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Ranking of Ground-Motion Models for Seismic-Hazard Analysis in

Regions of Moderate Seismicity: The Case of Rock Motion

by Frank Scherbaum, Fabrice Cotton, and Patrick Smit

Abstract The use of ground-motion-prediction equations to estimate ground shak-
ing has become a very popular approach for seismic-hazard assessment, especially
in the framework of a logic-tree approach. Owing to the large number of existing
published ground-motion models, however, the selection and ranking of appropriate
models for a particular target area often pose serious practical problems. Here we
show how observed ground-motion records can help to guide this process in a sys-
tematic and comprehensible way. A key element in this context is a new, likelihood
based, goodness-of-fit measure that has the property not only to quantify the model
fit but also to measure in some degree how well the underlying statistical model
assumptions are met. By design, this measure naturally scales between 0 and 1, with
a value of 0.5 for a situation in which the model perfectly matches the sample dis-
tribution both in terms of mean and standard deviation. We have used it in combi-
nation with other goodness-of-fit measures to derive a simple classification scheme
to quantify how well a candidate ground-motion-prediction equation models a par-
ticular set of observed-response spectra. This scheme is demonstrated to perform
well in recognizing a number of popular ground-motion models from their rock-site-
recording subsets. This indicates its potential for aiding the assignment of logic-tree
weights in a consistent and reproducible way. We have applied our scheme to the
border region of France, Germany, and Switzerland where the Mw 4.8 St. Dié earth-
quake of 22 February 2003 in eastern France recently provided a small set of ob-
served-response spectra. These records are best modeled by the ground-motion-
prediction equation of Berge-Thierry et al. (2003), which is based on the analysis of
predominantly European data. The fact that the Swiss model of Bay et al. (2003) is
not able to model the observed records in an acceptable way may indicate general
problems arising from the use of weak-motion data for strong-motion prediction.

Introduction

The issue adressed in this paper is the selection and
ranking of appropriate ground-motion models for seismic-
hazard assessment in an arbitrary target region to obtain
transparent, data-driven criteria for the assignment of logic-
tree weights. Because of the improvement of seismological
networks, the number of proposed ground-motion models
has strongly increased in the last decade. A recent review
(Douglas, 2003) summarizes more than 120 studies that have
derived equations for the estimation of peak ground accel-
eration and 80 studies that derived equations for the esti-
mation of response spectral ordinates. Therefore, there is a
need for quick and efficient testing to determine if a model
is appropriate for a particular target region. Unless the pre-
requisites for appropriateness are defined very carefully, and
the reasons for the selection process are fully documented

step by step, the selection of candidate models, and espe-
cially the assignments of logic-tree weights, easily become
a highly subjective and non-transparent process. Possible se-
lection criteria, such as tectonic environment, stress regime,
and/or propagation properties in the target region, are often
hard to quantify, and there is no common understanding
about the relative importance of individual criteria. As a con-
sequence, the influence of personal preferences for particular
regression schemes, for particular sets of independent pa-
rameters, and/or for the degree of simplicity or sophistication
of a model are difficult to avoid. In the context of a logic
tree with more than a few alternative ground-motion-model
branches, it will therefore be hard if not impossible to keep
the judgment of the complete set of candidate models inter-
nally consistent and the verdict on particular models repro-
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ducible. There is an additional related problem, which is
easy to be overlooked. The definition of control parameters
in ground-motion models such as magnitude and distance
definitions are usually different between different models,
which implies that users will correct the proposed models
with their own distance metrics or magnitude definitions.
There is therefore a need to judge not only the original mod-
els but also the “corrected” ones in a consistent way. A more
detailed discussion of these issues is given in Bommer et al.
(2004b).

Here we propose a transparent and reproducible mech-
anism to guide the selection and ranking process of ground-
motion models that minimizes the risk of inconsistent judg-
ment by using recorded-response spectra to judge the match
or mismatch of ground-motion models to a particular target
region. Commonly, the main purpose of ground-motion-
prediction equations in the context of seismic-hazard as-
sessment (SHA) is to estimate the properties of earthquake
records that have not yet been observed in the target region.
On the other hand, a good model should naturally also de-
scribe the properties of records that have been observed al-
ready. On the basis of this notion, our approach to model
selection/ranking consists of the evaluation of how well a
particular (“corrected”) ground-motion model “predicts” ob-
served reference data in a quantitative way. In addition to
the regional aspect, there is also a need for evaluation meth-
ods if the ground-motion from strong earthquakes can be
predicted well by models derived from weak-motion data,
(e.g., that of Raoof et al., 1997; Malagnini et al., 1999; Bay
et al., 2003). At first glance, these models are attractive be-
cause they can be developed by using records of the target
region even if this region is characterized by low to moderate
seismicity.

This paper will focus on rock ground-motion, which is
often used as reference motion in seismic-hazard projects.
However, the geotechnical or geophysical characterization
of the so-called rock-site stations is usually rather poor, and
a geologically defined rock site can be affected by weath-
ering (Steidl et al., 1996; Boore and Joyner, 1997). In ad-
dition, most accelerometric station sites are located on sed-
iments. Hence, the number of rock-site records in datasets
that have been used to generate ground-motion models is
usually rather small. For rock conditions, it is therefore es-
pecially important to have a tool to quantitatively evaluate
whether the average site conditions for the host region of the
ground-motion model seem to be similar to the conditions
for the target region.

Following a brief description of candidate goodness-of-
fit measures, we evaluate their performance on synthetic
data. Subsequently, they are applied to rock-site subsets of
the generating datasets of several ground-motion-prediction
equations (Ambraseys and Simpson, 1996; Ambraseys et al.,
1996; Sabetta and Pugliese, 1996; Abrahamson and Silva,
1997; Ambraseys and Douglas, 2003; Berge-Thierry et al.,
2003) to check their success in identifying the corresponding
ground-motion models. Finally, using the records of the Mw

4.8 St. Dié earthquake of 22 February 2003, we will show
that for the border region of eastern France, southwestern
Germany, and northern Switzerland, a few observed-response
spectra of high quality can already provide considerable
constraints on the selection of ground-motion models for
seismic-hazard analysis.

Goodness-of-Fit Measures

Given a set of observed ground-motion data for the tar-
get region and a candidate ground-motion model, there are
several approaches for evaluating whether the observed data
confirm the model prediction. We find it convenient to group
these approaches into two different classes, depending on
strategy. The first group deals with test statistics for the prop-
erties of residual distributions, whereas the second group
deals with tests for sets of individual data-value predictions.

Testing Residual Distribution

In order to simplify this test, we first normalize the dif-
ferences between data and model predictions (residuals) in
the following way. Because ground-motion models are com-
monly expressed as logarithmic quantities, we subtract the
logarithmic-model predictions from the logarithms of the
data values and subsequently divide the results by the cor-
responding standard deviations of the logarithmic model.
Ideally, this should result in residuals that are normally dis-
tributed with zero mean and unit variance.

Central Tendency and Variance Tests. The question ad-
dressed with this type of test is whether the target-region
dataset (data distribution) and the ground-motion model
(model distribution) have the same central tendency (mean
or median) and/or variance. As a most direct approach, we
calculate the mean, median, and standard deviation of the
normalized data residuals. The deviation of the mean and
the median from zero, and the deviation of the standard de-
viation from 1, help to detect weak models. Large differ-
ences between mean and median should help to identify
models for which the residual distribution is skewed. Be-
cause we have scaled the data by the model mean and var-
iance, we additionally evaluate the hypothesis that the mean
of the normalized distribution is zero. Since the variance is
assumed to be known, this test is based on the normal dis-
tribution instead of the Student’s distribution, which is usu-
ally used for unknown variances (Wolfram, 1996). The test
quantity that we evaluate is the mean test p-value, which is
the probability of the estimated mean being as large as it is
just by chance, given that the hypothesized population pa-
rameters are true. A small numerical p-value (0.05 or 0.01)
means that the observed difference between the estimated
mean and the model mean is “very significant” and thus it
is very unlikely that the observations have been produced by
the candidate model, whereas a large p-value enhances our
confidence in the model (Press et al., 2001). In a similar
way, we have calculated the p-value to test the normalized
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residuals for unit variance. Again, this variance test p-value
is a number between 0 and 1, with a small numerical value
implying a strong rejection of the hypothesis (Wolfram,
1996).

Testing the Shape of the Residual Distribution. In order to
test if the data distribution differs from the model distribu-
tion not only in mean and/or variance but also in shape, we
generalize the question asked in the previous paragraph.
Two different approaches were used to test the shape of the
normalized residual distribution. As one approach, we have
employed the chi-square test (Press et al., 2001). The idea
of this test is to compare the frequencies of the normalized
residuals with the frequencies that would be expected, in our
case assuming a normal distribution of unit variance. The
significance is given by the probability that the observed chi-
square value will be exceeded by chance, given that the
model is correct. This computed probability gives a quanti-
tative measure of the goodness-of-fit of the model. If it is
very small for some particular dataset, then the apparent dis-
crepancies are unlikely to be chance fluctuations. As a sec-
ond test in this category, we have evaluated the Kolmogo-
rov–Smirnov test to check whether the normalized residual
distribution is not significantly different from a zero mean
normal distribution with unit variance. Differently from the
chi-square test, the Kolmogorov–Smirnov test checks the
deviations from the model distribution not only in a general
sense but also for the most deviant values of the criterion
variable. Owing to the normalization of the data, the test
quantity to determine for the Kolmogorov–Smirnov test in
our case is the maximum value of the absolute difference
between the normalized-data residuals and the cumulative
normal distribution for zero mean and unit variance. An ad-
vantage of the Kolmogorov–Smirnov test is that it is an exact
test that does not require binning. One of its known disad-
vantages is that it is more sensitive near the centers of the
distribution than at the tails (Press et al., 2001).

Testing Sets of Individual Observations

A slightly different look at the goodness-of-fit problem
is taken in this group of tests, which compare sets of indi-
vidual data values with their corresponding model predic-
tions without particular assumptions about the special type
of the residual distribution.

Correlation between Individual Model Predictions and
Data. For a good model, even if it does not predict indi-
vidual data values exactly, it should still be expected that
the general tendency of the predictions would be similar to
the observations. This correlation can be expressed by the
Pearson correlation coefficient (Wolfram, 1996), which
takes values between 1 and �1 for complete correlation and
anti-correlation, respectively. A value near zero indicates
that the model prediction and the data are uncorrelated. The
correlation coefficient is, however, a rather poor statistic for
deciding whether an observed correlation is statistically sig-

nificant and/or whether one observed correlation is stronger
than another. The reason is that it is ignorant of the individ-
ual distributions, and therefore it is not possible to compute
its distribution in the case of uncorrelated data (null hypoth-
esis).

Chi-square Misfit. In the context of model fitting, the chi-
square statistic is often used in a slightly different context
than in the previous paragraph. A misfit value, which if min-
imized results in a maximum likelihood estimate of the
model often also referred to as chi-square, is defined as
(Press et al., 2001)

N 2d � mi i2v � . (1)� � �ri�1 i

Here di and mi are the elements of the data and the model-
predictions vector, respectively, and ri is the standard de-
viation for sample i. For a moderately good fit, an v2 value
on the order of the number of degrees of freedom is typical
(Press et al., 2001). Since in the present context we have to
compare different sample sizes, for practical applications we
consider equation (1), normalized by N.

Variance Reduction. In contrast to the chi-square misfit
above, which normalizes the differences between model and
data vector by the standard deviation for the sample, the
variance reduction often used in seismogram modeling
(Cohee and Beroza, 1994; Cotton and Campillo, 1995) is a
goodness-of-fit value where the residuals are additionally
normalized by data amplitudes:

r rr r r rT �1[d � g(m)] • C • [d � gm)]d2Dr � 1 � • 100%,r r� �
T �1d • C • dd

(2)

where represents the weighting by the inverse of the�1Cd

data covariance matrix, is the data vector, and is
r r r
d g(m)

the model prediction for the model . For cases in which
r
m

the covariance matrix is a constant times the identity matrix
(constant standard deviation for all samples), equation (2)
reduces to (in the notation of equation 1)

N 2d � mi i2Dr � 1 � • 100% for d � 0. (3)� i� � � �di�1 i

In other words, all residuals (whatever their absolute ampli-
tude and therefore whatever the distance and magnitude sce-
narios) are weighted equally. Here again, for practical ap-
plications we consider the sum in equation (3) normalized
by N.

A New Goodness-of-Fit Measure In yet another approach,
we define a goodness-of-fit measure especially suited for the
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present context, based on the concept of likelihood (Ed-
wards, 1992). As before, we assume that each ground-
motion model can be described by a lognormal distribu-
tion—in other words, a normal distribution for ln(Y). If the
model is perfect, any observation can be treated as a random
sample drawn from this distribution.

If for a given magnitude M, distance R, and frequency
f, l(M, R, f ) is the predicted mean value for ln(Y), the prob-
ability of a single observation x � ln(Yx) to fall into the
interval (x, x � dx) is

21 �(x � l)
dF � • exp • dx. (4)� 2 �2rr 2p�

Here, r(M, R, f ) is the standard error of the ground-motion
model, which in general depends on magnitude, distance,
and frequency. If we standardize the sample by model mean
l and standard deviation r, we obtain the normalized resid-

ual for which the probability density function
x � l

z �
r

would be

21 �z
f (z) � • exp . (5)� �22p�

Because of its convenient scaling, outlined in more detail as
follows, a good measure for the goodness-of-fit of a ground-
motion model is the probability for the absolute value of a
random sample from the normalized distribution to fall into
the interval between the modulus of a particular observation
|z0| (expressed as normalized variable) and �. For a positive
z0, this is

2�1 �z
u(z ) � exp • dz0 � � �

z 22p 0�
2�1 �z

� exp • dz� � �
0 22p�

2z01 �z
� exp • dz� � �

0 22p�
1 z0

� Erf (�) � Erf . (6)� � ��2 2�

Here Erf (z) is the error function exp(�t2) • dt. Using
z2 �

0p�
the generalized form

z12 2�tErf (z , z ) � • e • dt � Erf (z ) � Erf (z )0 1 1 0�
zp 0�

(e.g., Wolfram, 1996). (7)

u(z)0 can be expressed as

1 z0u(z ) � Erf , � . (8)0 � �2 2�

u(z)0 is the likelihood of an observation (in this case, the
normalized residual) to be equal to or larger than z0. Con-
sidering both tails of the distribution, we define

|z |0LH(|z |) � 2 • u(|z |) � Erf , � (9)0 0 � �2�

and refer to it simply as the LH value. In the context of
quantifying goodness-of-fit, LH values have some interesting
properties:

• LH reaches its maximum value of 1 for |z0| � 0, in other
words, for an observation that coincides with the mean
value of the model.

• The LH value decreases with increasing distance from the
mean (decreasing quality of the fit). For |z0| � � we obtain
LH � 0.

• If the model assumptions are matched exactly, in other
words, for samples drawn from a normal distribution with
unit variance, the samples of the random variable LH are
evenly distributed between 0 and 1. The proof for this is
given in the Appendix. This allows the goodness-of-fit to
be conveniently quantified from easily determined prop-
erties of the distribution of LH values.

These properties are further illustrated in Figure 1. We
are using the median to quantify the properties of the distri-
bution of LH values in a single number, mainly because of
its stability regarding outliers (which will be more our con-
cern with real data than with the simulated data here). Other
parameters, such as moments of the distribution, are also
conceivable, but their analysis was beyond the scope of this
article.

Figure 1a shows a case in which a synthetic residual
model matches the data exactly in terms of both mean and
variance. Here, LH is evenly distributed between 0 and 1,
and the median of LH is about 0.5. In case the model is
unbiased in terms of the mean, but the sample variance is
smaller than the model variance as in Figure 1b, the distri-
bution of LH becomes asymmetric, and the median of LH
increases to a value above 0.5. In case the sample variance
becomes larger than the model variance—still with an un-
biased model as in Figure 1c—the frequency of low LH val-
ues increases and the median of the LH distribution decreases
below 0.5. The decrease of the median of the LH distribution
will be especially strong for the simultaneous increase in
sample variance and a shift of the mean value (Fig. 1d–f ).
Because of these properties, the distribution of LH values
seems to be a good indicator for (1) the goodness-of-fit of
ground-motion models to observed response spectral values
as well as for (2) how well the model assumptions are met.
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Figure 1. Distribution of residuals (left
panels) and corresponding LH values (right
panels) for different simulated distributions.
Mean values and standard deviations for the
residual distributions are indicated on tops of
the left panels. The two distribution functions
in the left panel indicate the unit variance nor-
mal distribution and the actual residual distri-
bution, respectively. On top of the right panels
the median values of the resulting LH-value
distributions are displayed.



Response Spectral-Reference Data for Ground-Motion Models for Seismic-Hazard Analysis in Regions of Moderate Seismicity 2169

Table 1
Ground-Motion Models Used in This Study and Their Assumed Validity Ranges

Model Name M type M Range Frequency [Hz] R* Type R* Range Site Condition #Rock (#Total)

Abrahamson and Silva (1997) Mw 4.4–7.4 0.2–100 RUP‡ 3–150 Class 0 80 (655)
Ambraseys and Douglas (2003) MS 4.8–7.8 0.2–25 JB§ �15 Rock —
Ambraseys and Simpson (1996) MS 4.0–7.9 0.5–10 EPI� (MS# � 6)/

JB§ (MS# � 6)
�200 Rock 72 (422)

Ambraseys et al. (1996) MS 4.0–7.9 0.5–10 EPI� (MS# � 6)/
JB§ (MS# � 6)

�200 Rock —

Atkinson and Boore (1997) Mw 4.0–7.25 0.5–20 HYP** 10–500 Rock —
Bay et al. (2003) Mw 2.0–6.5 0.5–20 HYP** 10–300 —
Berge-Thierry et al. (2003) MS � 6/

Mw � 6
4.0–7.3 0.1–34 HYP** 5–100 Rock 122 (965)

Boore et al. (1997) Mw 5.5–7.5 0.5–10 JB§ �80 620 m/sec —
Campbell and Bozorgnia (2003a,b) Mw 4.7–7.7 0.25–20 SEIS‡‡ 3–100 Soft rock —
Lussou et al. (2001) JMA† 3.5–6.3 0.1–50 HYP** 10–200 — –
Sabetta and Pugliese (1996) ML � 5.5/

MS � 5.5
4.6–6.8 0.25–25 JB§ �100 Stiff 29 (95)

Somerville et al. (2001) Mw 6.0–7.5 0.25–100 JB§ �500 Non-rifted —
Spudich et al. (1999) Mw 5.0–7.0 0.5–10 JB§ �100 Rock —
Toro et al. (1997) Mw 5.0–8.0 1–35 JB§ �500 Mid-continent —

Last column indicates the number of available rock records for those ground-motion models used to test the proposed selection and ranking scheme.
Number in parentheses gives the total number of records used to generate the complete model.

*R � distance
†JMA � Japanese Meteorological Agency magnitude
‡RUP � rupture distance
§JB � Joyner-Boore distance
�EPI � epicentral distance
**HYP � hypocentral distance
‡‡SEIS � distance to seismogenic part of the rupture
#MS � surface wave magnitude

Furthermore, the median of the LH distribution seems to con-
veniently describe both of these by a single number.

Application to Generating Datasets of Existing
Ground-Motion Models

In order to test the individual goodness-of-fit measures
in practice, we tested their performance on the rock site sub-
sets of the generating datasets of several ground-motion pre-
diction equations. To match the properties of a particular
data set, distance metrics, magnitudes, and components had
to be converted for some of the ground-motion models. The
distance conversion was performed following the relation-
ships of Scherbaum et al. (2004). Because all the ground-
motion models that require a conversion from moment mag-
nitude to surface wave magnitudes are “European,” we used
the Ambraseys and Free (1997) relation (without depth de-
pendence). For conversion to Japanese Meteorological
Agency (JMA) magnitude, which is used by Lussou et al.
(2001), we assumed a one-to-one relationship to Mw as sug-
gested by Heaton et al. (1986). The same was done for the
local magnitudes of Sabetta and Pugliese (1996), which, ac-
cording to F. Sabetta (personal comm., 2002), does not re-
quire any conversion. The component conversions were
based on the empirical relationships determined by Proseis
(Proseis, 2002).

What Is a Practical Measure for Goodness-of-Fit?

In order to understand and compare the performance of
the different goodness-of-fit measures in a fairly realistic but
still well controlled situation, we made our first test on a set
of purely synthetic-spectra. For this purpose, we calculated
synthetic response spectra for the ground-motion model of
Abrahamson and Silva (1997), using the same magnitudes
and distances as those of the real rock site subset of the
generating dataset. For each frequency sample, the log of
spectral values was subsequently perturbed by a random
value drawn from a normal distribution with zero mean and
the variance given by the Abrahamson and Silva (1997)
model. This dataset was compared with a variety of different
candidate models (Ambraseys and Simpson, 1996; Ambra-
seys et al., 1996; Sabetta and Pugliese, 1996; Abrahamson
and Silva, 1997; Atkinson and Boore, 1997; Boore et al.,
1997; Toro et al., 1997; Spudich et al., 1999; Lussou et al.,
2001; Somerville et al., 2001; Ambraseys and Douglas,
2003; Bay et al., 2003; Berge-Thierry et al., 2003; Abra-
hamson and Silva, 1997). Their basic characteristics in terms
of magnitude, distance, frequency coverage, and assumed
site conditions are given in Table 1. Only those records that
fully fall into the validity range of a model in terms of mag-
nitude, distance, and frequency coverage have been used for
the comparison.

The resulting goodness-of-fit measures are displayed in
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Table 2
Comparison of Different Ground-Motion-Prediction Relations to Model a Synthetic Dataset Produced to Mimic the Generating Dataset

of Rock-Site Records for the Abrahamson and Silva (1997) Ground-Motion Model as Described in the Text

Model Name MEDLH VARRED
CHISQ

MF PCC KS CHISQ V-Test M-Test MEDNR MEANNR STDNR
No. of

Records

Abrahamson and
Silva (1997)

0.494 0.999 1.03 0.725 0.286 0.305 0.643 0.338 0.0814 0.0458 1.01 73

Berge-Thierry
et al. (2003)

0.464 0.999 1.1 0.709 0 0 0.0302 0 0.473 0.5 0.921 62

Lussou et al.
(2001)

0.453 0.997 1.22 0.533 0.00166 2.16e-10 0.33 0.0000505 0.36 0.338 1.06 24

Campbell and
Bozorgnia (2003)

0.447 0.999 1.49 0.705 0.103 0 2.92e-10 0.251 0.0214 0.0552 1.22 72

Ambraseys and
Douglas (2003)

0.38 0.999 1.68 0.685 0.0206 0 1.13e-7 0.15 0.171 0.109 1.3 29

Somerville et al.
(2001)

0.378 0.998 1.6 0.663 0.00247 0 2.13e-9 0.0926 0.0761 0.101 1.26 46

Sabetta and
Pugliese (1996)

0.323 0.999 2.02 0.758 1.7e-8 0 0 3.01e-6 0.391 0.248 1.4 59

Atkinson and
Boore (1997)

0.153 0.997 3.82 0.583 0 0 0 1.12e-10 0.281 0.355 1.93 55

Bay et al. (2003) 0.016 0.993 7.1 0.675 0 0 0.0000789 0 2.41 2.4 1.17 48

Goodness-of-fit measures used are: median LH value (MEDLH), variance reduction (VARRED), chi-square misfit (CHISQMF), Pearson correlation
coefficient (PCC), Kolmogorov–Smirnov statistic (KS), chi-square statistic (CHISQ), p-value of the variance test (V-Test), p-value of the mean test (M-
Test), and median, mean, and standard deviation of the normalized residuals (MEDNR, MEANNR, and STDNR, respectively).

Table 2. The corresponding distributions of data residuals
and LH values are shown in Figures 2 and 3, respectively.
Because these spectra are lognormally distributed random
samples from the Abrahamson and Silva (1997) model, it is
not surprising that all goodness-of-fit measures in Table 2
give high scores to the Abrahamson and Silva (1997) model.
In terms of ranking the remaining models, however, they
provide fairly different answers. The model of Berge-
Thierry et al. (2003) consistently receives fairly high scores
on most of the goodness-of-fit measures (Figs. 2 and 3). This
result can be partly explained by the fact that the database
used by Berge-Thierry et al. (2003) includes 17% of North
American records that are common to the Abrahamson and
Silva (1997) dataset. None of the statistical-significance
tests, however, provide ranking results that are easily com-
prehensible on the basis of the visual interpretation of the
residuals or the LH values shown in Figures 2 and 3, respec-
tively. Both the chi-square (CHISQ) and the Kolmogorov–
Smirnov (KS) test reject most ground-motion models as
completely unacceptable, and even reject the Berge-Thierry
et al. (2003) model.

In the case of real data, for example, for the subset of
rock site records that were used to generate the Abrahamson
and Silva (1997) model shown in Table 3 and Figures 4 and
5, the situation becomes even more problematic because it
is no longer guaranteed that the data residuals are normally
distributed at all. Therefore, measures that test the signifi-
cance of either shape, mean, or variance deviations will often
provide very low probabilities for given observations. This
forces experimenters to become very tolerant in practice in
accepting statistically weak models (Press et al., 2001). This

makes it difficult to interpret the corresponding significance
values (which will easily cover several orders of magnitude)
in the context of selecting and ranking ground-motion mod-
els and assigning logic-tree weights. Weights on logic-tree
branches naturally scale between 0 and 1, with the lowest
and highest chosen weights generally about 0.1 and 0.9 (e.g.,
Reiter, 1990). A goodness-of-fit measure that scales between
0 and 1, and which naturally provides the same numerical
scaling between poor and good models, would therefore
greatly facilitate the decision process of a seismic hazard
analyst.

A different scaling issue appears for the variance-
reduction (VARRED) values for the synthetic as well as for
the real data example. Here the values are similar from one
model to another, which also does not allow good discrim-
ination among different models. Yet another problem occurs
for the Pearson correlation coefficient (PCC). This quantity
measures the degree of correlation between model prediction
and data, which should be high for a good model. According
to Table 3, the highest value for the real-data example is
obtained for the Sabetta and Pugliese (1996) model (PCC �
0.752). In contrast, however, from the median and the stan-
dard deviation of the corresponding normalized residual dis-
tribution of 0.25 and 1.26, respectively, this model would
receive a much different rating. We conclude that high cor-
relation coefficients do not sufficiently characterize good
models. Therefore, none of the statistical tests for signifi-
cance (KS, CHISQ, V-Test, and M-Test), or the VARRED or
the PCCs seem to provide practically useful constraints on
the model choices and so were not considered further.

On the other hand, the distribution of LH values natu-
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Figure 2. Residual distribution (normalized by model standard deviation) of a syn-
thetic dataset to mimic the rock-site-record subset of the generating dataset for the
Abrahamson and Silva (1997) ground-motion model with respect to different ground-
motion-prediction equations. Solid line shows the expected distribution function for a
standard normal distribution.

rally leads to a transparent and robust ranking scheme that
is not affected by the scale problems previously discussed.
For the Abrahamson and Silva (1997), Berge-Thierry et al.,
(2003), and Campbell and Bozorgnia (2003) ground-motion
models, the shape of the LH-value distributions (Fig. 5) vi-
sually resemble an even distribution between 0 and 1, as
would be expected for good models. For the remaining mod-
els, there is an increased frequency of small LH values, in-
dicating a large number of poorly predicted data points. The
median values of the LH distributions for the individual
ground-motion-prediction equations to match the Abraham-
son and Silva (1997) data set are displayed on top of each
panel and are additionally given in the first column of Table
3. From the foregoing discussion, one would expect a me-
dian LH value close to 0.5 for the model-generating dataset.
As can be seen in Table 3 this is actually the case for the
Abrahamson and Silva (1997) model and also for the Berge-
Thierry et al. (2003) model. The fact that the median LH
value for the Berge-Thierry et al. (2003) model is larger than
for the Abrahamson and Silva (1997) model probably re-
flects the fact that the variance of the Berge-Thierry et al.

(2003) model is also larger than for the Abrahamson and
Silva (1997) model. Tables 2 and 3 show that the ranking
sequence obtained from the median of the LH-value distri-
bution is fairly similar to the one obtained by the normalized
chi-square misfit (CHISQMF) value. In contrast to the LH
value, the absolute values of CHISQMF are not easily inter-
preted because this would require knowledge of an unknown
number of degrees of freedom fo the observed-response
spectra. Therefore, this parameter was dropped from further
consideration.

Because for practical applications we are interested in
robust measures that can be interpreted in terms of absolute
numbers, we decided to use, in addition to the LH values,
the mean, median, and standard deviation of the normalized
residual distribution (Mean-NRES, Med-NRES, and Std-
NRES) to characterize the goodness of fit of ground-motion
models. These parameters make it easy to interpret charac-
terizations of the central tendency as well as those of the
spread of the distribution. Table 3 as well as Figure 4, for
example, shows that the models of Lussou et al. (2001) and
Bay et al. (2003) are under-predicting the target region da-
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Figure 3. Distribution of LH values for a synthetic dataset to mimic the rock-site-
record subset of the generating dataset for the Abrahamson and Silva (1997) ground-
motion model with respect to different ground-motion-prediction equations. All panels
are scaled to the same maximum value.

taset and that Ambraseys and Douglas (2003) give a mean
prediction (and median) value that is higher than the ob-
served one. Mean and median are similar in that they both
quantify the central tendency of the distribution, but they are
known to be different in the norm, they minimize (mean, L2;
median, L1), and therefore in their robustness with respect to
outliers. The Std-NRES clearly shows that some of the models
(e.g., Sabetta and Pugliese, 1996) that perform well in terms
of the central tendency of the distribution do not perform
equally well in terms of the spread of the residuals.

So, in conclusion, we decided to consider further only
those goodness-of-fit measures that could be easily inter-
preted in an absolute sense and that, in combination, would
allow the characterization of a good model. These measures
are indicated by the gray-shaded columns in Table 3.

Goodness-of-Fit-Measure Variance. An additional prac-
tical issue is the determination of goodness-of-fit-measure
variance. The accuracy with which a particular goodness-of-
fit measure can be determined in practice will be different
for each dataset, depending on the distances, magnitudes,

and frequencies for which observed data will be available.
In order to quantify the corresponding variance, we used
“delete-1” jackknife resampling (e.g., Wu, 1986) on both
individual frequency values and complete spectra. The
square root of the sum of both variances is assumed to be
an estimate of the overall goodness-of-fit-measure standard
deviation. For the subset of rock-site records that was used
to generate the Abrahamson and Silva (1997) model, the
complete set of used goodness-of-fit values, together with
their “delete-1” jackknife estimators of standard deviation,
is shown in Table 4.

What Is a Well-Matching Model?

In order to develop a categorization scheme to quantify
overall model capability for predicting observed-response
spectra, we calculated the selected set of goodness-of-fit
measures discussed previously, using the rock-site-record
subsets for generating a number of popular ground-motion
models (Ambraseys and Simpson, 1996; Sabetta and Pug-
liese, 1996; Berge-Thierry et al., 2003). These records are
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Table 3
Comparison of Different Ground-Motion-Prediction Relations to Model the Generating Dataset of Rock-Site Records for the

Abrahamson and Silva (1997) Ground-Motion Model

Model Name MEDLH VARRED CHISQ MF PCC KS CHISQ V-Test M-Test MEDNR MEANNR STDNR
No. of

Records

Berge-Thierry
et al. (2003)

0.496 0.999 0.928 0.727 3.42e-9 9.63e-9 0.00292 0 0.397 0.366 0.892 62

Abrahamson and
Silva (1997)

0.466 0.999 1.09 0.725 0.000221 0 0.568 1.48e-6 0.218 �0.23 1.02 73

Campbell and
Bozorgnia (2003)

0.42 0.999 1.6 0.715 0.000121 0 0 1.43e-6 0.163 �0.232 1.24 72

Sabetta and
Pugliese (1996)

0.389 0.999 1.62 0.752 0.0000166 0 0 0.00272 0.25 0.159 1.26 59

Somerville et al.
(2001)

0.368 0.998 1.65 0.525 0.000433 0 3.4e-10 0.0131 �0.104 �0.149 1.28 46

Lussou et al.
(2001)

0.355 0.996 1.38 0.589 0 0 0.714 0 0.691 0.658 0.976 24

Ambraseys and
Douglas (2003)

0.317 0.998 1.67 0.643 0.000099 0 9.15e-7 0.000969 �0.396 �0.25 1.27 29

Atkinson and
Boore (1997)

0.178 0.998 3.41 0.45 0 0 0 0.0000561 0.241 0.222 1.84 55

Bay et al. (2003) 0.0224 0.994 5.89 0.69 0 0 0.228 0 2.28 2.19 1.05 48

Goodness-of-fit measures used are: median LH value (MEDLH), variance reduction (VARRED), chi-square misfit (CHISQMF), Pearson correlation
coefficient (PCC), Kolmogorov–Smirnov statistic (KS), chi-square statistic (CHISQ), p-value of the variance test (V-Test), p-value of the mean test (M-
Test), and the median, mean, and standard deviation of the normalized residuals (MEDNR, MEANNR, and STDNR, respectively).

Figure 4. Residual distribution (normalized by model standard deviation) of the
rock-site-record subset of the generating dataset for the Abrahamson and Silva (1997)
ground-motion model with respect to different ground-motion prediction equations.
Solid line shows the expected distribution function for a standard normal distribution.
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Figure 5. Distribution of LH values for the rock-site-record subset of the generating
dataset for the Abrahamson and Silva (1997) ground-motion model with respect to
different ground-motion prediction equations. All panels are scaled to the same max-
imum value.

available within the European database of strong-motion re-
cords (Ambraseys et al., 2004; Ambraseys et al., 2000) and
were specially flagged for easy extraction. Tables 5–7 show
the goodness-of-fit measures together with their standard de-
viations, and Figures 6–9 display the corresponding distri-
butions of residuals and LH values. For some of the ground-
motion models, their limited frequency coverage prevented
their use for some of the datasets—for example, Ambraseys
et al. (1996), and Boore et al., (1997), and Spudich et al.
(1999) for the Berge-Thierry et al. (2003) rock-site subset.
What looks surprising at first glance in Table 5 is that only
102 out of the 122 available rock-site records for the Berge-
Thierry et al. (2003) model passed the validity range test for
the model that was generated from them, whereas for the
Abrahamson and Silva (1997) model 114 records were used.
However, this result is caused by the fact that Berge-Thierry
et al. (2003) recommended their model for use only for dis-
tances below 100 km, although the distance range covered
by the generating dataset was actually larger, as is the dis-
tance range covered by the Abrahamson and Silva (1997)
model. As can be seen from Table 5 and Figures 6, and 7,

the rock site subset of the Berge-Thierry et al. (2003) model
is very well predicted by the model of Lussou et al. (2001)
and also by the Abrahamson and Silva (1997) model. The
Lussou et al. (2001) model performs very well on the median
of the LH values and the spread of the distribution (indicated
by Std-NRES � 1.01), whereas it under-predicts the central
tendency. The Abrahamson and Silva (1997) model, on the
other hand, has both a stronger bias and a larger spread of
the residuals. The Berge-Thierry et al. (2003) model is un-
biased, has a fairly high median of LH values, and matches
the spread of the residual distribution very well. Hence, the
combination of the interpretation of LH values and the pa-
rameters describing central tendency and spread of the NRES
seems to provide a comprehensible ranking. For the rock-
site-record subset of the Sabetta and Pugliese (1996) model,
the results are somewhat counter-intuitive at first glance.
Here the median LH value for the original model comes out
only third in rank. However, at closer look this is not too
surprising, because the small number of carefully selected
records from a single region results in a small model vari-
ance, which in turn is penalized by the LH values as dis-
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Table 4
Rankings of Different Ground-Motion-Prediction Relations to Model a Subset of the Generating Dataset of the Abrahamson and Silva

(1997) Ground-Motion Model

Model Name Rank MEDLH r MEDNR r MEANNR r STDNR r

No. of
Records

Berge-Thierry
et al. (2003)

B 0.496 0.0249 0.397 0.0982 0.366 0.101 0.892 0.0696 62

Abrahamson and
Silva (1997)

A 0.466 0.0146 �0.218 0.152 �0.23 0.0984 1.02 0.0315 73

Campbell and
Bozorgnia (2003)

B 0.42 0.0209 �0.163 0.138 �0.232 0.156 1.24 0.0876 72

Sabetta and
Pugliese (1996)

C 0.389 0.00816 0.25 0.0983 0.159 0.0802 1.26 0.0476 59

Somerville
et al. (2001)

C 0.368 0.0189 �0.104 0.279 �0.149 0.207 1.28 0.0533 46

Lussou et al.
(2001)

C 0.355 0.136 0.691 0.17 0.658 0.197 0.976 0.0466 24

Ambraseys and
Douglas (2003)

C 0.317 0.029 �0.396 0.114 �0.25 0.163 1.27 0.0715 29

Atkinson and
Boore (1997)

D 0.178 0.0722 0.241 0.491 0.222 0.441 1.84 0.204 55

Bay et al. (2003) D 0.0224 0.0136 2.28 0.218 2.19 0.168 1.05 0.024 48

Goodness-of-fit measures used are: median LH values (MEDLH) and the median, mean, and standard deviation of the normalized residuals (MEDNR,
MEANNR, and STDNR, respectively). Ranking scheme and calculation of standard deviation r are explained in the text.

Table 5
Rankings of Different Ground-Motion-Prediction Relations to Model a Subset of the Generating Dataset of the Berge-Thierry et al.

(2003) Ground-Motion Model

Model Name Rank MEDLH r MEDNR r MEANNR r STDNR r

No. of
Records

Lussou et al.
(2001)

A 0.481 0.00113 0.186 0.0447 0.248 0.0371 1.01 0.00179 76

Berge-Thierry
et al. (2003)

A 0.474 0.00264 0.0597 0.00346 0.092 0.00523 1.07 0.0105 102

Abrahamson and
Silva (1997)

B 0.397 0.00544 �0.219 0.0303 �0.261 0.0392 1.24 0.0098 114

Somerville
et al. (2001)

D 0.255 0.00729 �0.0689 0.132 �0.162 0.0811 1.62 0.00987 41

Sabetta and
Pugliese (1996)

D 0.223 0.0131 �0.386 0.0524 �0.365 0.0504 1.69 0.0313 105

Ambraseys and
Douglas (2003)

D 0.2 0.0167 �0.58 0.0646 �0.78 0.0183 1.7 0.0301 18

Goodness-of-fit measures used are: median LH values (MEDLH) and the median, mean, and standard deviation of the normalized residuals (MEDNR,
MEANNR, and STDNR, respectively). Ranking scheme and calculation of standard deviation r are explained in the text.

cussed previously. Because the model standard deviations of
the Abrahamson and Silva (1997) and the Berge-Thierry et
al. (2003) models are larger than for the Sabetta and Pugliese
(1996) model, this also explains why, in terms of LH values,
these models perform well on the data subset of the Sabetta
and Pugliese (1996) model but not vice versa. Note that the
standard deviations given in Table 6 are normalized with
respect to the model standard deviations of each of the can-
didate models. Hence the value of 1.24 for the Sabetta and
Pugliese (1996) model means that the rock-site-subset sam-
ple standard deviation is actually about 25% larger than the
one for the full model. In the context of a Probabalistic Seis-
mic Hazard Analysis (PSHA), this could potentially cause

problems because at low frequencies of exceedance the haz-
ard curve is strongly affected by the scatter of the ground-
motion model (Restrepo-Velez and Bommer, 2003). A simi-
lar effect (1.21) is also visible for the Ambraseys and
Simpson (1996) model, the only vertical-component model
that we considered (Table 7).

On the basis of the analysis of the datasets discussed
previously, we feel that currently only a combination of dif-
ferent goodness-of-fit measures seems to sufficiently well
describe the overall capability of a model to match an ex-
isting dataset. For practical applications, we have used the
following scheme, which consists of three categories:

• For a model to be ranked in the lowest accepted capability
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Table 6
Rankings of Different Ground-Motion-Prediction Relations to Model a Subset of the Generating Dataset of the Sabetta and Pugliese

(1996) Ground-Motion Model

Model Name Rank MEDLH r MEDNR r MEANNR r STDNR r

No. of
Records

Berge-Thierry
et al. (2003)

B 0.513 0.00315 0.311 0.0153 0.314 0.00603 0.816 0.0118 20

Abrahamson and
Silva (1997)

B 0.491 4.97e-16 �0.273 0.0346 �0.376 0.0311 1.12 0.023 24

Sabetta and
Pugliese (1996)

B 0.416 0.0106 0.0618 0.0126 0.00882 0.0287 1.24 0.0114 21

Ambraseys and
Douglas (2003)

C 0.395 0.0174 �0.362 0.0688 �0.367 0.135 1.31 0.086 8

Lussou et al.
(2001)

C 0.39 0.0143 0.679 0.00152 0.505 0.04 0.882 0.0273 12

Somerville
et al. (2001)

C 0.339 0.0115 0.155 0.116 0.0778 0.0661 1.37 0.0166 13

Goodness-of-fit measures used are: median LH values (MEDLH) and the median, mean, and standard deviation of the normalized residuals (MEDNR,
MEANNR, and STDNR, respectively). Ranking scheme and calculation of standard deviation r are explained in the text.

Table 7
Rankings of Different Ground-Motion-Prediction Relations to Model a Subset of the Generating Dataset of the Ambraseys and Simpson

(1996) Ground-Motion Model

Model Name Rank MEDLH r MEDNR r MEANNR r STDNR r

No. of
Records

Berge-Thierry
et al. (2003)

A 0.479 0.0246 �0.0606 0.0302 �0.0279 0.0247 1.06 0.00739 57

Ambraseys and
Simpson (1996)

B 0.425 0.011 �0.0411 0.0217 �0.117 0.0174 1.21 0.0103 68

Abrahamson and
Silva (1997)

C 0.401 0.011 �0.317 0.0358 �0.269 0.0226 1.26 0.0217 65

Lussou et al.
(2001)

C 0.382 0.0122 0.568 0.0398 0.615 0.0106 1.12 0.00777 42

Bay et al. (2003) D 0.339 0.0154 0.809 0.141 0.93 0.0601 1.22 0.013 60
Ambraseys and

Douglas (2003)
D 0.298 0.0196 �0.982 0.0884 �0.911 0.0711 1.1 0.0379 11

Sabetta and
Pugliese (1996)

D 0.271 0.0167 �0.175 0.0448 �0.143 0.0345 1.57 0.0168 62

Somerville
et al. (2001)

C 0.27 0.0312 �0.647 0.19 �0.736 0.0877 1.44 0.0171 27

Campbell and
Bozorgnia (2003)

D 0.26 0.0195 �0.922 0.0232 �0.831 0.0432 1.31 0.0222 62

Goodness-of-fit measures used are: median LH values (MEDLH) and the median, mean, and standard deviation of the normalized residuals (MEDNR,
MEANNR, and STDNR, respectively). Ranking scheme and calculation of standard deviation r are explained in the text.

class (C), we require a median LH value of at least 0.2, the
absolute value of mean and median of the normalized re-
siduals, and their standard deviations to be smaller than
0.75. In addition, the normalized sample standard devia-
tion is required to be smaller than 1.5.

• For a model to be ranked in the intermediate capability
class (B), we require a median LH value of at least 0.3, the
absolute value of mean and median of the normalized re-
siduals, their standard deviations to be smaller than 0.5,
and the normalized sample standard deviation to be
smaller than 1.25.

• For a model to be ranked in the highest capability class
(A), we require a median LH value of at least 0.4, the

absolute value of both measures of central tendency of the
normalized residual distribution, and their standard devi-
ations not to deviate more than 0.25 from zero. In addition,
the normalized sample standard deviation is required to be
smaller than 1.125.

A model that does not meet the criteria for any of these
categories is ranked unacceptable or class D. It should be
emphasized again that the purpose of this scheme is to pro-
vide a data-driven selection and ranking of ground-motion
models for seismic-hazard assessment. Therefore, it does not
provide judgments about particular models being “good” or
“bad.” It only measures, within the limits of the available
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Figure 6. Residual distribution (normalized by model standard deviation) of the
rock-site-record subset of the generating dataset for the Berge-Thierry et al. (2003)
ground-motion model with respect to different ground-motion prediction equations.
Solid line shows the expected distribution function for a standard normal distribution.

data, how well each model seems to appropriately represent
a given magnitude, distance, and frequency range for a par-
ticular region. The ranking results for the rock-site subsets
of the generating datasets already discussed are given in Ta-
bles 4–7. Next we discuss the application of this scheme to
the recordings of the Mw 4.8 St. Dié earthquake of 22 Feb-
ruary 2003 in eastern France. Despite its moderate magni-

tude, this event is important for SHA in the border region of
France, Germany, and Switzerland, especially for critical in-
stallations.

St. Dié Earthquake

The Saint Dié earthquake occurred in eastern France at
21:41 p.m. local time on 22 February 2003. According to

Figure 7. Distribution of LH values for the rock-site-record subset of the generating
dataset for the Berge-Thierry et al. (2003) ground-motion model with respect to dif-
ferent ground-motion-prediction equations. All panels are scaled to the same maximum
value.
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Figure 8. Residual distribution (normalized by model standard deviation) of the
rock-site-record subset of the generating dataset for the Sabetta and Pugliese (1996)
ground-motion model with respect to different ground-motion-prediction equations.
Solid line shows the expected distribution function for a standard normal distribution.

the Bureau Central Seismologique Français (BCSF), the
maximum intensity reached values of VI–VII on the EMS98
scale. No injury was reported, although several chimneys did
collapse in the epicentral region. The hypocenter was located
at latitude 48.34� N, longitude 6.66� E, with a focal depth
of about 10 km, according to the Renass French seismolog-
ical network. Magnitude estimates vary significantly accord-

ing to national or international agencies (Table 8) and range
between 4.3 and 5.8. However, Mw and Mb magnitude de-
terminations show similar values, close to 4.8. This earth-
quake did occur north of a zone where several earthquakes
(1682: I0 � VIII) and swarms (1984, 1971–1974) were ob-
served (Haessler and Hoang-Trong, 1985). The mainshock
had a predominantly normal mechanism with a strike-slip

Figure 9. Distribution of LH values for the rock-site-record subset of the generating
dataset for the Sabetta and Pugliese (1996) ground-motion model with respect to dif-
ferent ground-motion-prediction equations. All panels are scaled to the same maximum
value.
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component. The first nodal plane has a strike of 298�, a rake
of �131�, and a dip of 62�. The second nodal plane has a
strike of 179�, a rake of �39�, and a dip of 48� (Eidgenös-
sische Technische Hochschule Zürich [ETHZ], http://
seismo.ethz.ch). About 100 have been recorded. According
to preliminary locations, these aftershocks are located at a
depth between 12 and 13 km and favor the second nodal
plane (BCSF, http://eost.u-strasbg.fr/bcsf ).

Within a distance of 200 km, the mainshock was re-
corded by a total number of 13 free-field accelerograph sta-
tions on rock. Their spatial distribution is displayed in Figure
10. The station coordinates are given in Table 9. To test the
constraints on the selection of ground-motion models for this
region provided by this dataset, we have compared the ob-
served rock-site-response spectra with the same set of
ground-motion models used previously (Ambraseys et al.,
1996; Sabetta and Pugliese, 1996; Abrahamson and Silva,
1997; Atkinson and Boore, 1997; Boore et al., 1997; Toro
et al., 1997; Spudich et al., 1999; Lussou et al., 2001; Som-
erville et al., 2001; Bay et al., 2003; Berge-Thierry et al.,
2003; Campbell and Bozorgnia, 2003a, b). In this context
we ignored the fact that some of these models do not fully
cover the frequency range between 0.5 and 25 Hz, the mag-
nitude range down to 4.8 (mostly down to 5.0), and the dis-
tance range up to 200 km. Applying the classification
scheme proposed previously results in the quality assign-
ments displayed in Table 10. The corresponding normalized
residuals and LH values are shown in Figures 11 and 12.
From the 12 candidate models, only 7 pass as acceptable at
all. Out of those, only the model of Berge-Thierry et al.
(2003) is assigned rank A, whereas four models (Ambraseys
et al., 1996; Abrahamson and Silva, 1997; Spudich et al.,
1999; Lussou et al., 2001) are categorized as class B because
of their larger bias. Some models fail completely on the basis
of their large bias (Sabetta and Pugliese, 1996; Toro et al.,
1997) and others on both bias and low LH values (Atkinson
and Boore, 1997; Boore et al., 1997; Bay et al., 2003). Fig-
ure 13 shows a comparison between the observed spectral
values (1 Hz and 10 Hz) and the class A and B model pre-
dictions. Only a qualitative visual evaluation of the fit be-
tween data and model predictions is provided by such clas-

sical comparison. The LH method ranks the Berge-Thierry
et al. (2003) model, with objective and automatic numerical
criteria, as the best model, which is confirmed by careful
visual but naturally incomplete (because only two frequen-
cies are examined) analysis of Figure 13.

Of special relevance for the area of the St. Dié earth-
quake is the model of Bay et al. (2003), which was derived
from the analysis of weak-motion data from Switzerland.
Although generated from a dataset regionally very close to

Table 8
Description of the St. Dié Earthquake

Agency Magnitude Type Magnitude Lat. (�N) Long. (�E) Depth (km)

LDG (France) ML 5.8 48.34 6.66 10
RENass (France) ML 5.4 48.34 6.66 10
EMSC (Mix, EC) Mb 4.7 48.3 6.6 10
EMSC (EC) ML 5.8 48.3 6.8 10
SED (Switzerland) Mw 4.78 48.35 6.8 9
SED (Switzerland) ML 5.5 48.4 6.5 10
INGV (Italy) Mw 4.7 — — —
GSRC (Russia) Ms 4.3 48.9 6.9 —
LED (Germany) ML 5.4 48.3 6.7 10

Because this earthquake occurred near the boundaries of three countries (France, Germany, and Switzerland),
the magnitude and location of the earthquake were provided by several European agencies.

Figure 10. Location of the Mw � 4.8 St. Dié
earthquake of 22 February 2003 (star). Triangles
show free-field rock sites with accelerometer record-
ings within a distance range of 200 km.
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the St. Dié earthquake, it shows a strong under-prediction of
the rock-site records considered here. This is indicated by
the strong bias of the central-tendency measures (Table 10)
and the residual distribution shown in Figure 11. To under-
stand the reasons for this discrepancy, we have performed a
number of permutations to their set of suggested model pa-

rameters, subsequently testing whether the modified model
spectra would match the observed ones. The modifications
included the stress drop, the kappa values, the geometrical
spreading factors, and the damping values. Although dis-
cussion of further details of this separate study are beyond
the scope of this article, for the present context it is inter-

Table 9
Station Names and Coordinates Used for Analysis of the St. Dié Earthquake

Station Agency Lat. (�N) Long. (�E) Altitude (m) Epicentral Distance (km)

WYH LEDBW 47.5508 7.7018 310 131
OFBG LEDBW 48.4453 7.9770 240 106
LIBD LEDBW 48.1505 7.6030 210 85
HEI LEDBW 49.3991 8.7274 562 193
FELD LEDBW 47.8763 8.0040 1480 125
LBG LEDBW 48.6639 8.7945 583 168
KIZ LEDBW 47.9562 7.9182 499 115
GUT LEDBW 48.0709 9.1153 647 195
STSM RAP 48.22 7.16 580 51
SZUD SSMNET 47.371 8.581 615 193
SNES SSMNET 47.001 6.954 481 162
SBEG SSMNET 47.572 7.666 370 127
SBEA SSMNET 47.700 8.597 490 173

Recording agencies are Landeserdbebendienst Baden-Württemberg, Germany (LEDBW); Réseau Accéler-
ométrique Permanent, France (RAP); and Swiss Strong Motion Network, Switzerland (SSMNET).

Table 10
Rankings of Different Ground-Motion-Prediction Relations for Modeling the Dataset of the Mw 4.8 St. Dié Earthquake of

22 February 2003

Model Name Rank MEDLH r MEDNR r MEANNR r STDNR r

No. of
Records

Lussou et al.
(2001)

B 0.579 0.0849 0.479 0.17 0.454 0.175 0.716 0.122 13

Berge-Thierry et al.
(2003)

A 0.575 0.0478 0.114 0.198 0.075 0.19 0.793 0.0909 13

Abrahamson and
Silva (1997)

B 0.558 0.0899 0.383 0.157 0.336 0.186 0.8 0.098 13

Ambraseys et al.
(1996)

B 0.508 0.0857 0.00176 0.29 �0.0682 0.221 1.02 0.0732 13

Somerville
et al. (2001)

C 0.435 0.0584 0.678 0.179 0.663 0.242 1.08 0.179 13

SEA99 B 0.434 0.0952 0.0505 0.418 �0.00254 0.227 1.06 0.0874 13
Campbell and

Bozorgnia (2003)
C 0.43 0.115 �0.585 0.402 �0.63 0.22 0.975 0.092 13

Toro et al.
(1997)

D 0.404 0.0892 �0.74 0.232 �0.808 0.236 0.98 0.144 13

Sabetta and
Pugliese (1996)

D 0.228 0.0731 �1.11 0.256 �1.2 0.3 1.35 0.102 13

Boore et al.
(1997)

D 0.161 0.0683 �1.35 0.292 �1.37 0.272 1.34 0.1 13

Atkinson and
Boore (1997)

D 0.147 0.034 �1.41 0.197 �1.28 0.223 1.27 0.0905 13

Bay et al. (2003) D 0.0116 0.0126 2.52 0.34 2.51 0.207 0.935 0.129 13
Bay et al. (2003)

(HIGH
STRESSDROP)

A 0.572 0.0572 �0.04 0.183 0.0199 0.208 0.835 0.148 13

Goodness-of-fit measures used are: median LH values (MEDLH) and the median, mean, and standard deviation of the normalized residuals (MEDNR,
MEANNR, and STDNR, respectively). Ranking scheme and calculation of standard deviation r are explained in the text. Rejected models are class D, and
the parameter values causing the rejections are shaded gray.

SEA99 (in first column) is the ground-motion-prediction relation by Spudich et al. (1999).
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esting to note that all the successful models suggest a stress
drop for the St. Dié earthquake of at least 80 bars. Indepen-
dent evidence for a high stress drop of this event can also
be seen in the relatively high ML values shown in Table 8.
With the modified stress drop (referred to as Bay et al., 2003
HIGH STRESSDROP in Table 10), the Bay et al. (2003)
model would become the second best model to explain the
St. Dié response spectra and would be ranked A (last row in
Table 10). This dramatic improvement can also be seen in
the corresponding distribution of residuals and LH values
shown in Figure 14. Although at first glance this simply
seems to suggest a modification of the Bay et al. (2003)

model in terms of the stress parameter (stress drop), we ac-
tually do not make this proposition. We believe that the un-
derlying problem may be of a more general nature, which,
for larger earthquakes, may also require additional modifi-
cations (e.g., geometrical spreading), and that we are cur-
rently still far from understanding to what degree weak mo-
tion can be used to predict strong motion.

Discussion and Conclusions

With the growing number of ground-motion-prediction
equations being published in recent years (Douglas, 2003),

Figure 11. Residual distribution (normalized by model standard deviation) of the
rock-site-record subset of the Mw � 4.8 St. Dié earthquake of 22 February 2003 with
respect to different ground-motion-prediction equations. Solid line shows the expected
distribution function for a standard normal distribution. SEA99 is the ground-motion-
prediction relation by Spudich et al. (1999).
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the selection of ground-motion models has become a serious
practical problem in the context of designing logic-trees for
seismic-hazard assessment. Logic-trees are widely used as a
tool to capture the epistemic uncertainty associated with in-
put parameters related to seismogenic sources and the
ground-motion-prediction model (Bommer et al., 2004b).
The final stage of generating a logic-tree is to assign weights
to each of the selected ground-motion models. These
weights reflect the degree to which each equation is judged
to be the best estimate of earthquake ground-motion in that
particular region. The aim of the method proposed here is
to include observed data in this judgment. On the basis of

on the analysis of a number of different goodness-of-fit mea-
sures, we have identified a set of measures that allow a con-
sistent and comprehensible ranking of candidate ground-
motion models according to their overall capability to pre-
dict observed strong-motion records (response spectra). For
this purpose, we have developed a new, likelihood-based,
goodness-of-fit measure that has the property not only to
quantify the model fit but also to measure in some degree
how well the underlying model assumptions are met. By
design it naturally scales between 0 and 1, which we find a
convenient aspect in the context of assigning logic-tree-
branch weights. However, since goodness-of-fit to observed-

Figure 12. Distribution of LH values for the rock-site-record subset of the Mw �
4.8 St. Dié earthquake of 22 February 2003 with respect to different ground-motion-
prediction equations. All panels are scaled to the same maximum value.
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response spectra may not be the only relevant aspect influ-
encing the assignment of branch weights, we are not
proposing a fully automated weighting scheme. Instead, on
the basis of tests to recognize a number of popular ground-
motion models from the rock-site subsets of the datasets
used to generate them in the first place, we have derived a
simple categorization scheme to rank candidate ground-
motion models into different classes. Such a scheme is in-
tended to assist the seismic-hazard analyst in judging the
appropriateness of ground-motion models for a particular
target area in a data-driven, consistent, and reproducible way.

During our tests we recognized that the variability of
the rock-site samples of the generating datasets for some of
the empirical models is larger than the one for the full model.
This result could affect seismic-hazard estimates for rock
sites, because the hazard curve is strongly affected by the
scatter of strong motion models for low frequencies of ex-
ceedance. Finally, using the records of the Mw 4.8 St. Dié
earthquake of 22 February 2003, we find that a few observed
response spectra of high quality can already provide consid-
erable constraints on the selection of ground-motion models
for seismic-hazard analysis, because 5 out of 12 candidate
models were ranked inappropriate for that region. In this
context, we found a strong under-prediction of the St. Dié
dataset by the only regional candidate model that, however,
was entirely derived from weak-motion data (Bay et al.,
2003). This points to a more general question: to what degree
are weak-motion data useful for strong motion prediction,
which in our opinion is currently not understood. As the
discussion of the recent literature demonstrates (e.g., Ide and
Beroza, 2001), several factors such as magnitude-dependent
stress drop and geometrical spreading variation, could ex-
plain why ground-motion models based on weak motion re-
cords cannot be used directly for strong ground-motion
modeling.

We envision several potential areas of application for
our classification scheme. Because it allows a consistent and
transparent categorization of ground-motion models, one of
its main applications is seen in connection with generating
weights for logic-tree branches occupied by different can-
didate models. In regions with few or no indigenous equa-
tions, our scheme can also help to select or reject published
empirical models for application. As shown with the ex-
ample of the St. Dié earthquake, this can even be performed
with a rather small dataset collected during a single earth-
quake. In such a case, however, the inter-event variability
will not be captured within the observed data, and the total
variability will be underestimated. Therefore, it is desirable
to include records from various earthquakes, if available.
Such an analysis would be particularly useful and often pos-
sible in regions where modern digital strong-motion net-
works have recently been installed but the databases are still
insufficient for deriving new native empirical models (e.g.,
Algeria, Iran). In such a situation, our scheme could help to
select appropriate foreign ground-motion models until native
ones become available.

In combination with the hybrid approach (Campbell,
2003) our classification scheme allows us to measure the
performance of particular host-to-target regional conver-
sions. As a consequence, in connection with simple classi-
fications to describe the data coverage of a ground-motion
model in terms of magnitude, distance, and frequencies,
composite ground-motion models for arbitrary target areas
with a small number of observed-response spectra can be
constructed in a completely transparent and reproducible
way. This is the subject of current work.

Figure 13. Comparison of observed rock-site-
spectral values (1 Hz and 10 Hz) of the St. Dié earth-
quake with the values predicted by class A and B
empirical models.
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Appendix

Let x be a continuous random variable with pdf f (x),
and let y � u(x) define a one-to-one transformation between
x and the transformed random variable y. Then the proba-
bility density function of y, say g( y), is g(y) � f [u�1( y)] •
|J|, where x � u�1(y) is the inverse of y � u(x), and J �
du�1(y)/dy denotes the Jacobian of the transformation (Rose
and Smith, 2002). In our case

21 �x
f (x) � • exp (A1)� �22p�

and

x
u(x) � Erf , � . (A2)� �2�

We temporarily ignore the modulus sign (for z0) in
(equation (9) in the text) and consider only positive values
of x. Solving y � u(x) for y (e.g., using Mathematica [Wolf-
ram, 1996]), we obtain the inverse transformation as

�1u (y) � InverseErf (�, �y) • 2 . (A3)�

The Jacobian becomes

d
J � [InverseErf (�, �y) • 2]�

dy
p2InverseErf (�,�y)� �e • . (A4)�2

Finally, with

2�InverseErf (�,�y)e�1f [u (y)] � (A5)
2p�

we obtain

�1g(y) � f [u (y)] • |J|
2�InverseErf (�,�y)e p2InverseErf (�,�y)� • e • �22p�

1
� . (A6)

2

Considering both tails of the distribution results in an even
distribution for y with a constant pdf of 1.
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