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sets, such as the set defined by the constraints of an integer program and

in particular for counting the number of satisfiability assignments. Like

the conventional splitting algorithms, ours uses a sequential sampling plan

to decompose a “difficult” problem into a sequence of “easy” ones. The

main difference between SSM and splitting is that it works with an auxil-

iary sequence of continuous sets instead of the original discrete ones. The

rationale of doing so is that continuous sets are easier to handle. We show

that while the proposed method and its standard splitting counterpart are

similar in their CPU time and variability, the former is more robust and

more flexible than the latter.

Keywords. Combinatorial Optimization, Rare Event, Counting, Splitting.

Mathematical Subject Classification. Primary 65C05, 65C35; Secondary

68W20, 60C05.

1 Introduction: The Splitting Method

The goal of this work is to propose a novel and original way, called the smoothed

splitting method (SSM), for counting on discrete sets associated with NP-hard

discrete combinatorial problems and in particular counting the number of satis-

fiability assignments. The main idea of the SSM is to transform a combinatorial

counting problem into a continuous integration problem using a type of “smooth-

ing” of discrete indicator functions. Then we are in a position to apply a quite

standard Sequential Monte Carlo/splitting method to this continuous integration

problem. We show that although numerically the proposed method performs sim-

ilar to the standard splitting one [15, 16] (in terms of CPU time and accuracy), the

former one is more robust than the latter. In particular, tuning the parameters

in SSM is simpler than in its standard splitting counterpart.
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Before proceeding with SSM we present the splitting method for counting,

following [15, 16]. For relevant references on the splitting method see [2], [4],

[5], [7], [8], [9], [10], [11], which contain extensive valuable material as well as a

detailed list of references. Recently, the connection between splitting for Marko-

vian processes and interacting particle methods based on the Feynman-Kac model

with a rigorous framework for mathematical analysis has been established in Del

Moral’s monograph [6].

The main idea of the splitting method for counting is to design a sequential

sampling plan, with a view of decomposing a “difficult” counting problem defined

on some set X ∗ into a number of “easy” ones associated with a sequence of related

sets X0,X1, . . . ,XT and such that XT = X ∗. Similar to randomized algorithms

[12], [13] splitting algorithms explore the connection between counting and sam-

pling problems and in particular the reduction from approximate counting of a

discrete set to approximate sampling of elements of this set, where the sampling is

performed by the classic MCMC method [18]. Very recently, [1] discusses several

splitting variants in a very similar setting, including a discussion on an empirical

estimate of the variance of the rare event probability estimate.

A typical splitting algorithm comprises the following steps:

1. Formulate the counting problem as that of estimating the cardinality |X ∗|

of some set X ∗.

2. Find a sequence of sets X = X0,X1, . . . ,XT such that X0 ⊃ X1 ⊃ · · · ⊃

XT = X ∗, and |X | = |X0| is known.

3. Write |X ∗| = |XT | as

|X ∗| = |X0|
T∏

t=1

|Xt|
|Xt−1|

= |X0|ℓ, (1)
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where ℓ =
∏T

t=1
|Xt|

|Xt−1|
. Note that ℓ is typically very small, like ℓ = 10−100,

while each ratio

ct =
|Xt|
|Xt−1|

(2)

should not be small, like ct = 10−2 or bigger. Clearly, estimating ℓ directly

while sampling in X0 is meaningless, but estimating each ct separately seems

to be a good alternative.

4. Develop an efficient estimator ĉt for each ct and estimate |X ∗| by

|̂X ∗| = |X0| ℓ̂ = |X0|
T∏

t=1

ĉt, (3)

where ℓ̂ =
∏T

t=1 ĉt is an estimator of ℓ =
∏T

t=1
|Xt|

|Xt−1|
.

It is readily seen that in order to obtain a meaningful estimator of |X ∗|, we

have to resolve the following two major problems:

(i) Put the well known NP-hard counting problems into the framework (1) by

making sure that X0 ⊃ X1 ⊃ · · · ⊃ XT = X ∗ and each ct is not a rare-event

probability.

(ii) Obtain a low variance estimator ĉt of each ct = |Xt|/|Xt−1|.

In Section 2, we briefly recall the SAT problem, which we will focus on in

order to present our new method. In Section 3, which is our main one, we

show how to resolve problems (i) and (ii) for the SAT problem by using the

smoothed splitting method (SSM), which presents an enhanced version of the

splitting method [15, 16]. Section 4 is devoted to the theoretical analysis of SSM

in an idealized version, which we call i.i.d. SSM. In Section 5 numerical results
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for both the SSM and splitting algorithm are presented. Their efficiencies are

compared for several SAT instances.

2 Presentation of the SAT problem

The most common SAT problem comprises the following two components:

• A set of n Boolean variables {x1, . . . , xn}, representing statements that can

either be TRUE (=1) or FALSE (=0). The negation (the logical NOT) of a

variable x is denoted by x. For example, TRUE = FALSE. A variable or its

negation is called a literal.

• A set of m distinct clauses {S1, S2, . . . , Sm} of the form Sj = zj1 ∨zj2 ∨· · ·∨

zjq , where the z’s are literals and the ∨ denotes the logical OR operator. For

example, 0 ∨ 1 = 1.

The binary vector x = (x1, . . . , xn) is called a truth assignment, or simply an

assignment. Thus, xi = 1 assigns truth to xi and xi = 0 assigns truth to xi, for

each i = 1, . . . , n. The simplest SAT problem can now be formulated as: find a

truth assignment x such that all clauses are true.

Denoting the logical AND operator by ∧, we can represent the above SAT

problem via a single formula as

F = S1 ∧ S2 ∧ · · · ∧ Sm,

where the Sj’s consist of literals connected with only ∨ operators. The SAT

formula is then said to be in conjunctive normal form (CNF).

The problem of deciding whether there exists a valid assignment, and, indeed,

providing such a vector, is called the SAT-assignment problem.
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Toy Example Let us consider the following toy SAT problem with two clauses

and two variables: (x1 ∨ x2) ∧ (x̄1 ∨ x̄2). It is straightforward by considering all

the four possible assignments, that this formula is satisfiable, with two valid as-

signments x1 = 1, x2 = 0 and x1 = 0, x2 = 1. If now we consider the three clauses

formula (x1 ∨ x2) ∧ (x̄1 ∨ x̄2) ∧ (x̄2), then it is clearly unsatisfiable.

It is shown in [18] that the SAT-assignment problem can be modeled via

rare-events with ℓ given by

ℓ = E

[1{∑m
j=1 Cj(X)=m}

]
, (4)

where X has a “uniform” distribution on the finite set {0, 1}n. It is important

to note that here each Cj(x) = 1{∑n
k=1 ajkxk≥bj} can be also written alternatively

as

Cj(x) = max
k

{0, (2 xk − 1) ajk}.

Here Cj(x) = 1 if clause Sj is TRUE with truth assignment x and Cj(x) = 0

if it is FALSE, A = (ajk) is a given clause matrix that indicates if the literal

corresponds to the variable (+1) , its negation (-1), or that neither appears in

the clause (0). If for example xk = 0 and ajk = −1, then the literal xj is TRUE.

The entire clause is TRUE if it contains at least one true literal. In other words, ℓ

in (4) is the probability that a uniformly generated SAT assignment (trajectory)

X is valid, that is, all clauses are satisfied, that is

S(x) = min
1≤j≤m

Cj(x) ≥ 1,
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which is typically very small.

3 Smoothed Splitting Method

Before presenting the SSM algorithm we shall discuss its main features having in

mind a SAT problem.

To proceed, recall that the main idea of SSM is to work within a continuous

space rather than a discrete one. As a result this involves a continuous random

vector Y instead of the discrete random vector X with i.i.d. components with law

Ber(p = 1/2). For example for a SAT problem one needs to adopt the following

steps:

1. Choose a random vector Y of the same size as X , such that the com-

ponents Y1, . . . , Yn, are i.i.d. uniformly distributed on the interval (0, 1).

Clearly the Bernoulli components X1, . . . , Xn can be written as X1 =1{Y1>1/2}, . . . , Xn = 1{Yn>1/2}.

2. Instead of the former 0 − 1 variables x or x̄ we will use for each clause a

family of functions from (0, 1) to (0, 1). In particular, for each occurrence of

x or x̄, we consider two functions, say gε(y) and hε(y) = gε(1− y) indexed

by ε ≥ 0. These functions need to be increasing in ε, which means that

0 < ε ≤ ε′ ⇒ gε(y) ≤ gε′(y), ∀y ∈ (0, 1). (5)

and for ε = 0, g0(y) = 1{y>1/2}, h0(y) = g0(1 − y) = 1{y≤1/2}. Possible

choices of gε(y) are:

gε(y) = (2y)1/ε1{0<y< 1
2
} + 1{y> 1

2
} (6)
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or

gε(y) = 1{ 1
2
−ε<y< 1

2
}

(
y

ε
+ 1− 1

2ε

)
+ 1{y> 1

2
}. (7)

or

gε(y) = 1[1/2−ε,1](y). (8)

3. For each clause Cj, we consider the approximate ε-clause Cjε, where we

replace x by gε(y), x̄ by hε(y), and ∨ by +. Note also that the statement

“Cj is true” is replaced in the new notations by Cjε ≥ 1.

4. Nested sets. For each ε ≥ 0, consider the subset (or event) Bε of (0, 1)n

defined as

Bε = {y ∈ (0, 1)n : ∀j ∈ {1, . . . , m}, Cjε(y) ≥ 1} = {y ∈ (0, 1)n : Sε(y) ≥ 1},

where Sε(y) = min1≤j≤mCjε(y). Then it is clear from the above that for

ε1 ≥ ε2 ≥ 0, we have the inclusions B0 ⊂ Bε2 ⊂ Bε1 . Note that B0

is the event for which all the original clauses are satisfied and Bε is an

event on which all the approximate ε-clauses are satisfied. Note also that

εt, t = 1, . . . , T, should be a decreasing sequence, with T being the number

of nested sets, and εT = 0. In our SSM algorithm below (see section

3.2), we shall choose the sequence εt, t = 1, . . . , T, adaptively, similar as

the sequence mt, t = 1, . . . , T, is chosen in the Basic Splitting Algorithm

of [16].

3.1 The SSM Algorithm with fixed nested subsets

Below we outline the main steps of the SSM algorithm.
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1. InitializationGenerateN i.i.d. samplesY1
1, . . . ,Y

1
N of distribution U((0, 1)n).

2. Selection Keep only those samples for which all the ε1-clauses (constructed

with gε1 and hε1) are satisfied. Reindex them 1, . . . , N1. Set p̂1 = N1/N .

3. Cloning Draw N −N1 clones from the previous sample (with equal prob-

abilities). Together with it we have again a sample of size N .

4. Mutation For all N −N1 new samples apply the Gibbs sampler (see sub-

section 3.3 below) one or several times.

5. Selection/Cloning/Mutation for ε2, . . . , εT . This yields the estimates

p̂2, . . . , p̂T−1.

6. Final Estimator and solutions to the original SAT problem Select

the samples that satisfy all the original clauses. Let NT be their number.

Estimate p̂T = NT/N . From this last sample, construct a discrete sample

X1, . . . , XNT
by Xj,k = 1{Yj,k>1/2}, 1 ≤ k ≤ n, which is not independent,

but identically distributed on the instances of x that satisfy all the original

clauses. An estimate of ℓ is given by ℓ̂ =
∏T

t=1 p̂t, so that an estimate of

|X ∗| is given by 2nℓ̂ = 2n
∏T

t=1 p̂t.

A crucial issue in this algorithm is to choose the successive levels ε1, ε2, etc.,

so that the variance of the estimator ℓ̂ is as small as possible. The following

subsection explains how to do it adaptively.

3.2 The SSM Algorithm with adaptive nested subsets

Say that we implemented the algorithm up to iteration t, and want to choose

εt+1. Let Y
t
1, . . . ,Y

t
N the current sample satisfying all the εt-clauses. Choose (as
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usual in adaptive rare-event simulation) a given rate of success ρ, with 0 < ρ < 1.

Then the appropriate choice for εt+1 would be a value ε > 0 such that the number

of replicas in the current sample Yt
1, . . . ,Y

t
N that satisfy all the ε-clauses is equal

(close) to ρN . A simple way of doing this is to perform a binary search in the

interval [0, εt] bearing in mind that εt ≥ εt+1.

The following algorithm summarizes the above.

Algorithm 3.1. [Adaptive Choice of εt+1] Given the parameters ρ and εt proceed

as follows:

1. Set εlow = 0, εhigh = εt and εt+1 =
εhigh
2

.

2. While the proportion of replicas in the current sample Yt
1, . . . ,Y

t
N that

satisfy all εt+1-clauses is not close to ρ, do the following:

(a) Calculate the εt+1 performance Sεt+1
(Y) of the trajectories conve-

niently defined as the minimum over all Cεt+1
(Y) corresponding to the

trajectory Y. [Recall that by saying that Y is a satisfying trajectory,

we mean that Sεt+1
(Y) ≥ 1].

(b) If the number of εt+1 satisfying trajectories is larger than ρN set

εhigh = εt+1.

(c) If the number of εt+1 satisfying trajectories is smaller than ρN set

εlow = εt+1.

(d) Set εt+1 =
εlow+εhigh

2
.

3. Deliver εt+1 as the new adaptive level.

We are now in a position to describe the adaptive smoothed splitting algo-

rithm, which is the one that will be used in the simulations.
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Algorithm 3.2. [SSM Algorithm for Counting]

Fix the parameter ρ, say ρ ∈ (0.01, 0.5) and the sample size N such that

Ne = ρN is an integer which denotes the size of the elite sample at each step.

Choose also the function gε(y), say the one given in (8), and ε0 accordingly (e.g.

ε0 = 1/2 for (8)). Then execute the following steps:

1. Acceptance-Rejection Set a counter t = 1. Generate an i.i.d. sam-

ple Y1
1, . . . ,Y

1
N each uniformly on (0, 1)n. Obtain the first ε̂1 using Al-

gorithm 3.1 and let Ŷ1 = {Ŷ1

1, . . . , Ŷ
1

Ne
} be the elite sample. Note that

Ŷ
1

1, . . . , Ŷ
1

Ne
∼ U(Bε̂1), the uniform distribution on Bε̂1.

2. Splitting (Cloning) Given the elite sample {Ŷt

1, . . . , Ŷ
t

Ne
} at iteration t,

reproduce ρ−1 times each vector Ŷ
t

i. Denote the entire new population by

Ycl = {(Ŷt

1, . . . , Ŷ
t

1), . . . , (Ŷ
t

Ne
, . . . , Ŷ

t

Ne
)}.

To each of the cloned vectors of the population Ycl apply the MCMC (and in

particular the Gibbs sampler Algorithm 3.3) for bt burn-in periods. Denote

the new entire population by {Yt+1
1 , . . . ,Yt+1

N }. Note that each vector in

the sample Yt+1
1 , . . . ,Yt+1

N is distributed uniformly in Bε̂t .

3. Adaptive choice Obtain ε̂t+1 using Algorithm 3.1. Note again that each

vector of Ŷ
t+1

1 , . . . , Ŷ
t+1

Ne
of the elite sample is distributed uniformly in Bε̂t+1

.

4. Stopping rule If ε̂t+1 = 0 go to step 5, otherwise set t = t+ 1 and repeat

from step 2.

5. Final Estimator Denote T̂ + 1 the current counter, and

r̂ =
|{i ∈ {1, . . . , N} : S0(Y

T̂+1
i ) ≥ 1}|

N
> ρ,
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and deliver ℓ̂ = r̂× ρT̂ as an estimator of ℓ and |X̂ ∗| = 2n ℓ̂ as an estimator

of |X ∗|.

Remark: Differences between Basic Splitting and SSM Algorithms

1. SSM Algorithm 3.2 operates on a continuous space, namely (0, 1)n, while

the Basic Splitting Algorithm of [16] operates on a discrete one, namely

{0, 1}n. As a consequence their MCMC (Gibbs) samplers are different.

2. In the discrete case the performance function S(X) represents the number

of satisfied clauses, while in the continuous one it depends on both ε and the

gε. It is crucial to note that in the discrete case all clauses are satisfied at

the last iteration only while in the continuous case each clause is εt-satisfied

at each iteration t.

3. The stopping rules in both algorithms are the same. In particular, at the

last iteration the SSM Algorithm 3.2 transforms its vectors from the con-

tinuous space to the discrete one.

3.3 Gibbs Sampler

Starting from Y = (Y1, . . . , Yn), which is uniformly distributed on

Bε = {y ∈ (0, 1)n : ∀j ∈ {1, . . . , m}, Cjε(y) ≥ 1} = {y ∈ (0, 1)n : Sε(y) ≥ 1},

a possible way to generate Ỹ with the same law as Y is to use the following

general systematic Gibbs sampler:

Algorithm 3.3. [Systematic Gibbs Sampler]

1. Draw Ỹ1 from the conditional pdf g(y1|y2, . . . , yn).
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2. Draw Ỹk from the conditional pdf g(yk|ỹ1, . . . , ỹk−1, yk+1, . . . , yn), 2 ≤ k ≤

n− 1.

3. Draw Ỹn from the conditional pdf g(yn|ỹ1, . . . , ỹn−1).

where g is the target distribution. In our case, g is the uniform distribution

on Bε, and the conditional distribution of the kth component given the others is

simply the uniform distribution on some interval (r, R) given as explained below.

Toy Example Let us consider first a small example with four variables and

two clauses: (X1 ∨X2) ∧ (X̄2 ∨ X3 ∨ X̄4). For a given ε > 0, this gives the two

ε-clauses:

gε(Y1) + gε(Y2) ≥ 1

hε(Y2) + gε(Y3) + hε(Y4) ≥ 1.

Let us say we want the distribution of Y2 given Y1, Y3, Y4. If we want the first

one to be satisfied, we need gε(Y2) ≥ 1− gε(Y1), that is Y2 ≥ g−1
ε (1− gε(Y1)) = r.

Similarly, the second clause gives hε(Y2) ≥ 1 − gε(Y3) − hε(Y4), and because hε

is decreasing, Y2 ≤ h−1
ε (1− gε(Y3)− hε(Y4)) = 1− g−1

ε (1− gε(Y3)− hε(Y4)) = R.

Thus the conditional distribution of Y2 is uniform on the interval (r, R).

The generalization is straightforward, and is given below.

Algorithm 3.4. [Conditional sampling of Ỹk]

• Denote by Ik the set of ε-clauses Cjε in which gε(Yk) is involved.

• For all j ∈ Ik, denote by Z1, . . . , Zq−1 the other gε(Yi)’s or hε(Yi)’s involved

in clause Cjε. Denote rj = g−1
ε (1− Z1 − · · · − Zq−1), and r = supj∈Ik

rj .

• Denote by Jk the set of ε-clauses Cjε in which hε(Yk) = gε(1 − Yk) is

involved.
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• For all j ∈ Jk, denote by Z1, . . . , Zq−1 the other gε(Yi)’s or hε(Yi)’s involved

in clause Cjε. Denote Rj = 1−g−1
ε (1−Z1−· · ·−Zq−1), and R = infj∈Ik Rj .

• Sample Ỹk uniformly in the interval [r, R].

Remark: It is readily seen that r < R and Ỹ = (Ỹ1, . . . , Ỹn) has the same

distribution as Y. This is so since the initial point Y = (Y1, . . . , Yn) belongs

to and is uniformly distributed in Bε. Note that our simulation results clearly

indicate that one round of the Gibbs Algorithm 3.3 suffices for good experimental

results. Nonetheless, if one wants the new vector Ỹ to be independent of its initial

position Y, then in theory the Gibbs sampler would have to be applied an infinite

number of times. This is what we call the i.i.d. SSM in section 4, and this is the

algorithm that we will analyze from a theoretical point of view.

4 Statistical Analysis of i.i.d. SSM

It is possible to obtain exact results about the estimator ℓ̂ in an assumed situation

(never encountered in practice) that each step begins with an N i.i.d. sample. We

call this idealized version “the i.i.d. smoothed splitting algorithm” - i.i.d. SSM.

This would typically correspond to the situation where at each step the Gibbs

sampler is applied an infinite number of times, which is not realistic but will be

our main hypothesis in Subsection 4.1. The following theoretical results do not

exactly match the algorithm which is used in practice, but can be expected to

provide insight.
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4.1 Statistical Analysis of i.i.d. SSM

The aim of this subsection is to precise the statistical properties of the estimator

ℓ̂ obtained by the i.i.d. SSM.

Let us denote by s the number of solutions of the SAT problem at hand, and

by S the union of s hypercubes (with edge length 1/2) which correspond to these

solutions in the continuous version: this means that for all y = (y1, . . . , yn) ∈

(0, 1)n, y belongs to S if and only if x = (1y1≥1/2, . . . ,1yn≥1/2) is a solution of the

SAT problem.

With these notations, the probability that we are trying to estimate is

ℓ = P(Y ∈ S)

where Y is a uniform random vector in the hypercube (0, 1)n. Recall that for

any ε ≥ 0

Bε = {y ∈ (0, 1)n : ∀j ∈ {1, . . . , m}, Cjε(y) ≥ 1} = {y ∈ (0, 1)n : Sj(y) ≥ ε},

so that we have the following Bayes formula for the splitting algorithm

ℓ = P(B0) = P(B0|BεT )× · · · ×P(Bε1|Bε0),

where ε0 is large enough (possibly infinite) so that P(Bε0) = 1 (for example

ε0 = 1/2 when gε is defined by formula (8) and ε0 = +∞ when gε is defined by

formula (6) or (7)).

Let us now describe briefly the smoothed splitting algorithm in this frame-

work. As previously, ρ is the fixed proportion of the elite sample at each step.

For simplicity, we will assume that ρN is an integer.
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Starting with an N i.i.d. sample (Y1
1, . . . ,Y

1
N), with Y1

i uniformly distributed

in (0, 1)n for all i ∈ {1, . . . , N}, the first step consists in applying a binary search

to find ε̂1 such that

|{i ∈ {1, . . . , N} : Y1
i ∈ Bε̂1}|

N
= ρ.

Such an ε̂1 is not unique, but this will not matter from the theoretical point of

view, as will become clear in the proof of Theorem 4.1 below.

Knowing ε̂1 and using a Gibbs sampler, the elite sample of size ρN allows ide-

ally (which means: for the i.i.d. SSM) to draw an N i.i.d. sample (Y2
1, . . . ,Y

2
N),

with Y2
i uniformly distributed in Bε̂1. Using a binary search , one can then find

ε̂2 such that

|{i ∈ {1, . . . , N} : Y2
i ∈ Bε̂2}|

N
= ρ,

and iterate the algorithm, with only the last step being different: the algorithm

stops when for an N i.i.d. sample (YT̂+1
1 , . . . ,YT̂+1

N ), with YT̂+1
i uniformly dis-

tributed in Bε̂
T̂
, the proportion of points which satisfy the SAT problem is larger

than ρ:

|{i ∈ {1, . . . , N} : YT̂+1
i ∈ B0}|

N
= r̂ > ρ.

In summary, the “ideal” smoothed splitting estimator is defined as

ℓ̂ = r̂ ρT̂ ,with r̂ ∈ (ρ, 1],

whereas the true probability of the rare event may be decomposed as

ℓ = r ρT ,with T =

⌊
log ℓ

log ρ

⌋
and r = ℓρ−T ∈ (ρ, 1].

16



Let us summarize now the statistical properties of this “ideal” estimator.

Theorem 4.1. The ideal estimator ℓ̂ has the following properties:

1. Strong consistency: ℓ̂
a.s.−−−→

N→∞
ℓ

2. Number of steps: P(T̂ 6= T ) ≤ 2 (T + 1) e−2Nα2

where α = min(ρ −

ℓ
1
T , ℓ

1
T+1 − ρ).

3. Asymptotic normality:
√
N ℓ̂−ℓ

ℓ

D−−−→
N→∞

N (0, σ2) where σ2 = T 1−ρ
ρ

+ 1−r
r
.

4. Positive bias: N E[ ℓ̂ ]−ℓ
ℓ

−−−→
N→∞

T 1−ρ
ρ
.

Proof. We first prove the strong consistency. Let us denote by F (ε) the

Lebesgue measure of Bε: ∀ε ∈ R, F (ε) = P(Y ∈ Bε). By convention, we will

assume that Bε = ∅ for ε < 0. One can readily see that F (ε) has the following

properties:

• F (ε) = 0 when ε < 0,

• F (0) = ℓ,

• F (ε) = 1 when ε ≥ ε0, or limε→+∞ F (ε) = 1 in the infinite case (cf. for

example formulae (6) or (7)),

• F is a non decreasing and continuous function on (0, ε0).

We will also make use of the mapping F (ε, ε′), defined for 0 ≤ ε′ ≤ ε ≤ ε0 as

F (ε, ε′) = P(Y ∈ Bε′|Y ∈ Bε) =
F (ε′)

F (ε)
.

With these notations, let us recall the following point: by construction and by

assumption on the i.i.d. SSM, given ε̂t−1, the random vectors Yt
1, . . . ,Y

t
N are
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i.i.d. with uniform distribution in Bε̂t−1
. For all i = 1, . . . , N , let us define

ε(Yt
i) = inf{ε ∈ [0, ε̂t−1] : Sε(Y

t
i) ≥ 1}.

Then the random variables D1 = ε(Yt
1), . . . , DN = ε(Yt

N) are i.i.d. with cdf

F (ε̂t−1, .).

Thus, given ε̂t−1, ε̂t is an empirical quantile of order ρ for the i.i.d. sample

(D1, . . . , DN). Denoting by FN(ε̂t−1, .) the empirical cdf of F with this sample,

we have

|F (ε̂t−1, ε̂t)− ρ| ≤ |F (ε̂t−1, ε̂t)− FN(ε̂t−1, ε̂t)|+ |FN(ε̂t−1, ε̂t)− ρ| .

By construction of ε̂t, we know that the second term of this inequality is less

than 1/N , so that the almost sure convergence to 0 follows for it. For the first

term, denoting by ‖f‖∞ the supremum norm of f , and using the Dvoretsky-

Kiefer-Wolfowitz inequality (see for example [19] p. 268), we know that for any

η > 0 P(‖F (ε̂t−1, .)− FN (ε̂t−1, .)‖∞ ≥ η) ≤ 2e−2Nη2 ,

which guarantees the almost sure convergence via the Borel-Cantelli Lemma.

Thus we have proved that for all t

F (ε̂t−1, ε̂t)
a.s.−−−→

N→∞
ρ

Next, since the product of a finite and deterministic number of random variables

will almost surely converge to the product of the limits, we conclude that for all
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t

ρt −
t∏

k=1

F (ε̂k−1, ε̂k)
a.s.−−−→

N→∞
0.

Finally we have to proceed with the last step. We will only focus on the general

case where log ℓ/ log ρ is not an integer. Recall that T = ⌊log l/ log ρ⌋ is the

“correct” (theoretical) number of steps i.e. the number of steps that “should” be

done, whereas T̂ is the true and random number of steps of the algorithm. From

the preceding results, we have that almost surely for N large enough

T+1∏

k=1

F (ε̂k−1, ε̂k) < ℓ <

T∏

k=1

F (ε̂k−1, ε̂k),

so that, almost surely for N large enough, the algorithm stops after T̂ = T steps.

Therefore, in the following, we can assume that T̂ = T .

Using the same reasoning as previously, we have

|F (ε̂T , 0)− FN(ε̂T , 0)| a.s.−−−→
N→∞

0.

By definition, T satisfies

T∏

k=1

F (ε̂k−1, ε̂k) F (ε̂T , 0) = F (0) = ℓ,

which implies

F (ε̂T , 0)
a.s.−−−→

N→∞

ℓ

ρT
,

and also

FN(ε̂T , 0)
a.s.−−−→

N→∞

ℓ

ρT
.
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Putting all things together, we get

ℓ̂ = FN(ε̂T , 0)× ρT
a.s.−−−→

N→∞

ℓ

ρT
× ρT = ℓ,

which concludes the proof of the consistency.

Let us prove now the exponential upper bound for the probability that T̂

differs from T . To this end, let us denote by A = {T̂ = T} the event for which

the algorithm stops after the correct number of steps, and which can be written

as follows

A = {ε̂T+1 = 0 < ε̂T} =

{
T+1∏

k=1

F (ε̂k−1, ε̂k) = ℓ̂ <
T∏

k=1

F (ε̂k−1, ε̂k)

}
.

For all k = 1, . . . , T + 1, if we denote

Ak =
{
ℓ

1
T − ρ < ρ− F (ε̂k−1, ε̂k) < ℓ

1
T+1 − ρ

}
,

we have P(A) ≥ P(A1 ∩ · · · ∩ AT+1) ≥ 1−
T+1∑

k=1

(1−P(Ak)).

Denoting α = min
(
ρ− ℓ

1
T , ℓ

1
T+1 − ρ

)
, the Dvoretsky-Kiefer-Wolfowitz inequality

implies

1−P(Ak) ≤ P(|ρ− F (ε̂k−1, ε̂k)| > α) ≤ 2e−2Nα2

,

so that the result is provedP(A) = P(T̂ = T ) ≥ 1− 2(T + 1)e−2Nα2

.

By the way, this is another method to see that T̂
a.s.−−−→

N→∞
T.
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For the asymptotic normality and bias properties, we refer the reader to The-

orem 1 and Proposition 4 of [3]: using the notations and tools of smoothed

splitting, the proofs there can be adapted to yield the desired results.

4.2 Remarks and comments

Number of steps With an exponential probability, the number of steps of the

algorithm is T = ⌊log ℓ/ log ρ⌋.

Bias The fact that this estimator is biased stems from the adaptive character

of the algorithm. This is not the case with a sequence of fixed levels (ε1, . . . , εT ).

However, this bias is of order 1/N , so that when N is large enough, it is clearly

negligible relative to the standard deviation. Moreover, the explicit formula for

this bias allows us to derive confidence intervals for ℓ which take this bias into

account.

Estimate of the rare-event cardinality The previous discussion focused on

the estimation of the rare-event probability, which in turn provides an estimate of

the actual number of solutions to the original SAT problem by taking |X̂ ∗| = 2n ℓ̂.

In fact, the number of solutions may be small and thus can be determined by

actual counting the different instances in the last sample of the algorithm.This

estimator will be denoted by |X̂ ∗
dir|. Typically it underestimates the true number

of solutions |X ∗|, but at the same time it has a smaller (empirical) variance as

compared to the product estimator. Even if we do not know its mathematical

properties, this estimate can be useful. Firstly, it may be interesting for practical

purposes to know the set (and the number) of all the different solutions that have

been found for the original SAT problem. Secondly, it is also convenient when

21



we compare our results with the ones given by the algorithm in [16], where a

screening step (i.e. removal of the duplicates on the finite space) is involved.

Mixing properties Our purpose here is to explain why the Gibbs sampler

used at each step of the algorithm is irreducible and globally reaching and hence

has good mixing properties. For the sake of clarity, we will focus first on gε as

per (8). With this function, for a given ε, we can split the region explored by the

Gibbs sampler in several small (sub) hypercubes or hyperrectangles, as shown

schematically in Figure 1. To each vertex of the whole hypercube (0, 1)n that

represents a solution of the original SAT problem, corresponds a sub-hypercube

of edge length 1/2+ε, including the central point with coordinates (1/2, . . . , 1/2).

And around this point, we have a sub-hypercube of edge length 2ε, which is

common to all those elements.

For the other parts of the domain, which do not correspond to a solution,

things become a bit more complicated. It is a union of ε-thin “fingers” extending

outwards in several directions (a subspace). The corresponding sub-domain being

explored depends on the minimum number of variables that need to be taken in

(1/2 − ε, 1/2 + ε) in order to satisfy all the ε-clauses. The domain is then a

rectangle of length 1/2 + ε on the “free” variables, and of length 2ε in the other

directions, that is on the (1/2−ε, 1/2+ε) constrained variables. Again, all those

rectangles include the small central sub-hypercube.

The union of all these sub-hypercubes/rectangles is the domain currently

explored by the Gibbs sampler. The geometry of the whole domain is then quite

complex.

It is clear that starting with any one of these sub-hypercubes/rectangles we

can reach any other point within it in one iteration of the Gibbs sampler. More-
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ε

2ε

( 1
2
, . . . ,

1
2
)

Figure 1: Partial mixing of the Gibbs sampler.

over, as long as the Markov chain stays within the same sub-hypercube/rectangle,

any other point is accessed with uniform probability. This means that the mixing

properties of our Gibbs sampler are the best possible as long as we are restricted

to one sub-hypercube. Actually this suffices to make the algorithm work.

For gε as per (6) or (7), the same picture mostly holds, but the mixing prop-

erties within each sub-hypercube is not that easy to analyze. This is somehow

compensated by an ability to deal with the inter-variable relations: the geometry

of the domain explored around the centre point reflects these constraints, and

thus has a much more complicated shape. These gε functions work in practice

better than (8).

5 Numerical Results

Below we present numerical results with both SSM Algorithm 3.2 and its coun-

terpart Enhanced Cloner Algorithm [16] for several SAT instances. In particular

we present data for three different SAT models: one of small size, another of

moderate size and the third of large size. To study the variability in the solutions

we run each problem 10 times and report the statistic.
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To compare the efficiencies of both algorithms we run them on the same

set of parameters ρ and b, where b is the number of cycles in the systematic

Gibbs sampler. If not stated otherwise we set b = 1 and ρ = 0.2. From our

numerical results follows that although both algorithms perform similarly (in

terms of the CPU time and variability) the SSM is more robust than its splitting

counterpart. In particular we shall see that SSM Algorithm 3.2 produces quite

reliable estimator for a large set of b including b = 1, while its splitting counterpart

Enhanced Cloner Algorithm is quite sensitive to b and thus, requires tuning.

Below we use the following notations:

1. N
(e)
t and N

(s)
t denote the actual number of elites and the one after screening,

respectively.

2. εt denotes the adaptive ε parameter at iteration t.

3. ρt = N
(e)
t /N denotes the adaptive proposal rarity parameter at iteration t.

4. RE denotes the relative error. Note that for our first, second and third

model we used |X ∗| = 15, |X ∗| = 2258 and |X ∗| = 1, respectively. They

were obtained by using the direct estimator |X̂ ∗
dir| with a very large sample,

namely N = 100, 000.

5.1 Smoothed Splitting Algorithm

In all our numerical results we use gε(y) in (7).

5.1.1 First Model: 3-SAT with matrix A = (20× 80)

Table 1 presents the performance of smoothed Algorithm 3.2 for the 3-SAT prob-

lem with an instance matrix A = (20× 80) with N = 1, 000, ρ = 0.2 and b = 1.
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Since the true number of solution is |X ∗| = 15, following the notations of Section

4, we have that

ℓ =
15

220
= r ρT ,with T =

⌊
log ℓ

log ρ

⌋
=

⌊
log(15/220)

log 0.2

⌋
= 6

and

r = ℓρ−T =
15

220
0.2−6 ≈ 0.22.

Each run of the algorithm gives an estimator :

|X̂ ∗| = 220 × ℓ̂ = 220 × (r̂ ρT̂ ) = 220 × (r̂ 0.2T̂ ),with r̂ ∈ (ρ, 1] = (0.2, 1].

In Table 1 , the column “Iterations” corresponds to T̂ +1 for each of the 10 runs

(the theoretical value is thus T + 1 = 7). It is indeed 7 most of the time, but

sometimes jumps to 8, which is not a surprise since r = 0.22 ≈ 0.2.

Concerning the relative error of |X̂ ∗| (RE of |X̂ ∗|), Theorem 4.1 states that it

should be approximately equal to

1√
N

√
T
1− ρ

ρ
+

1− r

r
≈ 0.17,

while we find experimentally (see Table 1) a relative error of 0.228. There are

two main reasons for this: first we performed only 10 runs, and second we set

b = 1, while the analysis of the i.i.d. SSM suggests b to be large. Altogether, it

gives the correct order of magnitude.

Concerning the relative bias of |X̂ ∗|, Theorem 4.1 states that it should be
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approximately equal to

1

N
×

(
T
1− ρ

ρ

)
≈ 0.024,

while experimentally (see Table 1) we find a relative bias of 0.018. The comments

on the bias are the same as for the relative error above.

Table 1: Performance of smoothed Algorithm 3.2 for SAT 20× 80 model.

Run N0 Iterations |X̂∗| RE of |X̂∗| |X̂∗

dir
| RE of |X̂∗

dir
| CPU

1 7 13.682 0.088 15 0 1.207

2 7 16.725 0.115 15 0 1.192

3 7 24.852 0.657 15 0 1.189

4 8 12.233 0.184 15 0 1.383

5 7 14.217 0.052 15 0 1.248

6 8 12.564 0.162 15 0 1.341

7 7 19.770 0.318 15 0 1.174

8 7 17.073 0.138 15 0 1.192

9 8 12.448 0.170 15 0 1.338

10 8 9.089 0.394 15 0 1.399

Average 7.4 15.265 0.228 15 0 1.266

In Figure 2, we give an illustration of the asymptotic normality, as given by

theorem 4.1. The Figure compares the cdf of the limit Gaussian distribution, and

the empirical distribution on 100 runs. Here ρ = 1/2.
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Figure 2: Asymptotic normality: empirical (100 runs) and limiting Gaussian
cdf’s, 1000 replicas (left) and 10, 000 (right).
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5.1.2 Second model: Random 3-SAT with matrix A = (75× 325).

This example is taken from www.satlib.org. Table 2 presents the performance

of smoothed Algorithm 3.2. We set N = 10, 000, ρ = 0.2 and b = 1 for all

iterations.

Table 2: Performance of the smoothed Algorithm 3.2 for SAT 75× 325 model.

Run N0 Iterations |X̂∗| RE of |X̂∗| |X̂∗

dir
| RE of |X̂∗

dir
| CPU

1 28 2210.2 0.021 2254 0.0018 519.7

2 28 2750.5 0.218 2232 0.0115 518.0

3 28 1826.1 0.191 2248 0.0044 523.6

4 28 2403.3 0.064 2254 0.0018 524.3

5 28 2189.6 0.030 2250 0.0035 519.3

6 28 1353.6 0.401 2254 0.0018 524.5

7 28 2572.8 0.139 2214 0.0195 528.6

8 28 2520.0 0.116 2246 0.0053 525.2

9 28 2049.2 0.092 2208 0.0221 521.8

10 28 2827.3 0.252 2244 0.0062 528.8

Average 28 2270.3 0.153 2240.4 0.0078 523.4

It follows from Table 2 that the average relative error of the product estimator

|X̂ ∗| is RE = 0.163 and of the direct estimator |X̂ ∗
dir| is only RE = 0.038.

5.1.3 Third Model: Random 3− 4-SAT with matrix A = (122× 663).

Our last model is the random 3-SAT with the instance matrix A = (122×663) and

a single valid assignment, that is |X ∗| = 1, taken from http://www.is.titech.

ac.jp/~watanabe/gensat. We set N = 50, 000 and ρ = 0.4 for all iterations.

We found that the the average CPU time is about 3 hours for each run, the

average relative error for the product estimator |X̂ ∗| is RE = 0.15, while for the

direct estimator |X̂ ∗
dir| it is RE = 0.1. This means that in 9 out of 10 runs SSM

finds the unique SAT assignment.
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5.2 Splitting Algorithm

5.2.1 First Model: 3-SAT with matrix A = (20× 80)

Table 3 presents the performance of the improved splitting Enhanced Cloner

Algorithm [16] for the 3-SAT problem with an instance matrix A = (20 × 80)

with N = 1, 000, ρ = 0.2 and b = 1.

Table 3: Performance of Enhanced Cloner Algorithm [16] for SAT 20×80 model.

Run N0 Iterations |X̂∗| RE of |X̂∗| |X̂∗

dir
| RE of |X̂∗

dir
| CPU

1 10 17.316 0.154 15 0 0.641

2 10 15.143 0.010 15 0 0.640

3 10 12.709 0.153 15 0 0.645

4 9 16.931 0.129 15 0 0.566

5 10 13.678 0.088 15 0 0.644

6 9 15.090 0.006 15 0 0.565

7 9 10.681 0.288 15 0 0.558

8 10 13.753 0.083 15 0 0.661

9 10 14.022 0.065 15 0 0.646

10 10 13.445 0.104 15 0 0.651

Average 9.7 14.277 0.108 15 0 0.622

5.2.2 Second model: Random 3-SAT with matrix A = (75× 325).

This example is taken from www.satlib.org. Table 4 presents the performance

of the Enhanced Cloner Algorithm [16]. We set N = 10, 000 and ρ = 0.1 and

b = η for all iterations until the Enhanced Cloner Algorithm reached the desired

level 325, (recall that b is the number of Gibbs cycles and η is the number of

splitting of each trajectory). After that, at the last iteration, we switched to

N = 100, 000.
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Table 4: Performance of the Enhanced Cloner Algorithm [16] for SAT 75 × 325
model.

Run N0 Iterations |X̂∗| RE of |X̂∗| |X̂∗

dir
| RE of |X̂∗

dir
| CPU

1 24 2458.8 0.089 2220 0.017 640.8

2 24 1927.8 0.146 2224 0.015 673.8

3 24 1964.6 0.130 2185 0.032 664.5

4 24 2218.9 0.017 2216 0.019 661.3

5 24 2396.9 0.062 2191 0.030 678.1

6 24 2271.8 0.006 2230 0.012 661

7 24 2446.1 0.083 2202 0.025 695

8 24 2090.5 0.074 2200 0.026 711.7

9 24 2147.7 0.049 2213 0.020 696.8

10 24 2395 0.061 2223 0.016 803.3

Average 24 2231.8 0.072 2210.4 0.021 688.6

It is interesting to note that if we set b = 1 instead of b = η, the average

relative error of both the product and the direct estimators of Enhanced Cloner

Algorithm [16] substantially increases. They become 0.27 and 0.16 instead of

0.072 and 0.021, respectively (see Table 4). This is in turn worse than 0.153 and

0.0078, the average relative errors of the product estimator of SSM Algorithm

3.2 (see Table 2). It is also important to note that by setting b 6= 1 in the SSM

Algorithm 3.2, in particular setting b = η we found that both relative errors

remain basically close to these for b = 1. This means that one full cycle of the

Gibbs sampler suffices for Algorithm 3.2, while the Basic Splitting Algorithm

of [16] requires tuning of b. In other words, the SSM Algorithm 3.2 is robust with

respect to b, while its counterpart Basic Splitting Algorithm is not.

5.2.3 Third Model: Random 3-4-SAT with matrix A = (122× 663)

Similar to SSM Algorithm 3.2 we set N = 10, 000 and ρ = 0.1 for all iterations

until Enhanced Cloner Algorithm [16] has reached the desired level 663. After

that we switched to N = 100, 000 for the last iteration. Again, as for the second

model, we set here b = η instead of b = 1 as for SSM Algorithm 3.2.

The the average CPU time is about 2 hours for each run, the average relative

error for the product estimator |X̂ ∗| is RE = 0.23, while for the direct estimator
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|X̂ ∗
dir| it is RE = 0.4. This means that only in 6 out of 10 runs Enhanced Cloner

Algorithm [16] finds the unique SAT assignment (compare this with 9 out of 10

runs for SSM Algorithm 3.2).

The above numerical results can be summarized as follows:

The proposed smoothed splitting method performs similarly to the standard

splitting one (in terms of CPU time and variability).

The proposed method is robust, while the standard splitting is not, especially

for the more difficult models, such as the Second and the Third Models. This

means that parameters ρ and N in the former method can be chosen from a wide

range, while in the latter they require careful tuning.
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