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Abstract The paper presents the use of positive polynomials, in particular Bernstein
polynomials, to represents families of probability distributions in orbital dynamics.
The uncertainty in model parameters and initial conditions is modeled with p-boxes
to account for imprecision and lack of knowledge. The resulting uncertainty in the
quantity of interest is estimated by representing the upper and lower expectations
with positive polynomials with interval coefficients. The impact probability of an
asteroid subject to a partially known Yarkovsky effect is used as an illustrative ex-
ample.

1 Introduction

The treatment of uncertainty in orbit propagation is of fundamental importance to
predict the motion of natural and man-made objects. In the specific case of asteroids
and space debris a key quantity of interest is the probability of an impact with the
Earth or a collision with an operational satellite.

Several methods have been proposed to deal with uncertainty and provide a pre-
diction of the future state of a space object. Most of them start from some assump-
tions on the probability distribution associated to the uncertain quantities and then
model, more or less accurately, the distribution of the quantity of interest. When
the nature of uncertainty is epistemic (lack of knowledge), a single probability dis-
tribution might not be available. More likely different sources of information may
suggest that the probability associated to an uncertain quantity belongs to a finite set
for which we can define upper and lower bounds.

However, the fast calculation of these bounds is not a trivial matter. In this pa-
per an approach based on the use of positive polynomials is proposed to calculate
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the upper and lower bounds via a simple linear optimisation programme. The un-
certain quantities are modeled with p-boxes defined through parametric probability
distributions or via positive polynomial expansions [4].

The calculation of the impact probability of an asteroid subject to a poorly known
Yarkovsky effect is used as an illustrative example.

2 Worst Case Scenario

The problem under investigation is to evaluate the probability of the following set
of events:

Aν = {u ∈ U0 : f (u)≤ ν} (1)

where f is the quantity of interest and u is a stochastic variable defined in an un-
certainty space U0 with dimension d. We use the notation [u] ∈ Rd to indicate the
convex set of u such that u ∈ U0 ⊆ Rd . If d = 1, the uncertainty is an interval and it
is also indicated as [u,u], where u,u are the lower and upper limit, respectively.

Regardless of the distribution of u one can define the best and worst case scenar-
ios as follows:

f = min
u∈U0

f (u) , f = max
u∈U0

f (u) . (2)

The solution to (20) gives the limit of variability of f and identifies also two rare
events. For any value of ν ∈ [ f , f ] and a known probability distribution p, the prob-
ability associated to Aν is given by the formula

IP(Aν) =
∫

Aν

p(u)du , (3)

In the following, the uncertain variables are assumed to be independent and un-
correlated so that the initial uncertainty space is the hyper-rectangle, however, the
solution of Eqs. (20) does not require U0 to be a box and holds true for any generic
set. The same is true for Eq.(22).

3 Upper and Lower Expectations

When the uncertainty on the input quantities is epistemic the probability p can be-
long to a family of parametric distributions or to a set of unknown distributions.
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3.1 Representation with Families of Parametric Distributions

Consider the case in which one can reasonably assume that the uncertainty can be
quantified with a family of beta distributions with unknown parameters α and β (any
other parametric or non-parametric distribution would equally work). Eq. (22) then
translates into two equations defining the upper and lower probability associated to
Aν :

min
α,β

∫
Aν

p(u)du , max
α,β

∫
Aν

p(u)du , (4)

where p is the product of probability p = ∏
d
j=1 p j, where each marginal density

mass p j is a beta distribution function with parameters α j,β j.

3.2 Representation with Positive Polynomials

In the general case the integrals in Eqs.(4) can calculated numerically via multidi-
mensional quadrature formula. As an example we can replace the calculation of the
exact integrals with an approximation using Halton low discrepancy sequence to
generate M sample points (called quasi-Monte Carlo points) in the domain U0 and
then re-write the integrals in the form:

∫
Aν

p(u)du≈ 1
M

M

∑
k=1

IAν
(uk) p(uk) (5)

where the samples uk are taken from the low discrepancy sequence. Similarly, we
can approximate the integrals in Eq. (4):

min
α,β

M

∑
k=1

IAν
(uk)∏

j
p j(uk) , max

α,β

M

∑
k=1

IAν
(uk)∏

j
p j(uk) . (6)

subject to the constraint:
1
M

M

∑
k=1

p(uk) = 1. (7)

If the family of distributions is unknown or does not contain only one particular
type, one can use an a representation with an expansion in positive polynomials to
approximate the extrema of [p] and obtain the upper and lower expectation on Aν

as solutions of a linear problem. In this paper, in particular, we propose the use of
Bernstein polynomials [4][7]. The family of probability distributions to which the
uncertain variable u j belongs can be expressed as

[pc j ] =
{ n

∑
i=1

c( j)
i Bi(τ j(u j))

}
, (8)
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where Bi : [0,1] 7→ [0,1] is the ith-univariate Bernstein polynomials of dimension n
and τ j is the change of coordinate from the uncertain interval [u j] to [0,1].

Under the independence and non-correlation assumption among the variables,
the joint probability distribution is the product of the marginal masses and it is con-
tained in the p-box [pc̃] = ∏

d
j=1[pc j ] which can be re-written as

[pc] =
{

∑
κ∈K

cκ Bκ(τ(u))
}
, (9)

with K = {κ = (k1, . . . ,kd) ∈ Nd : 0≤ k j ≤ n,∀ j}, Bκ is a multivariate Bernstein
polynomial, τ = ∏

d
j=1 τ j, and c is the unknown coefficient vector. Then, the upper

and lower expectation are the solutions of the two linear optimization problems:

El(Aν) = min
c∈C

∫
Aν

pc(u)du , Eu(Aν) = max
c∈C

∫
Aν

pc(u)du , (10)

The set C ∈RM can be assumed to be an hyper-cube, for example, C = [0,M]M . In
discrete form programmes (10) translate into:

El(Aν) = min
c∈C

M

∑
s=1

IAν
(us) ∑

κ∈K
cκ Bκ(τ(us)), (11)

and

Eu(Aν) = max
c∈C

M

∑
s=1

IAν
(us) ∑

κ∈K
cκ Bκ(τ(us)) . (12)

subject to the linear constraint:

1
M

M

∑
s=1

∑
κ∈K

cκ Bκ(τ(us)) = 1. (13)

3.3 Impact probability

Positive polynomials are here applied to the estimation of upper and lower impact
probabilities of an asteroid subject to the Yarkovsky effect.

We consider a simplified dynamical model of an asteroid under the gravitational
force of the Sun and of the Yarkovsky effect. The latter is assumed to be a purely
transverse acceleration A2/r2, where r is the heliocentric distance and A2 is a func-
tion of the asteroid physical quantities[3]. The dynamical equations, expressed in
Keplerian orbital elements, can be reduced to

da
dt

=
2A2(1− e2)

np2 ,
dM
dt

= n , (14)
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where e is the eccentricity, M is the mean anomaly, n =
√

µ/a3 is the mean motion
of the unperturbed orbit with µ the gravitational parameter, and p = a(1−e2) is the
conic parameter. For A2 = 0 the dynamics (14) reduces to a pure Keplerian motion,
while the semi-major axis drifts outwards for A2 > 0, and inwards for A2 < 0.

Although A2 is unknown, it can be estimated using the available information on
the physical model. Following Farnocchia et al.[3], the coefficient A2 is expressed
as

A2 =
4(1−A)

9
Φ(1au) f (Θ)cosγ , f (Θ) =

0.5Θ

1+Θ +0.5Θ 2 , (15)

where Φ(1au) is the standard radiation force factor at 1 astronomical unit, A is the
Bond albedo, Θ is the thermal parameter, and γ is the obliquity. The radiation force
at 1 W/m2 is computed as

Φ(r) =
3L0

2cρD
, (16)

where L0 is the luminosity of the Sun, i.e., the total power output of the source, R is
the mean radius of the asteroid, ma the mass of the asteroid, and c is the velocity of
light.

Using Bowel et al.[1], the Bond albedo can be written as A = (0.29+0.684G)pv,
with G the slope parameter and pv the geometric albedo. Farnocchia et al.[3] related
the thermal parameter Θ to the thermal inertia Γ :

Θ =
Γ

εσT 3
ss

√
2π

Prot
, (17)

where ε is the emissivity coefficient, σ is the Stefan-Boltzmann constant, Prot is the
rotation period, and Tss is the subsolar temperature[2]

Tss =

[
(1−A)L0

ηεσr2

]1/4

, (18)

where r is the heliocentric distance of the body and η is the so-called beaming
parameter, which is equal to one in the case that each point of the surface is in
instantaneous thermal equilibrium with solar radiation.

Delbò et al.[2] related the thermal inertia to the diameter D (in km) by the ex-
pression

Γ = d0D−ψ ,

with d0 = 300±45 Jm−2s−1/2K−1 and ψ = 0.36±0.09.
Eventually, the diameter can be related to the absolute magnitude H and the

geometric albedo by the formula[6]

D = 1329
10−H/5
√

pv
. (19)

The main uncertainty is represented by the obliquity angle: according to La Spina
et al.[5] retrograde and direct rotators are in a 2:1 ratio with the NEO population.
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Therefore, both the inward and the outward drift of the semi-major axis are pos-
sible. In addition, other key physical parameters are known with uncertainty. Due
to the lack of knowledge in their distributions, they need to be treated as epistemic
uncertainty variables.

It is assumed that both the initial conditions and the model parameters are uncer-
tain. The uncertainty space is U0 = [x0]×[q]⊂R10, where x0 =(a0,e0, I0,Ω0,ω0, `0)
is the initial Keplerian orbital element vector, and q = (D,G, pv,ρ,d0,ψ,Prot ,γ) is
the model parameter vector.

The impact risk is computed at the close approach epoch using the projection on
the target plane and the impact parameter b. We say that a collision may occur if the
b-parameter is less or equal a safety radius: b ≤ R∗; this threshold is fixed here at
1.5 Earth radii.

Due to the uncertainty in the initial conditions, the final states of the asteroid
defined a connected region more or less elongated along its orbit. Therefore, we
say that the significant uncertainty of the b-parameter is contained in the interval
[b,b]⊆ R given by

b = min
u∈U0

b(u) , b = max
u∈U0

b(u) . (20)

Assuming that the orbital elements are uncertain with known distributions (aleatory
uncertainty), while the model parameters are uncertain with unknown distributions
(epistemic uncertainty), the product of their probabilities is epistemic and it is indi-
cated with the probability box (shortly, p-box) [p]. Then the upper and lower impact
probabilities is given by the formula

Pu(AR∗) = max
p∈[p]

∫
AR∗

p(u)du , (21)

Pl(AR∗) = min
p∈[p]

∫
AR∗

p(u)du , (22)

where AR∗ = {u ∈ U0 : b(u)≤ R∗} is the event of interest.
We can now assume that each uncertainty variables is contained in a probability

box (p-box) delimited by two Beta distribution functions:

[pi] = {cdfBeta(α,β ) : 1≤ α,β ≤ 3} ,

where i is the variable index. This is the situation in which there are two experts with
opposite opinions: one believes that the most probable value is the left extrema of
the interval (Beta(1,3)) and the other that most probable value is the right extrema of
the interval (Beta(3,1)); and in the uncertainty analysis we want to take into account
both of them. Each p-box can be re-defined as in Eq. (9) with Bk,k = 1, . . . ,M
multivariate Bernstein polynomials of degree 2. This is due to the fact that each Beta
function can be approximated with a positive polynomials series. The degree 2 is
because Beta(3,1), Beta(3,1) are approximated exactly with a Bernstein polynomial
of order 2.
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Figure 1 shows the cumulative distribution function of the b-parameter corre-
sponding to an aleatory and epistemic case. Curve P represents the case when all
variables are aleatory with known Beta distributions with parameters α = 3,β = 3
for the orbital elements and Beta functions α = 1,β = 1 (uniform distribution) for
the Yarkovsky parameters. On the contrary when uncertainty on the model parame-
ters and initial conditions is epistemic one obtains the upper and lower expectations
(curves Eu and El , respectively). For all the possible values of the uncertain param-
eters the impact probability in Eq. (22) is 1 since b ≤ 1.5R⊕, with R⊕ the Earth
radius, for every b.
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Fig. 1: Impact probability before deflection

From the same analysis one can estimate an upper and lower expectation of the
Yarkovsky parameter A2. Following Section 3.2, we can solve Eq. (10) with C =
[0,M]M , M = 6,561, and the integral approximation given by Eq. (6) on 2 ·105 quasi-
Monte Carlo samples. The upper and lower expectation delimiting the p-box are
computed on 50 bins in the interval [−524,524] au/d2, using Bernstein polynomials
as described in Section 3.2 on 104 quansi-Monte Carlo points. The p-box of A2 is
shown in Figure 2. The Yarkovsky parameter is computed at a fixed distance of
a
√

1− e2. In the dynamical model we will sample A2 from distributions P such that
El ≤ P ≤ Eu. To simplify the problem the upper and lower expectation have been
approximated by Beta functions (Figure 2):

Eu ≈ cdfBeta(5,10) El ≈ cdfBeta(10,5) .

4 Conclusion

The paper demonstrates the use of positive polynomial expansions to approximate
upper and lower expectations on the impact probability of an asteroid with the Earth.
The proposed approach leads to the solution of a simple linear programme with a
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Fig. 2: Upper and lower expectation of the Yarkovsky parameter A2

single linear constraint. The use of Bernstein polynomials, as proposed in this paper,
allows for the representation of any set of probability distributions with finite sup-
port. The main limitation is the exponential growth of the number of polynomial co-
efficients with the number of dimensions. However, this problem is equally present
in Gaussian mixture models although in this case no parameters, appearing nonlin-
ear in the mixture model, need to be defined. The number of terms in the expansion
can be calibrated to achieve the desired representation. Furthermore, the approach
in this paper can be applied in conjunction with an high-dimensional representation
of the quantity of interest that would mitigate the curse of dimensionality.
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