- 

tracting a constant to X or Y will change the estimated values and signifi- 
cance levels of b1 and b2 (Arnold & Evans, 1979; Cohen, 1978). Although this 

dependence may seem to render the interpretation of b1 and b2 meaningless, 
it simply reflects the fact that these coefficients represent conditional rela- 

tionships, indicating the slope of the surface where both X and Y equal 0 

(Aiken & West, 1991; Jaccard et al., 1990). Rescaling X and Y simply shifts 

the origin of the x- and y-axes, so that b1 and b2 describe the slope at a 
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different point on the surface. If rescaling moves the origin beyond the range 
of X and Y, then b1 and b2 are obviously not meaningful, because they 

represent estimates extrapolated beyond the bounds of the data. However, 

rescaling within the range of X and Y produces values of b1 and b2 that may 

yield useful interpretations. For example, if X and Y are centered at their 

means, b1 and b2 represent the slope of the surface at the mean of both X and 

Y (Cronbach, 1987). X and Y can be centered at other useful values, such as 

one standard deviation above or below their means (cf. Cohen & Cohen, 
1983: 325). In our analyses, we centered X and Y at their scale midpoints, 
because these values are not sample-dependent and yield useful interpreta- 
tions of bI and b2 (the slope of the surface at the center of the plane bounded 

by the X and Y measures). It should be emphasized that these rescalings do 

not affect the correspondence between the surface and the data, because the 

calculated locations of the stationary point and principal axes change ac- 

cordingly with the rescaling of X and Y. For more detailed discussions of the 

interpretation of coefficients on lower-order terms in polynomial regression 

equations, see Aiken and West (1991) and Jaccard and colleagues (1990). 

CONCLUSION 

The study of congruence in organizational research is currently at a 

critical juncture. For decades, research in this area has relied on difference 

scores, which introduce numerous substantive and methodological prob- 
lems. These problems are sufficiently serious to render much of this research 

inconclusive. For example, a recent review of person-job fit studies con- 

ducted from 1960 through 1989 (Edwards, 1991) revealed that, due to the 

widespread use of difference scores, the results of these studies are largely 
inconclusive. This situation is not unique to the person-job fit literature but 

is evident in virtually every area of organizational research that uses differ- 

ence scores to examine congruence (Edwards, in press; Mowday, 1987; 
Wanous et al., 1992; Van de Ven & Drazin, 1985). Fortunately, procedures 
such as the polynomial regression approach and the framework presented 
here are now available that avoid many problems with difference scores and 

more fully address questions of conceptual relevance in congruence re- 

search. If these procedures gain widespread acceptance, problems attribut- 

able to the use of difference scores in congruence research may be overcome, 
and significant theoretical and empirical advances are likely to occur. 
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APPENDIX 

The jackknife is a general nonparametric procedure for calculating the standard error of an 

expression (Efron & Gong, 1983; Peddada, 1992). The jackknife involves dropping one obser- 

vation from a sample, calculating the expression of interest, and then replacing the excluded 

observation. This procedure is repeated until each observation has been dropped exactly once, 

so that the expression has been calculated n times using samples of the size n - 1. The resulting 
values are used to compute n "pseudovalues" of the expression of interest, using the following 
formula: 

pvi = nf(b) - (n - 1)f(b_,), (Al) 

where 

pvi = the ith pseudovalue, 

f(b) = the expression of interest calculated using the coefficient estimates 

obtained from the entire sample, 

f(b_i) = the expression calculated using the coefficient estimates obtained from the 

entire sample excluding the ith observation, and 

n = the sample size. 

The jackknife estimate of the sample variance of the expression of interest is calculated as 

follows (Peddada, 1992): 

n 

(pVi - pv)2 
i=l 2 = (A2) 

n(n - 1) (A2) 

where 

pv = the mean of the n pseudovalues. 

The ratio of the expression of interest to the square root of s2 can be referred to ordinary 

t-tables, with n - 1 degrees of freedom. 
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