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Abstract. We show that the number of output units used in a self-
organizing map (SOM) influences its applicability for either clustering
or visualization. By reviewing the appropriate literature and theory and
own empirical results, we demonstrate that SOMs can be used for clu-
stering or visualization separately, for simultaneous clustering and visua-
lization, and even for clustering via visualization. For all these different
kinds of application, SOM is compared to other statistical approaches.
This will show SOM to be a flexible tool which can be used for various
forms of explorative data analysis but it will also be made obvious that
this flexibility comes with a price in terms of impaired performance. The
usage of SOM in the data mining community is covered by discussing its
application in the data mining tools CLEMENTINE and WEBSOM.

1 Introduction

Self-organizing maps (SOM) [12] are a very popular tool used for a range of dif-
ferent purposes including clustering and visualization of high dimensional data
spaces. SOM is also used in two prominent data mining tools: it is one of the al-
gorithms implemented in CLEMENTINE [6] and it is at the heart of WEBSOM,
a system for automatic organization of large text document collections (see [15]
and [14]).

Although there is vast literature available concerning SOMs, a recent survey
[13] contains about 2000 entries, it is still far from clear when and how to apply
SOMs for either clustering or visualization or even how these two purposes and
goals relate to each other. In a recent comprehensive monograph [13] SOM is
said to “project and visualize high-dimensional data spaces”. The fact that there
is a relation to clustering and visualization techniques is also well known, see e.g.
[1], [10], [13], [4] and [21]. Theoretical analysis of SOM concentrates on issues
within the method (e.g. convergence) rather than commenting on how and for
what SOM should actually be used (see [7] for a survey of results).

However, there is also a considerable amount of criticism formulated both
in terms of empirical and theoretical comparison. In [1] as well as [24] SOM
is compared to various clustering algorithms on artificial data. In [2] SOM is
compared to principal component analysis and Sammon mapping on a series
of artificial and real world data sets. In [10] SOM is compared to a combined
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method of vector quantization plus Sammon mapping of the codebook using
multivariate normal data. Most of these empirical studies show SOM to perform
equal or worse than the statistical approaches. There also exist two alternative
re-formulations of the original idea of SOMs in more principled probabilistic fra-
meworks ([4] and [21]). In [4] SOM is criticized for not defining a density model,
for not optimizing an objective error function and for the lack of a guaranteed
convergence property.

Albeit the wealth of work which has been done using and analysing SOMs
and even although considerable amounts of criticism have already been formula-
ted, what is still missing are some constructive guidelines as to clarify when and
how to use SOMs for either clustering and visualization and how these notions
relate to each other in the context of SOMs. This is exactly what this paper tries
to achieve by showing that the number of output units used in a SOM influences
its applicability for either clustering or visualization. Appropriate literature and
theory will be reviewed and own empirical results will be presented which com-
pare SOM to other statistical approaches. The usage of SOM in the two data
mining tools CLEMENTINE and WEBSOM will be discussed.

2 SOM for Clustering

According to a standard text book on pattern recognition [19] “Clustering algo-
rithms are methods to divide a set of n observations into g groups so that mem-
bers of the same group are more alike than members of different groups...the
groups are called clusters”. A classical technique to achieve such a grouping is
the K-means approach developed in the cluster analysis literature (starting from
[16]). Closely related to SOM is online K-means clustering (oKMC) consisting
of the following steps:

1. Initialization: Given N = number of codebook vectors, k = dimensionality
of the vectors, n = number of input vectors, a training sequence {xj ; j =
0, . . . , n − 1}, an initial set Â0 of N codebook vectors x̂ and a discrete-time
coordinate t = 0 . . . , n − 1.

2. Given Ât = {x̂i; i = 1, . . . , N}, find the minimum distortion partition P (Ât) =
{Si; i = 1, . . . , N}. Compute d(xt, x̂i) for i = 1, . . . , N . If d(xt, x̂i) ≤ (xt, x̂l)
for all l, then xt ∈ Si (d is usually Euclidean distance).

3. Update the codebook vector with the minimum distortion

x̂(t)(Si) = x̂(t−1)(Si) + α[x(t) − x̂(t−1)(Si)] (1)

where α is a learning parameter to be defined by the user. Define Ât+1 =
x̂(P (Ât)), replace t by t + 1, if t = n − 1, halt. Else go to step 2.

The main difference between the SOM-algorithm and oKMC is the fact that
the codebook vectors are the weight vectors of the output units which are ordered
either on a line or on a planar grid (i.e. in a one or two dimensional output space).
The iterative procedure is the same as with oKMC where Equ. 1 is replaced by

x̂(t)(Si) = x̂(t−1)(Si) + h[x(t) − x̂(t−1)(Si)] (2)
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and this update is not only computed for the x̂i that gives minimum distor-
tion, but also for all the codebook vectors which are in the neighbourhood of
this x̂i on the line or planar grid. The degree of neighbourhood and amount of
codebook vectors which are updated together with the x̂i that gives minimum
distortion is expressed by h, a function that decreases both with distance on the
line or planar grid and with time and that also includes an additional learning
parameter α. If the degree of neighbourhood is decreased to zero, the SOM-
algorithm becomes equal to the oKMC-algorithm. Whereas local convergence is
guaranteed for oKMC (at least for decreasing α, [5]), no general proof for the
convergence of SOM with nonzero neighbourhood is known. In [13] it is noted
that the last steps of the SOM algorithm should be computed with zero neig-
hbourhood in order to guarantee “the most accurate density approximation of
the input samples”.

One of the main problems in clustering data is to decide for the correct
number of clusters (i.e. codebook vectors). Clearly N , the number of cluster
centers or output units, should be equal g, the number of clusters present in the
data. In [8] it is argued that one should compute successive partitions of the data
with an ever growing number of clusters N . If samples are really grouped into
g compact, well separated clusters, one would expect to see any error function
based on within or between cluster variance (the same obviously holds for average
distortion) decrease rapidly until N = g. Such error functions should decrease
much more slowly thereafter until they reach zero at N = n.

The two most comprehensive studies on SOM’s clustering ability ([1] and
[24]) use SOMs and cluster algorithms with N always set equal to g, the number
of clusters known to be in the data. In [24] SOM is compared to five different
cluster algorithms on 2580 artificial data sets. One-dimensional SOMs are being
used with zero neighbourhood at the end of learning and consequently SOMs and
K-means clustering perform equally well in terms of data points misclassified1,
both being better than the other hierarchical cluster methods.

In [1] SOM is compared to K-means clustering on 108 multivariate normal
clustering problems but the SOM neighbourhood is not decreased to zero at
the end of learning. SOM performs significantly worse in terms of data points
misclassified since the additional neighbourhood term tends to pull the obtained
cluster centers away from the true ones (the SOM cluster centers are pulled
towards each other). In [13] this effect is described as two “opposing forces”
where the weight vectors of the output units tend to describe the density function
of the inputs and the local interactions between output units tend to preserve
topology.

1 Although SOM is an unsupervised technique not built for classification, the number
of points misclassified to a wrong cluster center is an appropriate and commonly used
performance measure for cluster procedures if the true cluster structure is known.
Given N = g, all members of one true cluster in the data space should be members of
just one cluster in the obtained partition. All exchanges between clusters constitute
data points misclassified.
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3 SOM for Simultaneous Clustering and Visualization

SOM is however more than just a technique to cluster data. It has the appealing
property to do clustering and visualization at the same time by preserving the
topological ordering of the input data reflected by an ordering of the codebook
vectors in a one or two dimensional output space. Note that in order to use SOM
for visualization and clustering at the same time it is again necessary that N ,
the number of output units, is equal g, the number of clusters in the data set.

Formally, a topology preserving algorithm is a transformation Φ : Rk �→ Rp,
that either preserves similarities or just similarity orderings of the points in
the input space Rk when they are mapped into the output-space Rp. For most
algorithms it is the case that both the number of input vectors | x ∈ Rk |
and the number of output vectors | ẋ ∈ Rp | are equal to n. A transformation
Φ : ẋ = Φ(x), that preserves similarities poses the strongest possible constraint
since d(xi, xj) = ḋ(ẋi, ẋj) for all xi, xj ∈ Rk, all ẋi, ẋj ∈ Rp, i, j = 1, . . . , n − 1
and d (ḋ) being a measure of distance in Rk (Rp). Such a transformation is said
to produce an isometric image.

Techniques for finding such transformations Φ are, among others, various
forms of multidimensional scaling2 (MDS) like Sammon mapping [20], but also
principal component analysis (PCA) (see e.g. [11]) or SOM. Sammon mapping
is doing MDS by minimizing the following via steepest descent:

1
∑n−1

i=0
∑

j<i d(xi, xj)

n−1∑

i=0

∑

j<i

(d(xi, xj) − ḋ(ẋi, ẋj))2

d(xi, xj)
(3)

where ḋ(ẋi, ẋj) is the distance in the output space that corresponds to the
distance d(xi, xj) in the input space. Since SOM has been designed heuristically
and not to find an extremum for a certain energy function3, the theoretical
connection to other MDS algorithms remains unclear. It should be noted that
for SOM the number of output vectors | ẋ ∈ Rp | is limited to N , the number of
cluster centroids x̂ and that the ẋ are further restricted to lie on a planar grid.
This restriction entails a discretization of the output-space Rp which allows only∑s

i=2 i,(s≥2) different distances in an s×s planar grid instead of N(N−1)
2 different

distances for N = s × s cluster centroids mapped via e.g. Sammon mapping.
In what we believe to be the only existing empirical study on SOM’s ability

of doing both clustering and visualization at the same time, we have compared
SOM to a combined technique of online K-means clustering plus Sammon map-
ping of the cluster centroids. Our new combined approach (abbreviated oKMC+)
consists of simply finding the set of Â = {x̂i, i = 1, . . . , N} codebook vectors that
give the minimum distortion partition P (Â) = {Si; i = 1, . . . , N} via oKMC and
then using the x̂i as input vectors to Sammon mapping and thereby obtaining a

2 Note that for MDS not the actual coordinates of the points in the input space but
only their distances or the ordering of the latter are needed.

3 In [9] it is even shown that such an objective function cannot exist for SOM.
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two dimensional representation of the x̂i via minimizing the term in Equ. 3. Con-
trary to SOM, this two dimensional representation is not restricted to any fixed
form and the distances between the N mapped x̂i directly correspond to those in
the original higher dimension. In [21] a similar combined technique is proposed
with the difference that clustering and visualization is achieved simultaneously
and not one after the other.

The empirical comparison was done using multivariate normal distributions
generated by a procedure which is standard for comparisons of cluster algorithms
(see [18] and [1]). We produced 36 data sets with number of clusters being 4 or
9, and the number of dimensions being 4, 6 or 8. All clusters showed internal
cohesion as well as external isolation. The latter was defined as having all clusters
non-overlapping in the first dimension.

We compared two-dimensional SOMs with numbers of output units set equal
to the numbers of clusters known to be in the data (4 or 9) to oKMC+ models
with corresponding sizes of codebooks. SOM performed almost equally well as
oKMC+ in recovering the structure of the clusters (measured via the so-called
Rand index which is closely related to data points misclassified) which is as ex-
pected since we set the neighbourhood to zero at the end of training. We used
Pearson correlation to measure how well the topology is preserved by both SOM
and oKMC+. We computed the Pearson correlation of the distances d(x1, x2) in
the input space and the distances ḋ(ẋi, ẋj) in the output space for all possible
pairwise comparisons of data points. Note that for SOM the coordinates of the
codebook vectors on the planar grid were used to compute the ḋ. An algorithm
that preserves all distances in every neighbourhood would produce an isometric
image and yield a value of 1.0 (see [2] for a discussion of measures of topology
preservation). SOM performed significantly worse in preserving the topology, we
obtained a correlation 0.67 for SOM and of 0.88 for oKMC+. This is a direct
implication of SOM’s restriction to planar grids described above. Using a non-
zero neighbourhood at the end of SOM training did not warrant any significant
improvements. Full details of this study are given in [10].

4 SOM for Visualization

Another possibility to apply SOM is to use it for visualization only thereby
neglecting its clustering ability. It is then not necessary to try to set the number
of output units equal to a presumed number of clusters in the data. It is possible
and even common practice to apply SOM with numbers of output units N that
are a multiple of the number of input vectors n available for training (see e.g.
the “poverty map” example given in [13]). This means of course that SOMs
employing numbers of codebook vectors which are comparable to or are even a
multiple of the number of input vectors available can be used for visualization
purposes only. If one uses more or even only the same amount of codebook vectors
than input vectors during clustering, each codebook vector will become identical
to one of the input vectors in the limit of learning. So every xi is replaced with
an identical x̂i, which does not make any sense in terms of clustering.
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In [2] SOM is compared to principal component analysis and Sammon map-
ping on six artificial data sets with different numbers of points and dimensionality
and different shapes of input distributions and on the Anderson IRIS data. The
degree of preservation of the spatial ordering of the input data is measured via
a Spearman rank correlation instead of Pearson correlation similar to our ap-
proach described above. The traditional techniques preserve the distances much
more effectively than SOM, the performance of which decreases rapidly with
increasing dimensionality of the input data.
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Fig. 1. Output representations after mapping nine eight-dimensional clusters via Sam-
mon mapping (left) and SOM (right). Numbers indicate true cluster membership.

We did an own study on visualization with SOM using the same 36 data
sets described in Sec. 3. We computed SOMs consisting of 20× 20 (for data sets
consisting of 4 clusters and 100 points) or 30×30 (for 9 clusters and 225 points)
codebook vectors for all 36 data sets which gave an average correlation of 0.77
between the distances di and ḋi. This is significantly worse at the .05 error le-
vel compared to the average correlation of 0.95 achieved by Sammon mapping
applied to the input data directly. This result together with the previously de-
scribed study [2] indicates that even using more output units than input vectors
available does not help against the drawbacks of SOM’s discretization of the
output-space. This rigidity of the output map is clearly visible if one compares
examples of output maps given in Fig. 1.

5 SOM for Clustering via Visualization

Yet another possible application of SOM is to use it to cluster data via visualiza-
tion. This is done by first visualizing the data via a SOM output map and then
using ones own subjective judgement by just looking at the resulting output map
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and counting how many clusters one is able to see. Reviewing clustering studies
employing SOM quickly shows that indeed SOMs are often used for this kind
of clustering via visualization. There is even work on trying to augment cluster
visibility in SOM output maps (see e.g. [23] and [3]).

It should be clear that for this type of application SOMs with large amounts
of output units will be best suited. However, it has long been known within the
clustering community that doing clustering via visualization bears some pitfalls.
In [22] it is shown that there is a high probability that a researcher will conclude
that a subset of points comprise one cluster, when in fact the points comprise
two or more clusters. This is due to the reduction in dimensionality produced
by the mapping to the output space which impairs the user’s ability to detect
clusters that existed in the space defined by the original variables. In [17] it
is shown that even if researchers are asked to determine cluster membership
from identical two-dimensional representations, their inter-rater reliability is on
average as low as 0.77.

If one compares output maps obtained by SOM and Sammon mapping given
in Fig. 1, it seems that whereas the 9 clusters are still clearly visible in the
Sammon mapping picture this is not so clear in SOM’s output map. Clusters 2
and 4 are no longer coherent and members of cluster 5 and 7 appear as outliers.

Both data mining applications CLEMENTINE and WEBSOM use SOM for
clustering via visualization. The CLEMENTINE user guide [6, p.8] states that
SOMs “are a type of neural network that perform clustering” but does not advise
the reader how such a clustering can be achieved. However, besides an “Expert
Training Method” which requires the user herself to choose the number of output
units, there is a “Simple Training Method” available which automatically chooses
this parameter. We trained SOMs using the CLEMENTINE function “Train
Kohonen” with the “Simple Training Method” on all of the 36 data sets described
in Sec. 3. Although the data sets with either 100 or 225 data points contained
either 4 or 9 easily separable clusters, CLEMENTINE always automatically chose
a 7 × 5 grid of output units. This means that if CLEMENTINE’s SOMs are
used with the “Simple Training Method”, the aim is not to do clustering or
simultaneous clustering and visualization as described in Secs. 2 and 3 since
the number of output units is far from estimating the correct number of clusters
present in the data. CLEMENTINE rather uses SOM for visualization only or, if
we follow the user guide’s advice that SOMs “perform clustering”, for clustering
via visualization.

WEBSOM organizes large collections of text documents by mapping vectorial
representations (which are related to word frequencies) onto a two-dimensional
display using a SOM. In an example given in [14] 1, 124, 134 documents from
“80 very different Usenet newsgroups” are being mapped onto a SOM with
104, 040 output units. Again it should be clear that SOM is used for clustering
via visualization since the huge number of output units stands in no relation to
the assumed number of clusters present in the data (80 clusters corresponding
to 80 different newsgroups). The method described in [23] is used “to indicate
the clustering tendency” as shades of gray on the output grid.
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6 Conclusions

In this work we tried to make the notion of using SOM as a “data visualization
tool” more concrete by showing that the number of output units used in a SOM
influences its applicability for either clustering or visualization. We showed that
if the number of output units N is set equal to g, the number of clusters present
in the data set, SOM can be used both for clustering alone and for clustering plus
simultaneous visualization. Theoretical as well as empirical results make clear
that for these purposes the degree of neighbourhood should be set to zero at the
end of learning which makes SOM equivalent to online K-means Clustering. Our
own empirical results show that the simultaneous visualization of cluster centers
(output units) is impaired due to SOM’s discretization of the output space. SOM
can also be used for visualization only or for clustering via visualization and then
the number of output units N can be in the order of the number of input vectors
n or even a multiple of it. SOM’s visualization ability does again suffer from the
discretization of the output space which is exemplified via empirical results. As
about clustering via visualization, it is known from the literature that this bears
the high risk of missing the true cluster structure. We conclude that SOM is a
flexible tool which can be used for various forms of clustering and visualization
but that this flexibility comes with a price in terms of impaired performance.

Concerning the use of SOM in the data mining community as discussed in
the context of CLEMENTINE and WEBSOM, it has to be said that these tools
rely on SOM’s ability to do clustering via visualization. Users of CLEMENTINE
and WEBSOM should be aware of the possible pitfall of missing the true cluster
structure as well as of the impaired visualization due to the discretization of the
output display.
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