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Abstract 

 The study of congruence is central to organizational research.  Congruence refers to the 

fit, match, similarity, or agreement between two constructs and is typically framed as a predictor 

of outcomes relevant to individuals and organizations.  Previous studies often operationalized 

congruence as the algebraic, absolute, or squared difference between two component variables.  

Difference scores suffer from numerous methodological problems, which stimulated the 

development of alternative procedures.  For algebraic and squared difference scores, the primary 

alternatives involve linear and quadratic regression equations.  For absolute difference scores, the 

extant alternative is piecewise regression, which avoids certain problems with absolute 

difference scores but relies on untested assumptions that are central to congruence research.  In 

this article, we develop an alternative to absolute difference scores based on spline regression, 

yielding a comprehensive approach for testing hypotheses that underlie absolute difference 

scores while avoiding the shortcomings of piecewise regression analysis.  We demonstrate the 

advantages of spline regression over absolute difference scores and piecewise regression using 

an empirical example. 
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 The study of congruence is central to organizational research (Edwards, 1994).  

Congruence refers to the fit, match, or similarity between two constructs, such as the demands of 

the job and the abilities of the person, the needs of the person and the rewards provided by the 

job, the values of the person and the organization, or the actual and ideal structure of a firm 

(Edwards & Shipp, 2007; Kristof, 1996; Venkatraman, 1989).  Congruence is usually treated as a 

predictor of outcomes relevant to individuals and organizations, such as job satisfaction, job 

performance, organizational commitment, psychological and physical well-being, and firm 

performance (Boyd, Haynes, Hitt, Bergh, & Ketchen, 2012; Edwards, 1991; Hoffman & Woehr, 

2006; Kristof-Brown, Zimmerman, & Johnson, 2005). 

 During much of its history, congruence research relied on difference scores, which are 

prone to numerous methodological problems (Cronbach, 1958; Edwards, 1994; Johns, 1981).  

Many of these problems can be overcome by analyses that use the component variables that 

constitute difference scores as joint predictors, supplemented by higher-order terms as needed to 

represent the functional form implied by the difference score in question.  This approach was 

developed by Edwards (1994), who presented alternatives to algebraic, absolute, and squared 

difference scores along with procedures for testing their associated constraints, which can be 

viewed as hypotheses that motivate the use of difference scores from a conceptual standpoint. 

 As shown by Edwards (1994), algebraic and squared difference scores can be expressed 

as restricted versions of linear and quadratic regression equations, respectively.  However, the 

expression for an absolute difference score is less straightforward, because computing the score 

involves a decision rule such that, if the difference is positive, its sign is unaltered, whereas if the 

difference is negative, its sign is reversed.  To represent this decision rule, Edwards (1994) 

formed a dummy variable that indicated whether the difference was positive or negative and 

incorporated this variable as a moderator in a piecewise regression equation.  This approach 

provides tests of whether the slopes of the component variables are equal in magnitude and 

opposite in sign for positive and negative differences, as implied by an absolute difference score.  

However, this approach has one crucial shortcoming: it does not allow the researcher to verify 
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whether, in fact, the slopes relating the component variables to the outcome change where the 

component variables are equal.  Rather, this assumption is taken for granted, given that the 

dummy variable indicating whether the difference is positive or negative must be coded prior to 

analysis.  Methodological work that followed Edwards (1994) has focused primarily on the 

quadratic regression equation that serves as an alternative to squared difference scores (Edwards, 

2002; Edwards & Parry, 1993).  A general approach that permits comprehensive tests of 

congruence effects implied by absolute difference scores has yet to be developed. 

 Developing a viable alternative to absolute difference scores is important, for several 

reasons.  First, theories of congruence often frame its effects in terms of an absolute difference 

between component constructs.  For instance, the theory of job satisfaction developed by Locke 

(1969) indicated that, for most job attributes, satisfaction results from the absolute difference 

between perceived and valued (i.e., desired) amounts.  Similarly, the theory of stress and 

behavior in organizations proposed by McGrath (1976) asserts that experienced stress is a 

function of the absolute difference between the task demands and individual abilities.  Likewise, 

in strategic management research, the concept of fit between the firm and its environment has 

been portrayed as an absolute difference (Venkatraman, 1989).  Beyond these explicit examples, 

most congruence theories assert that outcomes increase or decrease as the components of 

congruence deviate from one another in either direction, and a parsimonious interpretation of this 

assertion is that the effects of incongruence are linear, corresponding to an absolute difference.  

Second, absolute difference scores have been used in numerous studies of congruence, spanning 

topics such as leader-member exchange, met expectations, job satisfaction, work-related stress, 

person-job fit, value congruence, interpersonal similarity, organizational climate, and strategic 

alignment.  As such, procedures that avoid problems with absolute difference scores would prove 

useful for many domains of management research.  Third, developing procedures that address 

the full set of assumptions underlying absolute difference scores would bring closure to 

methodological issues that were made evident decades ago (Edwards, 1994) but have yet to be 

fully resolved. 
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 In this article, we present spline regression as an alternative to absolute difference scores.  

Spline regression comprises a family of procedures for analyzing functions that change slope at 

specific points whose number and location can be treated as parameters to be estimated (Marsh 

& Corimer, 2002; Smith, 1979; Suits, Mason, & Chan, 1978).  Although spline regression is 

typically applied to two-dimensional functions, it can be extended to three-dimensional surfaces 

in which the slope changes along a fold in the surface, as implied by an absolute difference score 

relating two component variables to an outcome (Edwards, 1994). 

 This article is organized as follows.  We begin with an introduction to spline regression, 

describing two-dimensional functions that are typically analyzed with this method.  We then 

extend spline regression to three-dimensional surfaces relevant to congruence research.  We 

explain how features of these surfaces correspond to parameters in spline regression equations 

and how these equations are estimated and interpreted.  Next, we present an empirical example 

that compares spline regression to absolute difference scores and the piecewise regression 

approach presented by Edwards (1994).  We conclude by discussing the strengths and limitations 

of spline regression and how it complements polynomial regression in congruence research. 

 Before proceeding, it is important to position spline regression relative to polynomial 

regression.  As noted earlier, polynomial regression was developed as an alternative to algebraic 

and squared difference scores.  In contrast, spline regression is an advancement over piecewise 

regression, which itself is an alternative to absolute difference scores.  Spline regression and 

polynomial regression can both be used to investigate congruence hypotheses and, as such, the 

methods should not be viewed as competitors.  The methods differ in that polynomial regression 

is suited to hypothesized surfaces that are curvilinear and symmetric, whereas spline regression 

applies to surfaces that are linear, potentially asymmetric, and can have more than one line along 

which the surface changes in slope.  Ultimately, we believe that polynomial regression and spline 

regression should be viewed as complementary methods for congruence research, with the 

choice between these methods determined by the particulars of the hypotheses that the researcher 

wishes to investigate.  The distinctions between polynomial regression and spline regression are 



Spline Regression in Congruence Research   6 

elaborated in the Discussion section of this article, where we also describe how the methods can 

be integrated into a unified analytical framework. 

Overview of Spline Regression 

 As noted earlier, spline regression is a method for estimating functions that change slope 

at one or more points (Marsh & Corimer, 2002; Smith, 1979; Suits et al., 1978).  Spline 

regression differs from piecewise regression (Neter, Wasserman, & Kutner, 1989; von Eye & 

Schuster, 1998) in two ways.  First, piecewise regression requires the researcher to specify a 

priori the point at which a function changes slope without being able to test this specification, 

whereas spline regression can treat this point as a parameter to be estimated.  Second, although 

piecewise regression can estimate functions that are discontinuous at the point where the slope is 

specified to change, indicating a vertical displacement of the function, the functions estimated by 

spline regression are continuous.  By specifying functions as continuous, the point or points at 

which the slope changes can be estimated.  This tradeoff is worthwhile for congruence research 

because, from a conceptual standpoint, there is little basis for predicting that functions abruptly 

jump where two component variables are equal.  In contrast, the premise that outcomes are 

minimized or maximized along the line of congruence, as opposed to some other line, is central 

to congruence research and should therefore be treated as a core hypothesis to be tested 

empirically.  To clarify the correspondence between piecewise regression and spline regression, 

we start with a piecewise regression function and then modify it to yield a spline regression 

function.  We then extend these methods to three dimensions.1 

Piecewise Regression Function 

 A basic piecewise regression equation can be written as follows: 

 Y = a0 + a1X + a2W + a3XW + e. (1) 

In Equation 1, X is an independent variable, Y is the dependent variable, and W is a dummy 

variable that equals 0 when X is less than or equal to some critical value, which we designate c, 

and equals 1 when X is greater than c.2  The terms W and XW capture the difference in the 

intercept and slope, respectively, of the function relating X to Y on either side of the point c.  
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Finally, the ai in Equation 1 are unstandardized regression coefficients (in this article, we use ai 

to represent coefficients in piecewise regression equations and bi to indicate coefficients in spline 

regression equations). 

 The interpretation of Equation 1 is clarified by substituting 0 or 1 for W to recover the 

intercept and slope of the function relating X to Y on either side of the point c.  When X < c, W = 

0, and Equation 1 simplifies to: 

 Y = a0 + a1X + e. (2) 

Hence, a0 and a1 are the intercept and slope, respectively, of the function relating X to Y when X 

< c.  When X > c, W = 1, and Equation 1 becomes: 

 Y = (a0 + a2) + (a1 + a3)X + e. (3) 

Thus, the intercept and slope of the function when X > c are represented by the compound terms 

(a0 + a2) and (a1 + a3), respectively. 

 Figure 1 provides examples of hypothetical piecewise regression functions based on 

Equation 1.  Figure 1a shows a function that resembles an inverted-V, which might occur when 

an employee is dissatisfied by too much or too little contact with coworkers (Harrison, 1978).  

The function in Figure 1b is positively sloped on the right side and flat on the left side, as when 

an employee experiences increased stress when job demands exceed his or her abilities but not 

when demands fall short of abilities (French, Rodgers, & Cobb, 1974).  Finally, Figure 1c has a 

positive slope on the left and negative but less steep slope on the right, which could represent a 

person’s pay satisfaction when compared to a referent other, indicating that underpayment is 

more dissatisfying than overpayment (Adams, 1965). 

 As illustrated in Figure 1, a piecewise regression function can be discontinuous, depicted 

by the vertical jump in the functions at point c.  This discontinuity can occur because Equation 1 

does not constrain the intercepts of the segments of the function relating X to Y shown in 

Equations 2 and 3.  The constraint that yields a continuous function can be derived by 

substituting c for X in Equations 2 and 3, thereby obtaining the predicted value of Y when X 

equals c, and setting these two expressions equal to one another.  For Equation 2, the predicted 
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value of Y when X equals c is a0 + a1c, and for Equation 3, the predicted value of Y when X 

equals c is (a0 + a2) + (a1 + a3)c.  Setting these expressions equal to one another yields: 

 a0 + a1c = (a0 + a2) + (a1 + a3)c. (4) 

We simplify this equation to obtain: 

 a2 = –a3c. (5) 

Imposing the constraint indicated by Equation 5 on Equation 1 yields the following equation: 

 Y = a0 + a1X – a3cW + a3XW + e 

     = a0 + a1X + a3(X – c)W + e. (6) 

Equation 6 can be rewritten as follows: 

 Y = a0
* + a1

*
X + a2

*(X – c)W + e. (7) 

The asterisks in this expression are intended to convey that the ai
* estimated from Equation 7 

will generally differ from the ai estimated from Equation 1, given that these equations use 

different independent variables as predictors.  Specifically, whereas Equation 1 has three 

predictors, X, W, and XW, Equation 6 has two predictors, X and (X – c)W.  Hence, modifying 

Equation 1 by dropping W and replacing XW with (X – c)W forces the two segments in Equations 

2 and 3 to meet at the point c (Neter et al., 1989). 

 As with Equation 1, the interpretation of Equation 7 becomes apparent when W is 

replaced with 0 or 1.  When W = 0, such that X < c, Equation 7 reduces to: 

 Y = a0
* + a1

*
X + e. (8) 

Alternately, when W = 1, meaning that X > c, Equation 7 becomes: 

 Y = (a0
* – a2

*
c) + (a1

* + a2
*)X + e. (9) 

Figure 2 contains plots of continuous piecewise regression functions that correspond to Equation 

7.  These plots are consistent with those in Figure 1, except that the functions are now continuous 

at the point where X = c. 

Spline Regression 

 Equation 7 can be translated into a spline regression function with two modifications.  

The first is merely a matter of notation, whereby we relabel the coefficients from ai
* to bi: 
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 Y = b0 + b1X + b2(X – c)W + e. (10) 

The second modification involves replacing W with the term (X > c): 

 Y = b0 + b1X + b2(X – c)(X > c) + e. (11) 

In Equation 11, (X > c) is a logical expression that equals 1 when the condition described by the 

expression is satisfied and equals 0 otherwise.  Hence, when X > c, (X > c) equals 1, and when X 

< c, (X > c) equals 0.  The key difference between the expression (X > c) in Equation 11 and the 

dummy variable W in Equation 10 is that the value at which (X > c) equals 0 or 1 is estimated as 

the parameter c, whereas the value at which W equals 0 or 1 is fixed a priori.  In spline 

regression terminology, the parameter c that represents where the slope of the function changes 

is a knot.  Estimating c along with b0, b1, and b2 can be accomplished with nonlinear regression 

procedures (Bates & Watts, 1988; Seber & Wild, 2003), which we discuss later in this article. 

 The interpretation of the spline function in Equation 11 is facilitated by examining the 

intercepts and slopes of the functions on either side of c.  When X < c, (X > c) in Equation 11 

equals 0, and the equation reduces to: 

 Y = b0 + b1X + e. (12) 

Conversely, when X > c, the term (X > c) equals 1, and Equation 11 becomes: 

 Y = b0 + b1X + b2(X – c) + e 

     = b0 + b1X + b2X – b2c + e 

     = (b0 – b2c) + (b1 + b2)X + e. (13) 

Hence, when X < c, the intercept and slope of the function relating X to Y are b0 and b1, whereas 

when X > c, the intercept and slope are (b0 – b2c) and (b1 + b2), respectively. 

 Figure 3 displays functions that parallel those in Figure 2.  However, c no longer signifies 

a fixed constant, but instead represents an estimated parameter, corresponding to Equation 11.  

Figure 3a again shows that coworker satisfaction decreases when an employee has too much or 

too little contact with coworkers, but introduces the notion that satisfaction peaks when actual 

contact with coworkers is slightly greater than desired, reflecting the premise that excess contact 

can bring instrumental and emotional support that have salutary effects beyond fulfilling the 
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person’s desire for contact itself (House, 1981).  In Figure 3b, the knot is also shifted to the right, 

indicating that stress does not increase until demands exceed abilities by some threshold, such 

that a slight excess of demands over abilities is experienced not as stress but instead as challenge 

(Caplan, 1983).  Finally, Figure 3c suggest that pay satisfaction does not decrease until the focal 

person’s pay exceeds that of a referent other by an amount that represents a tolerance of 

overpayment for the self relative to others (Adams, 1965). 

Spline Regression With Multiple Knots 

 Equations for spline functions with one knot can be extended to include additional knots.  

For instance, a spline function with two knot locations labeled c1 and c2 can be estimated using 

the following equation: 

 Y = b0 + b1X + b2(X – c1)(X > c1) + b3(X – c2)(X > c2) + e. (14) 

In Equation 14, the expression (X > c1) equals 0 when X < c1 and equals 1 when X > c1, and the 

expression (X > c2) equals 0 when X < c2 and equals 1 when X > c2.  Equation 14 can be further 

extended to estimate functions with more than two knots. 

 The interpretation of Equation 14 is clarified by examining the intercepts and slopes of 

the spline function on either side of c1 and c2.  For this illustration, we assume that c1 < c2 (if c1 > 

c2, then the subscripts on c1 and c2 can be reversed to conform to the equations given here).  

When X < c1, the expressions (X > c1) and (X > c2) equal 0.  Hence, Equation 14 reduces to: 

 Y = b0 + b1X + e. (15) 

When c1 < X < c2, (X > c1) equals 1 and (X > c2) equals 0, such that Equation 14 becomes: 

 Y = b0 + b1X + b2(X – c1) + e 

     = b0 + b1X + b2X – b2c1 + e 

     = (b0 – b2c1) + (b1 + b2)X + e. (16) 

Finally, when X > c2, (X > c1) and (X > c2) both equal 1, and Equation 14 is therefore: 

 Y = b0 + b1X + b2(X – c1) + b3(X – c2) + e 

     = b0 + b1X + b2X – b2c1 + b3X – b3c2 + e 

     = (b0 – b2c1 – b3c2) + (b1 + b2 + b3)X + e. (17) 
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Taken together, Equations 15, 16, and 17 give the intercepts and slopes for the three segments of 

the spline functions indicated by Equation 14. 

 Drawing from Equation 14, Figure 4 shows illustrative spline functions with two knots 

that are substantively similar to those in Figure 3, with the exception that each function has a flat 

region near the middle.  In Figure 4a, the employee does not experience dissatisfaction until 

contact with coworkers falls outside of what might be considered a zone of indifference (Kulka, 

1979).  In Figure 4b, stress increases not only when demands exceed abilities, but also increases 

when demands fall well short of abilities, perhaps due to boredom or the underutilization of 

valued skills.  Finally, Figure 4c indicates that pay satisfaction is not affected until the focal 

person’s pay deviates from that of a referent other by an amount large enough to be viewed as 

meaningful. 

Extending Spline Regression to Three Dimensions 

 The principles underlying two-dimensional spline functions can be extended to three-

dimensional spline surfaces.   These surfaces can be viewed as extensions of the piecewise 

regression surfaces considered by Edwards (1994).  Here, we review the principles of piecewise 

regression surfaces and then move to spline regression surfaces. 

Piecewise Regression Surface 

 Edwards (1994) applied piecewise regression as an alternative to absolute difference 

scores.  We begin by considering an equation that uses an absolute difference as a predictor:3 

 Z = d0 + d1|Y – X| + e. (18) 

Note that we use di to signify coefficients from an equation that uses an absolute difference score 

as a predictor. Following Edwards (1994), an alternative expression for the absolute difference 

function can be written as follows: 

 Z = d0 + d1[(1 – 2W)(Y – X)] + e. (19) 

In Equation 19, W is a dummy variable coded such that W = 0 when Y > X and W = 1 when Y < 

X.  Thus, when the (Y – X) difference is positive, (1 – 2W) reduces to 1, whereas when the (Y – 

X) difference is negative, (1 – 2W) becomes –1, thereby reversing the sign of the difference.  As 
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such, the term (1 – 2W) produces the same result as an absolute value transformation.  When the 

(Y – X) difference equals zero, the term [(1 – 2W)(Y – X)] becomes zero regardless of whether W 

is coded 0 or 1.  Expanding Equation 19 and rearranging terms yields the following expression: 

 Z = d0 – d1X + d1Y + 2d1XW – 2d1YW + e. (20) 

Equation 20 is a constrained version of the following piecewise linear equation: 

 Z = a0 + a1X + a2Y + a3W + a4XW + a5YW + e. (21) 

Comparing these two equations shows that Equation 20 imposes the following constraints on the 

coefficients in Equation 21: (a) a1 = –a2; (b) a4 = –a5; (c) a4 = –2a1; and (d) a3 = 0.  These 

constraints should be viewed as hypotheses to be tested such that, if the constraints hold, the 

surface relating X and Y to Z is consistent with that implied by an absolute difference score.  

Additional guidelines for using Equation 21 to conduct confirmatory tests of absolute difference 

scores are provided by Edwards (1994, 2002). 

 Equation 21 can be used to derive the intercepts and slopes of two triangular sections of 

the surface relating X and Y to Z, with the boundary separating the sections running along the Y = 

X line.  These terms can be recovered by substituting 0 or 1 for W in Equation 21.  When W = 0, 

Equation 21 simplifies to: 

 Z = a0 + a1X + a2Y + e. (22) 

Alternately, when W = 1, Equation 21 becomes: 

 Z = a0 + a1X + a2Y + a3 + a4X + a5Y + e 

    = (a0 + a3) + (a1 + a4)X + (a2 + a5)Y + e. (23) 

Hence, when Y > X, the surface has an intercept of a0 and slopes of a1 and a2, respectively, for X 

and Y.  When Y < X, the intercept of the surface is (a0 + a3), and slopes of X and Y are (a1 + a4) 

and (a2 + a5). 

 Illustrative surfaces corresponding to Equations 20 and 21 are shown in Figures 5 and 6, 

respectively.  The surfaces in Figure 5 are symmetric on either side of the Y = X line and are flat 

and continuous along the Y = X line, consistent an absolute difference score.  Substantively, 

Figure 5a indicates that coworker satisfaction decreases symmetrically as actual and desired 
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contact with coworkers differ in either direction and remains constant when actual and desired 

coworker contact are equal, regardless of their absolute levels.  Analogously, Figure 5b shows 

that experienced stress increases symmetrically as job demands and employee abilities deviate 

from one another and is constant as demands and abilities jointly increase or decrease.  Finally, 

Figure 5c indicates that pay satisfaction decreases to the same degree as received and referent 

other pay differ in either direction and remains constant for any fixed difference between 

received and referent other pay.  These surfaces are extensions of the two-dimensional functions 

in Figure 2 but differ in two ways.  First, the two-dimensional functions treat desired coworker 

contact, employee abilities, and referent other pay as constants, whereas the surfaces allow these 

standards of comparison to vary.  Second, unlike the functions in Figure 2, the surfaces in Figure 

5 impose the symmetry constraints associated with an absolute difference score. 

Unlike the surfaces in Figure 5, the surfaces in Figure 6 are asymmetric about the Y = X 

line and are sloped and discontinuous along the Y = X line.  The surface in Figure 6a is 

equivalent to that in Figure 5a but adds a discontinuity along the Y = X line such that, for a given 

difference between X and Y, coworker satisfaction is lower for excess rather than deficient 

contact with coworkers.  Compared to Figure 5b, the surface in Figure 6b indicates that, along 

the Y = X line, experienced stress is higher when job demands and employee abilities are both 

high than when both are low and that stress is higher when demands exceed abilities than when 

demands fall short of abilities.  The surface in Figure 6c differs from that in Figure 5c in that pay 

satisfaction is higher when received and referent other pay are both high than when both are low 

and also when self pay exceeds referent other pay.  Further examples that compare surfaces 

corresponding to absolute difference scores and piecewise regression equations are provided by 

Edwards (1994, 2002). 

 Equation 21 places no restrictions on the sections of the surface for which W is coded 0 

or 1.  Because of this, the surface can be discontinuous along the Y = X line, as illustrated in 

Figure 6.  The surface can be made continuous by imposing constraints that force the sections of 

the surface to meet along the Y = X line.  To derive these constraints, we begin by rewriting 
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Equations 22 and 23 to describe the shape of each surface along the Y = X line.  The shape of a 

surface along a particular line can be found by substituting the expression for the line into the 

equation for the surface (Edwards & Parry, 1993).  We apply this principle to Equations 22 and 

23.  Substituting the expression Y = X into Equation 22 yields: 

 Z = a0 + a1X + a2X + e 

    = a0 + (a1 + a2)X + e. (24) 

Similarly, substituting Y = X in Equation 23 gives: 

 Z = (a0 + a3) + (a1 + a4)X + (a2 + a5)X + e 

    = (a0 + a3) + (a1 + a2 + a4 + a5)X + e. (25) 

If the two sections of the surface described by Equations 24 and 25 meet along the Y = X line, 

then the intercept and slope in Equation 24 must equal the intercept and slope in Equation 25.  

Setting equal the intercepts from Equations 24 and 25 and simplifying gives: 

 a0 = a0 + a3 

 a3 =  0. (26) 

Similarly, setting equal the slopes from Equations 24 and 25 and simplifying produces: 

 a1 + a2 = a1 + a2 + a4 + a5 

 a4 = –a5. (27) 

Substituting Equations 26 and 27 into Equation 21 produces a piecewise regression equation in 

which the surfaces for W = 0 and W = 1 meet along the Y = X line.  This substitution yields: 

 Z = a0 + a1X + a2Y – a5XW + a5YW + e 

    = a0 + a1X + a2Y + a5(Y – X)W + e. (28) 

We now rewrite this constrained equation by replacing the ai with ai
* and listing the coefficient 

subscripts as integers in ascending order: 

 Z = a0
* + a1

*
X + a2

*
Y + a3

*(Y – X)W + e. (29) 

Again, replacing the ai with ai
* is meant to convey that the coefficients estimated using Equation 

29 will generally differ from the corresponding coefficients in Equation 21 (e.g., a1 will differ 

from a1
*) given that the two equations use different independent variables. 
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 Equation 29 can be used to write expressions for the surface on either side of the Y = X 

line that defines the location of the seam.  When Y > X, W = 0, and Equation 29 reduces to: 

 Z = a0
* + a1

*
X + a2

*
Y + e (30) 

Alternately, when Y < X, W = 1, and Equation 29 becomes: 

 Z = a0
* + a1

*
X + a2

*
Y + a3

*(Y – X) + e 

 Z = a0
* + a1

*
X + a2

*
Y + a3

*
Y – a3

*
X + e 

 Z = a0
* + (a1

*– a3
*)X  + (a2

* + a3
*)Y+ e. (31) 

 Figure 7 shows surfaces that parallel those in Figure 6, with the caveat that the surfaces 

now meet along the seams.  As before, the seams are constrained to run along the Y = X line, 

based on how W is coded prior to estimation.  This constraint can be treated as an assumption to 

be tested using spline regression, as described below. 

Spline Regression Surface 

 We now translate Equation 29 into an equation corresponding to a spline regression 

surface.  First, we replace the equation for the seam associated with Equation 29, which is Y = X, 

with the general expression Y = c0 + c1X.  This replacement allows the intercept and slope of the 

seam, which we notate c0 and c1, respectively, to take on values other than 0 and 1.  Replacing Y 

= X with Y = c0 + c1X in turn replaces the term (Y – X) in Equation 29 with the term (Y – c0 – 

c1X), which can be seen as follows.  Recall that the term (Y – X) in Equation 29 originated by 

substituting Y = X into Equations 22 and 23 to obtain the intercepts and slopes of the two 

sections of the surface on either side of the Y = X line.  Analogously, we can obtain the intercepts 

and slopes of the two sections on either side of the Y = c0 + c1X line by substituting the 

expression for this line into Equations 22 and 23.  For Equation 22, we have: 

 Z = a0 + a1X + a2(c0 + c1X) + e 

    = a0 + a1X + a2c0 + a2c1X + e 

    = (a0 + a2c0) + (a1 + a2c1)X + e. (32) 

For Equation 23, we obtain: 

 Z = (a0 + a3) + (a1 + a4)X + (a2 + a5)(c0 + c1X) + e 
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    = (a0 + a3) + (a1 + a4)X + a2c0 + a2c1X + a5c0 + a5c1X + e 

    = (a0 + a3 + a2c0 + a5c0) + (a1 + a4 + a2c1 + a5c1)X + e. (33) 

Next, we set the intercepts and the slopes for the two sections of the surface on either side of the 

Y = c0 + c1X line to be equal.  For the intercepts, we have: 

 a0 + a2c0 = a0 + a3 + a2c0 + a5c0 

 a3 = –a5c0. (34) 

For the slopes, we obtain: 

 a1 + a2c1 = a1 + a4 + a2c1 + a5c1 

 a4 = –a5c1 (35) 

We now substitute Equations 34 and 35 into Equation 21, which yields: 

 Z = a0 + a1X + a2Y – a5c0W – a5c1XW + a5YW + e 

    = a0 + a1X + a2Y + a5(Y – c0 – c1X)W + e. (36) 

We then rewrite Equation 36 by replacing the ai with ai
* and listing the subscripts in ascending 

order to obtain: 

 Z = a0
* + a1

*
X + a2

*
Y + a3

*(Y – c0 – c1X)W + e. (37) 

As before, we replace the ai with ai
* and list the subscripts in ascending order to indicate that the 

coefficient estimates from Equation 37 will generally differ from those obtained using Equation 

21.  Comparing Equation 29 to Equation 37 shows that the term (Y – X) has been replaced with 

(Y – c0 – c1X). 

 Second, we replace W with the logical expression (Y < c0 + c1X), which distinguishes 

between the sections of the surface on either side of the Y = c0 + c1X line: 

 Z = a0
* + a1

*
X + a2

*
Y + a3

*(Y – c0 – c1X)(Y < c0 + c1X) + e. (38) 

The expression (Y < c0 + c1X) resolves to 1 when the condition it describes is satisfied and equals 

0 otherwise.  Finally, we change the ai
* to bi, which we use to distinguish spline regression from 

piecewise regression.  The resulting equation is: 

 Z = b0 + b1X + b2Y + b3(Y – c0 – c1X)(Y < c0 + c1X) + e. (39) 

 The interpretation of the spline surface for Equation 39 is clarified by computing the 
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intercepts and slopes of the portions of the surface on either side of the seam described by Y = c0 

+ c1X.  When Y > c0 + c1X, (Y < c0 + c1X) equals 0, and Equation 39 simplifies to: 

 Z = b0 + b1X + b2Y + e. (40) 

When Y < c0 + c1X, (Y < c0 + c1X) equal 1, and Equation 39 becomes: 

 Z = b0 + b1X + b2Y + b3(Y – c0 – c1X) + e 

    = b0 + b1X + b2Y + b3Y – b3c0 – b3c1X + e 

    = (b0 – b3c0) + (b1 – b3c1)X + (b2 + b3)Y + e. (41) 

Thus, when Y > c0 + c1X, the surface relating X and Y to Z has an intercept of b0 and slopes for X 

and Y of b1 and b2, whereas when Y < c0 + c1X, the intercept and slopes for X and Y are (b0 – 

b3c0), (b1 – b3c1), and (b2 + b3). 

 The terms in Equations 40 and 41 can be further analyzed to examine relevant properties 

of the surface.  For instance, in studies of congruence, it is often useful to determine whether the 

coefficients on X and Y are equal in magnitude but opposite in sign, as implied when an absolute 

difference score is used to represent a congruence hypothesis.  This hypothesis involves two tests 

that compare the coefficients on X and Y within Equations 40 and 41, as follows: (a) b1 = –b2, or 

b1 + b2 = 0; and (b) b1 – b3c1 = –(b2 + b3), or b1 + b2 + b3(1 – c1) = 0.  If these two conditions are 

satisfied, then the slopes for X and Y do not differ from being equal in magnitude but opposite in 

sign on both sides of the seam. 

 Another property of the surface often relevant to congruence research is whether the 

surface is symmetric on either side of the seam.  Symmetry implies that the slopes for X and Y on 

one side of the seam are equal in magnitude but opposite in sign when compared to their slopes 

on the other side of the seam.  When treated as a hypothesis, symmetry involves two tests that 

again use the coefficients on X and Y from Equations 40 and 41: (a) b1 = –(b1 – b3c1), or 2b1 – 

b3c1 = 0; and (b) b2 = –(b2 + b3), or 2b2 + b3 = 0.  If both of these conditions are satisfied, then the 

surface does not deviate from being symmetric about the seam. 

 A third property of the surface that merits attention is the slope of the surface along the 

seam.  This property is relevant because most congruence hypotheses rely on the assumption that 
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an outcome is maximized or minimized along the Y = X line and has the same value along this 

line regardless of whether X and Y are both low or high.  Support for this prediction would be 

evidenced by a surface with a seam running along the Y = X line, such that c0 = 0 and c1 = 1, and 

a slope of zero along the seam.  The estimated values of c0 and c1 can be tested directly, and the 

intercept and slope of a surface along its seam can be computed by substituting the expression 

for the seam (i.e., Y = c0 + c1X) into Equation 40: 

 Z = b0 + b1X + b2(c0 + c1X) + e 

    = b0 + b1X + b2c0 + b2c1X + e 

    = (b0 + b2c0) + (b1 + b2c1)X + e. (42) 

Hence, the intercept and slope of the surface along its seam are (b0 + b2c0) and (b1 + b2c1).  As 

might be expected, the same result is obtained when Y = c0 + c1X is substituted into Equation 41 

given that, by construction, the portions of the spline surface indicated by Equations 40 and 41  

have the same intercept and slope along the seam. 

 Figure 7 shows surfaces that are analogous to those in Figure 6 but relax the constraint 

that the seams run along the Y = X line.  In Figure 7a, the seam is shifted to the right, such that 

employees are more satisfied when they have more contact with coworkers than would meet 

their stated desires, which again could reflect supplemental benefits of social support.  Figure 7b 

indicates that stress begins to increase when demands are greater than abilities and that these 

effects are more pronounced when abilities are low, given that the seam is shifted to the right and 

rotated counterclockwise relative to the Y = X line.  Finally, Figure 7c again shows that pay 

satisfaction begins to decrease when the person’s pay is greater than a referent other but also 

indicates that this decrease begins further to the right (i.e., into the region of excess pay) when 

self and other pay are both high than when both are low. 

Spline Regression Surface With Multiple Seams 

 Equations for spline surfaces with one seam can be extended to surfaces with two or 

more seams.  Consider a surface with two seams described by the lines Y = c10 + c11X and Y = c20 

+ c21X.  An equation for this surface can be written by extending Equation 39 as follows: 
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 Z = b0 + b1X + b2Y + b3(Y – c10 – c11X)(Y < c10 + c11X)  

            + b4(Y – c20 – c21X)(Y < c20 + c21X) + e. (43) 

As before, the expression (Y < c10 + c11X) equals 0 when Y > c10 + c11X and equals 1 when Y < c10 

+ c11X.  Similarly, the expression (Y < c20 + c21X) equals 0 when Y > c20 + c21X and equals 1 

when Y < c20 + c21X.  Equation 43 can be extended for surfaces with more than two seams. 

 Surfaces corresponding to Equation 43 can have three or four sections, depending on 

whether the two seams cross within the joint range of X and Y in the X,Y plane.  For simplicity, 

we consider a surface for which the seams denoted by Y = c10 + c11X and Y = c20 + c21X do not 

cross within the range of X and Y.  Consequently, the two seams separate the surface into three 

portions.  When the two seams cross within the range of X and Y, the surface has four portions, 

which makes the interpretation of the surface more complex but nonetheless tractable.  For this 

illustration, the Y = c10 + c11X seam is located above the Y = c20 + c21X seam in the X,Y plane 

such that, for each value of X, the value of Y described by c10 + c11X is greater than the value of Y 

indicated by c20 + c21X.  Under these conditions, when Y > c10 + c11X, the expressions (Y < c10 + 

c11X) and (Y < c20 + c21X) both equal 0, and Equation 43 reduces to: 

 Z = b0 + b1X + b2Y + e. (44) 

When c10 + c11X > Y > c20 + c21X, such that Y lies between the two seams, Equation 43 becomes: 

 Z = b0 + b1X + b2Y + b3(Y – c10 – c11X) + e 

    = b0 + b1X + b2Y + b3Y – b3c10 – b3c11X + e 

    = (b0 – b3c10) + (b1 – b3c11)X + (b2 + b3)Y + e. (45) 

Finally, when Y < c20 + c21X, Equation 43 is as follows: 

 Z = b0 + b1X + b2Y + b3(Y – c10 – c11X) + b4(Y – c20 – c21X) + e 

    = b0 + b1X + b2Y + b3Y – b3c10 – b3c11X + b4Y – b4c20 – b4c21X + e 

    = (b0 – b3c10 – b4c20) + (b1 – b3c11 – b4c21)X + (b2 + b3 + b4)Y + e. (46) 

 As before, the equations that describe the various portions of the surface can be used to 

analyze properties relevant to congruence research.  For instance, the coefficients on X and Y for 

each section of the surface can be compared to determine whether X and Y have slopes that are 
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equal in magnitude but opposite in sign.  This property can be evaluated by testing the following 

constraints: (a) b1 = –b2, or b1 + b2 = 0; (b) b1 – b3c11 = –(b2 + b3), or b1 + b2 + b3(1 – c11) = 0; 

and (c) b1 – b3c11 – b4c21 = –(b2 + b3 + b4), or b1 + b2 + b3(1 – c11) + b4(1 – c21) = 0.  Testing these 

three constraints indicates whether the slopes for X and Y are equal in magnitude but opposite in 

sign for Equations 44, 45, and 46, respectively.  Analogously, slopes for X can be compared 

across the three sections of the surface by testing differences between b1, b1 – b3c11, and b1 – 

b3c11 – b4c21, which are the coefficients on X from Equations 44, 45, and 46.  The corresponding 

coefficients on Y are b2, b2 + b3, and b2 + b3 + b4, as again shown in Equations 44, 45, and 46. 

 Finally, the slope of the surface along each seam can be computed by substituting the 

expression for a seam line into an equation that describes the surface on either side of the seam.  

For instance, substituting the expression Y = c10 + c11X into Equation 44 yields: 

 Z = b0 + b1X + b2(c10 + c11X) + e 

    = b0 + b1X + b2c10 + b2c11X + e 

    = (b0 + b2c10) + (b1 + b2c11)X + e. (47) 

Thus, the intercept and slope of the surface along the seam described by Y = c10 + c11X are (b0 + 

b2c10) and (b1 + b2c11), respectively.  Analogously, substituting the expression Y = c20 + c21X into 

Equation 45 gives: 

 Z = (b0 – b3c10) + (b1 – b3c11)X + (b2 + b3)(c20 + c21X) + e 

    = b0 – b3c10 + b1X – b3c11X + b2c20 + b2c21X + b3c20 + b3c21X + e 

    = (b0 – b3c10 + b2c20 + b3c20) + (b1 – b3c11 + b2c21 + b3c21)X + e. (48) 

Hence, the intercept and slope of the surface along the seam Y = c20 + c21X are (b0 – b3c10 + b2c20 

+ b3c20) and (b1 – b3c11 + b2c21 + b3c21), respectively.  The compound coefficients on X in 

Equations 47 and 48 can be tested to determine whether the surface is flat or sloped along the 

seams. 

 Figure 8 displays spline surfaces with two seams that build on the functions in Figure 4 

and the surfaces in Figure 7.  Figure 8a shows that coworker satisfaction decreases when actual 

contact with coworkers deviates from desired contact by some threshold, again representing a 
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zone of indifference.  The surface in Figure 8b indicates that stress increases when demands 

exceed abilities and, to a lesser extent, when demands fall short of abilities, and that, for a given 

difference between demands and abilities, stress is higher when demands and abilities are both 

high than when both are low.  This surface also shows that stress is unaffected by small 

deviations of demands from abilities when both are low rather than high, as indicated by the 

distance between the seams at the near corner of the surface.  Finally, Figure 8c shows that pay 

satisfaction decreases as the focal person  is underpaid, and to a lesser extent, overpaid relative to 

a referent other.  The surface adds that deviations of the focal person’s pay relative to a referent 

other is more tolerable when pay received by the self and other are both high than when both are 

low, as indicated by the difference in the spread between the seams at the far and near corners of 

the surface. 

Estimating Spline Regression Equations 

 As noted previously, nonlinear regression can be used to analyze spline regression 

equations that treat knot and seam locations as parameters to be estimated (Bates & Watts, 1988; 

Motulsky & Ransnas, 1987; Seber & Wild, 2003).  We strongly recommend that researchers 

estimate the locations of knots and seams, even when theory indicates where they should be, 

because doing so treats knot and seam locations as hypotheses to be tested, as opposed to 

assumptions that are taken for granted.  This recommendation is based on the premise that 

theoretically motivated model specifications should be examined empirically, thereby exposing 

theories to falsification or corroboration.  Accordingly, in this section we provide an overview of 

nonlinear regression to help organizational researchers understand its basic principles, make 

informed decisions when applying this method, and organize and interpret its results. 

Estimation Algorithms 

 Nonlinear regression uses iterative procedures that modify parameter estimates at each 

step, with the goal of producing estimates that minimize some type of loss function.  A loss 

function commonly used in nonlinear regression is the sum of squared residuals, consistent with 

the least-squares criterion of OLS regression.  Beginning with an initial set of starting values, the 
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loss function is computed and new parameters values are generated, with this process repeating 

until the estimation algorithm has converged, as indicated by a decrease in the loss function or 

changes in the parameter estimates that are small enough to be considered negligible. 

 Nonlinear regression can be implemented using various algorithms (Bates & Watts, 1988; 

Motulsky & Ransnas, 1987; Seber & Wild, 2003).  Direct-search algorithms, such as the simplex 

method, generate k + 1 sets of parameter estimates, where k is the number of parameters in the 

equation, and compute the loss function for each set.  The set with the highest value of the loss 

function is replaced with a new set that blends the best of the remaining k sets, and the process 

repeats until convergence is reached.  Other methods derive parameter estimates by seeking the 

gradient vector of the loss function, along which the function decreases most rapidly.  For 

instance, the method of steepest descent computes the slope of the gradient vector at each 

iteration and generates parameter estimates that yield the greatest reduction in the loss function.  

With this method, initial iterations tend to move rapidly down the gradient vector, but later 

iterations can zigzag around the minimum of the loss function.  The Newton-Raphson method 

guides iterations using the first and second derivatives of the gradient vector to find the path 

along which the loss function decreases at the fastest rate.  Unfortunately, computing the second 

derivatives of the gradient vector can be problematic, leading to local rather than global 

convergence and sometimes causing the loss function to increase rather than decrease.  These 

problems can be ameliorated by methods that approximate the second derivatives rather than 

computing them in their entirety.  Among these methods, the Gauss-Newton, quasi-Newton, and 

Levenberg-Marquardt algorithms have proven useful, although their performance depends on the 

extent to which their approximations of the second derivatives disregard information that would 

be needed to accurately track the gradient vector of the loss function. 

 The algorithms described here are available in major statistical programs such as SPSS, 

Stata, SAS, SYSTAT, and R.  Each algorithm has its own strengths and weaknesses, and no 

algorithm can be deemed superior in all situations.  Therefore, it is prudent to implement several 

algorithms and compare their results.  If the parameter estimates are similar, then it is reasonable 
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to conclude that the results are not specific to the algorithm used.  If estimates differ, then we 

recommend trying different sets of starting values and ensuring that the programs are using the 

same convergence criteria.  If these efforts fail, then alternative specifications of the regression 

equation should be considered, perhaps by increasing or decreasing the number of seams in the 

surface.  Doing so can reveal whether the hypothesized surface is too discrepant with the data to 

yield stable estimates across estimation algorithms. 

Specifying Starting Values 

 The effectiveness of nonlinear estimation algorithms depends on the starting values 

specified for the parameters prior to the first iteration.  A carefully selected set of starting values 

can increase the likelihood that the algorithm will successfully converge, require fewer iterations 

to reach convergence, and avoid local minima in the iteration process (Seber & Wild, 2003).  For 

spline surfaces, we describe three approaches for specifying starting values.  First, starting values 

can be chosen that match the hypothesized surface.  Although this approach is straightforward, 

its effectiveness depends on the extent to which the hypothesized surface is consistent with the 

data, which is unknown prior to analysis.  A second approach is to use the hypothesized seam 

locations to code dummy variables, apply piecewise regression with the portions of the surface 

constrained to meet along the seams, and use the resulting coefficient estimates along with the 

intercepts and slopes of the hypothesized seams as starting values.  For instance, if a surface was 

hypothesized to have one seam with an intercept of c0 = 0 and a slope of c1 = 1, such that the 

seam runs along the Y = X line, then a dummy variable W would be coded 0 or 1 to distinguish 

cases where Y is greater than or less than X, and Equation 29 would be estimated.  The obtained 

estimates of a0
*, a1

*, a2
*, and a3

* would serve as starting values for b0, b1, b2, and b3 in Equation 

37, along with starting values of 0 and 1 for c0 and c1.   A third approach starts by estimating an 

unconstrained piecewise regression equation that does not force the sections of the surface to 

meet and uses the resulting coefficient estimates to solve for the lines along which the sections of 

the surface would intersect if they were projected into one another. The intercepts and slopes of 

these lines of intersection are used as starting values for the seams, and the coefficient estimates 
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from the unconstrained piecewise equation are used as starting values for the remaining 

parameters.   To illustrate, for a surface with one seam, Equation 21 would be estimated, and the 

line along which these two sections of the surface intersect would be found by solving Equations 

34 and 35 for c0 and c1, respectively, which yields c0 = –a3/a5 and c1 = –a4/a5.  These terms 

would serve as starting values for c0 and c1, and a0, a1, a2, and a5 estimated using Equation 21 

would serve as starting values for b0, b1, b2, and b3, respectively.  Of these three approaches, we 

consider the second and third approaches superior to the first, and we have found that these two 

approaches tend to yield very similar results.  In practice, the third approach uses more 

information from the data, whereas the second approach is simpler because it does not require 

the researcher to compute where the sections of the surface intersect.  Moreover, there is no 

guarantee that the starting values for seams derived using the third approach will fall within the 

range of the data.  In the example that follows, we applied the second approach and verified that 

the results were effectively the same when the third approach was used. 

Convergence Criteria 

 Statistical programs that implement nonlinear estimation rely on various convergence 

criteria to determine when the iterations will cease.  Typical convergence criteria include the 

change in the loss function, changes in the parameter estimates, and the maximum number of 

iterations.  Default values for these criteria vary widely across programs.  For instance, default 

values used by SPSS, Stata, SAS, and SYSTAT range from .0001 to .00000001 for changes in 

the loss function, from .0001 to .00000001 for changes in parameter estimates, and from 20 to 

10,000 for the maximum number of iterations (convergence criteria in R depend on the package 

used).  Differences in these criteria can cause parameter estimates to differ even when programs 

use the same estimation algorithm.  Thus, it is important to specify the same convergence criteria 

when comparing results across programs.  Convergence criteria can also be modified when an 

estimation algorithm fails to converge or produces estimates that fall outside reasonable bounds.4 

Model Evaluation 

 Nonlinear regression models can be evaluated using various criteria.  For instance, when 
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the loss function used for estimation minimizes the sum of squared residuals, the R2 for the 

equation can be used to assess the proportion of variance explained by the model, analogous to 

the R2 provided by OLS regression.  In addition, the R2 values from nested equations, such as 

those that specify different numbers of seams, can be compared using the conventional F-test 

(Motulsky & Ransnas, 1987).  In rare instances, the R2 can actually decrease when a seam is 

added to the equation, which is a symptom that the data have been overfitted.  When this occurs, 

the F-test can be disregarded, and the equation without the additional seam should be preferred.  

Most statistical packages that perform nonlinear estimation also report estimates of the variances 

and covariances of parameters, which can be used to construct confidence intervals for individual 

parameters and linear combinations of parameters, and some packages (e.g., Stata) can test linear 

and nonlinear combinations of parameters, from which confidence intervals can be formed.  

However, such analyses rely on normal theory to derive sampling distributions of parameters and 

R
2 values, which rests on assumptions that might not hold for nonlinear estimation (Motulsky & 

Ransnas, 1987; Seber & Wild, 2003), particularly when nonlinear combinations of parameters 

are tested, such as the products b3c0 and b3c1 in Equation 41.  These problems can be addressed 

by applying nonparametric procedures that do not rely on distributional assumptions, such as the 

bootstrap (Efron & Tibshirani, 1993; Julious, 2001; Mooney & Duval, 1993; Stine, 1989).  In the 

following example, we demonstrate methods that rely on normal theory and also apply the 

bootstrap, using bias-corrected confidence intervals derived with the percentile method. 

Empirical Example 

Sample and Measures 

 We illustrate spline regression and compare it to absolute difference scores and piecewise 

linear regression using data from a larger study of person-environment fit in organizations (Cable 

& Edwards, 2004; Edwards & Cable, 2009).  These data involve 950 respondents who completed 

measures of the actual and desired amounts of various attributes of jobs and overall satisfaction 

with the job.  For illustration, we focus on the following four job attributes, which we list here 

along with a sample item for each attribute: (a) authority (e.g., having definite lines of authority); 
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(b) relationships (e.g., forming relationships with coworkers); (c) variety (e.g., doing a variety of 

things); and (d) autonomy (e.g., doing my work in my own way).  All measures consisted of 

three items that were rated on 5-point scales ranging from “none” to “a very great amount” for 

both actual amount and desired amounts.  Descriptive statistics, correlations, and reliability 

estimates for the measures used for analysis are reported in Table 1. 

Analyses 

 The analyses reported here were conducted using Stata 14.  Analyses of absolute 

difference scores and piecewise linear equations were conducted using OLS regression invoked 

with the regress command, and spline regression equations were estimated with nonlinear least-

squares regression using the nl command.  Absolute difference scores were estimated using 

Equation 18. We applied two versions of piecewise regression analysis, one in which the 

surfaces on either side of the Y = X line were not forced to meet (Edwards, 1994), and another 

that constrained the surfaces to meet along the Y = X line.  These analyses use Equations 21 and 

29, respectively.  For both equations, W was coded such that W = 0 when Y > X and W = 1 when 

Y < X.  The spline regression analyses specified surfaces with one seam, corresponding to 

Equation 39. 

 The nonlinear regression procedure in Stata implements the Gauss-Newton approach 

which, as noted earlier, approximates the second derivatives used to guide iterations that track 

the loss function along the gradient vector, which can help avoid estimation problems.  We relied 

on the default maximum number of iterations, which was 10,000, and the convergence criteria 

for successive parameter estimates and for the residual sum of squares, both of which were 

.00001.  To examine the stability of the nonlinear regression results across statistical packages, 

we repeated the analyses using SPSS 23, SAS 9.0, and SYSTAT 12, using the Gauss-Newton 

and quasi-Newton algorithms implemented by these programs and the same maximum number 

of iterations and convergence criteria.  The results from these programs were virtually identical 

to those reported here and yielded the same substantive conclusions.  Stata syntax used for these 

analyses, as well as syntax for SPSS, SAS, and SYSTAT, the data used in our example, and 
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Excel files that compute surface features and bootstrap confidence intervals, are available on the 

website of the first author (http://public.kenan-flagler.unc.edu/faculty/edwardsj/). 

 Our analyses were guided by the hypothesis that job satisfaction is greatest when the 

actual and desired amounts of job attributes are equal and decreases as actual and desired 

amounts deviate from each other in either direction.  This hypothesis follows from theories that 

specify job satisfaction as an outcome of the fit between actual and desired job attributes (e.g., 

Dawis, 1992; Edwards, Caplan, & Harrison, 1998; Locke, 1976; Rice, McFarlin, Hunt, & Near, 

1985) and was explicitly expressed as an absolute difference function by Locke (1969).  This 

hypothesis is also implied by the many studies that have used the absolute difference between 

actual and desired job attributes to predict job satisfaction. 

 Starting values for the spline regression equations were derived using the second of the 

three approaches described earlier.  To recap, Equation 29 was estimated with W coded 0 or 1 

depending on whether Y was greater than or less than X.  The obtained estimates were used to 

specify starting values for Equation 39, whereby b0 = a0
*, b1 = a1

*, b2 = a2
*, b3 = a3

*, c0 = 0, and 

c1 = 1.  We compared the coefficient estimates from Equation 39 using these starting values to 

estimates obtained using the third approach discussed earlier, in which results from Equation 21 

were used to specify starting values for Equation 39 as b0 = a0, b1 = a1, b2 = a2, b3 = a5, c0 =         

–a3/a5, and c1 = –a4/a5.  The coefficient estimates from Equation 39 using these two approaches 

to setting starting values were virtually identical, with no coefficients showing differences above 

the second decimal place and 17 of the 20 coefficients equal to three or more decimal places.  As 

such, the choice between these two approaches to specify starting values had no material impact 

on the results reported here. 

 Statistical tests were conducted by constructing confidence intervals based on normal 

theory for absolute difference and piecewise regression equations using OLS estimation and both 

normal theory and the bootstrap for spline regression equations using nonlinear estimation.  

Confidence intervals were constructed for individual coefficients as well as linear and nonlinear 

combinations of coefficients required to assess features of the estimated spline surfaces.  Normal 

http://public.kenan-flagler.unc.edu/faculty/edwardsj/)
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theory confidence intervals were constructed for individual coefficients using the standard errors 

reported by Stata.  For expressions that involved linear and nonlinear combinations of 

coefficients, we used the nlcom postestimation command, which reports standard errors and 

confidence intervals for the computed quantities.  To construct bootstrap confidence intervals, 

we applied the boot function in Stata to draw 10,000 bootstrap samples, estimate the focal spline 

regression equation for each sample, and use the resulting coefficients individually and in 

combination to compute the quantities required to test the spline surface.  For these quantities, 

we constructed bias-corrected confidence intervals using the percentile method (Stine, 1989).  

For illustrative purposes, we report both normal theory and bootstrap confidence intervals for the 

spline regression equations estimated with nonlinear regression, but we base our interpretation 

on the bootstrap confidence intervals, which are more appropriate for these analyses. 

 In addition to the primary analyses described here, we also conducted supplemental 

analyses in which we estimated spline regression equations that incorporated two seams.  

Surfaces with two seams are conceptually relevant for the variables involved because, as 

illustrated by our hypothetical examples, such surfaces can contain a zone of indifference in 

which satisfaction remains constant when the actual and desired amounts of a job attribute differ 

to a limited degree and decreases when the difference between actual and desired amounts 

reaches some critical threshold (Kroeger, 1995; Kulka, 1979). 

Results 

 Descriptive statistics. Table 1 reports descriptive statistics, correlations, and reliability 

estimates for the measures used in our example.  Means were near or slightly above the midpoint 

of the 1-5 scale used for each measure, and minima and maxima in conjunction with bivariate 

plots showed that the paired actual and desired measures for each job dimension exhibited 

adequate dispersion for analyzing the shapes of the surfaces relating these measures to job 

satisfaction.  Prior to analysis, the actual and desired measures were centered at the scale 

midpoint of 3, such that the measures could range from –2 to +2 and had a midpoint of zero.  

This rescaling facilitates interpretation such that the Y = X and Y = –X lines, which are key 
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reference lines in congruence research (Edwards, 1994), running diagonally across the X,Y plane 

under the surface and intersecting at the center of the surface, which is the point X = 0, Y = 0. 

 Absolute Difference Scores.  Table 2 gives results for regressions of job satisfaction on 

absolute difference scores computed for each of the four job dimensions, following Equation 18.  

Coefficient estimates are supplemented by 95% confidence intervals computed using the 

reported standard errors, which give lower and upper limits based on normal theory (these limits 

are labeled LLN and ULN, respectively).  As can be seen, the coefficients on the absolute 

difference scores were negative, and their confidence intervals excluded zero, inviting the 

interpretation that job satisfaction is maximized when actual and desired amounts of each job 

dimension are equal and decreases symmetrically as actual amounts deviate from desired 

amounts in either direction.  Surfaces corresponding to these results are displayed in Figure 9.  

Using Equation 20, the coefficients for the absolute difference scores in Table 2 were translated 

into coefficients for actual and desired job dimensions (i.e., X and Y, respectively) on either side 

of the Y = X line, as shown in Table 3.  These coefficients make evident the constraints imposed 

by an absolute difference score, such that the slopes for X and Y are equal in magnitude but 

opposite in sign on either side of the Y = X line.  Naturally, these results suffer from the problems 

with difference scores (Cronbach, 1958; Edwards, 1994; Johns, 1981) and are reported here for 

comparison with the results that follow. 

 Unconstrained piecewise regression.  Table 4 contain results from analyses using the 

unconstrained piecewise regression equations in Equations 21.  As indicated by comparing 

Equations 20 and 21, the results in Table 3 would be consistent with the functional form implied 

by an absolute difference score if a1 = –a2, a4 = –a5, a4 = –2a1, and a3 = 0, with the further 

condition that a1, a2, a4, and a5 differ from zero (Edwards, 1994).  This pattern did not hold for 

any of the four job dimensions, as shown by the coefficients in Table 4.  In addition, the four 

constraints imposed by the absolute difference scores were tested as a set, which is equivalent to 

testing the increase in R2 for the unconstrained piecewise regression equation over the absolute 

difference score equation.  F statistics for these tests were 17.30, 25.55, 18.41, and 23.67, 
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respectively, for authority, relationships, variety, and autonomy (all numerator and denominator 

degrees of freedom were 4 and 944, respectively, and all p < .05).  These tests are equivalent to 

statistically comparing the R2
AD and R2

UP values in Table 12, which refer to the R2 values 

estimated using the absolute difference and unconstrained piecewise regression equations, 

respectively. For all four job dimensions, the R2
UP values were significantly larger than the 

corresponding R2
AD values, meaning the constraints imposed by the absolute difference scores 

were rejected.  These results are sufficient to reject the functional form implied by the absolute 

difference score.  Differences between the surfaces for the absolute difference scores and the 

unconstrained piecewise regression equations can be seen by comparing Figures 9 and 10.  In 

addition, the coefficients in Table 4 were used to compute the coefficients for X and Y on either 

side of the Y = X line, using Equations 22 and 23.  These coefficients are given in Table 5 and 

can be compared with those in Table 3 to further probe the differences in results for the absolute 

difference scores and the unconstrained piecewise regression equations.  In particular, as shown 

in Table 3, the results for the absolute difference scores suggested that actual and desired 

amounts of each job attribute had equal but opposite relationships with job satisfaction for both 

negative and positive discrepancies.  In contrast, the results in Table 5 indicate: (a) when actual 

amounts are less than desired amounts (i.e., left of the Y = X line), job satisfaction is positively 

related to actual amounts and, to a lesser extent, negatively related to desired amounts; and (b) 

when actual amounts are greater than desired amounts (i.e., right of the Y = X line), job 

satisfaction is positively related to desired amounts and, to a lesser extent, negatively related to 

actual amounts.  These results further disconfirm the simple symmetric surfaces implied by the 

absolute difference scores. 

 Constrained piecewise regression.  Table 6 reports results for constrained piecewise 

regression equations, corresponding to Equation 29, and the coefficients in Table 6 are translated 

into coefficients for X and Y on either side of the Y = X line in Table 7, using Equations 30 and 

31.  Results for the constrained equations were similar to those for the unconstrained equations, 

as can be seen by comparing the corresponding coefficients in Tables 5 and 7.  Omnibus tests of 
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the difference between the unconstrained and constrained equations can be obtained by 

comparing their respective R2 values (i.e., R2
UP and R2

CP) using an F-test, as reported in Table 12.  

As can be seen, the R2 values did not statistically differ for any of the four job dimensions.  The 

similarities of the results for the unconstrained and constrained equations are further evidenced 

by comparing the corresponding surfaces in Figures 10 and 11.  As can be seen, the surfaces for 

the constrained equations eliminate the slight discontinuities along the surfaces for the 

unconstrained equations, but otherwise, the surfaces are quite similar and yield the same 

substantive interpretations. 

 Spline regression.  Results for the spline regression analyses are reported in Table 8.  As 

noted earlier, these analyses used coefficient estimates from the constrained piecewise regression 

equations as starting values, such that b0, b1, b2, and b3 were initiated at a0
*, a1

*, a2
*, and a3

*, 

whose values are reported Table 6, and c0 and c1 were started at 0 and 1, which are the intercept 

and slope of the Y = X line.  Coefficients from Table 8 are translated into slopes for X and Y on 

either side of each seam in Table 9, and the spline regression surfaces are plotted in Figure 12. 

 Comparing the results in Tables 6 and 8 shows that the estimates of b0, b1, b2, and b3 

deviated from the starting values of a0
*, a1

*, a2
*, and a3

*.  However, the key difference in the 

results is that, in Table 8, the intercepts and slopes of the seams are not constrained to 0 and 1, 

respectively, but instead are estimated parameters.  As shown in Table 8, the intercepts differed 

from 0 for authority and relationships, and the slopes differed from 1 for relationships and 

variety.  Only autonomy yielded intercept and slope estimates that did not statistically differ 

from 0 and 1.  Thus, the spline regression results revealed that, for three of the four surfaces, the 

assumption that the seam ran along the Y = X line was rejected, whereas for one surface, the 

seam did not deviate statistically from the Y = X line.  These findings are central to congruence 

hypotheses and cannot be obtained from piecewise regression analysis. 

 Surfaces corresponding to these results are shown in Figure 12.  As is apparent, the seams 

for the authority, relationships, and variety surfaces deviate from the Y = X line.  The locations of 

the seams relative to the Y = X line are further examined in Table 10, which reports the points at 
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which the seams of the surfaces cross the Y = –2 – X, Y = –X, and Y = 2 – X lines, which 

correspond to X and Y coordinates of (–1, –1), (0, 0), and (1, 1), respectively, along the Y = X line 

(details regarding the computation and interpretation of these values are provided in the 

Appendix).  To facilitate interpretation, we designate the coordinates of (–1, –1), (0, 0), and (1, 

1) as low, medium, and high levels, respectively, of X and Y.  For authority, the seam is shifted to 

the right of the Y = X line across all three levels of X and Y, which indicates that job satisfaction 

is consistently greater when actual authority exceeds desired authority.  For relationships, the 

seam is rotated counterclockwise and shifted to the left of the Y = X at medium and high levels of 

X and Y, meaning that job satisfaction is greater when actual relationships are less than desired 

relationship when both variables are above their midpoints.  For variety, the seam is rotated 

counterclockwise such that, when actual and desired variety are both low, job satisfaction is 

greater when actual exceeds desired, whereas when actual and desired variety are both high, job 

satisfaction is greater when actual falls short of desired.  Finally, for autonomy, job satisfaction 

was greater when actual autonomy was less than desired autonomy when both variables were 

high, but this finding should be interpreted in light of the fact that the seam for autonomy did not 

differ statistically from the Y = X line. 

 In addition to examining the locations of the seams, the interpretations of the surfaces are 

facilitated by using the coefficient estimates in Table 8 to assess the slopes of the surface on 

either side of the seam, as given in Table 9.  These results indicate that: (a) on the left of the 

seams, job satisfaction increases as actual amounts increase and, to a lesser extent, as desired 

amounts decrease; and (b) on the right of the seams, job satisfaction increases as desired amounts 

increase and, to a lesser extent, and actual amounts decrease.  Thus, using the seams as reference 

lines, the increases in job satisfaction when actual amounts increased toward desired amounts 

were greater than the decreases in job satisfaction when actual amounts exceeded desired 

amounts. 

 A final set of results is reported in Table 11, which gives the intercepts and slopes of each 

surface along its seam.  For all job dimensions, the surface was positively sloped along the seam, 
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indicating that job satisfaction increased as actual and desired amounts jointly increased.  Taking 

into account the locations of the seams within the X,Y plane (see Figure 12), we conclude that job 

satisfaction was maximized when actual and desired authority were approximately equal, actual 

relationships were less than desired relationships by about two units, actual variety was less than 

desired variety by about one unit, and when actual and desired autonomy were about equal. 

 We also compared the R2 values from the spline regression to those obtained using 

absolute difference scores, unconstrained piecewise regression, and constrained piecewise 

regression.  As indicated in Table 12, the variance explained by the spline regression equations 

was statistically greater than that explained by the absolute difference, unconstrained piecewise, 

and constrained piecewise equations.  Thus, spline regression was superior not only in terms of 

the substantive information yielded, but also in terms of the proportion of variance explained. 

 As a last step, we compared the one-seam spline regression equations to two-seam 

equations, using starting values from constrained piecewise regression equations that changed 

slopes along the Y = 1 + X and Y = –1 + X  lines.  For relationships, variety, and autonomy, only 

one seam remained within the range of the data.  In contrast, both seams were within the range of 

the data for authority, although the increment in variance explained by the two-seam equation 

relative to the one-seam equation was only .002, which was trivial in substantive terms and did 

not reach statistical significance, F(3, 941) = 0.60, p > .05.  For illustrative purposes, the surface 

for the two-seam equation for authority is shown in Figure 14, which indicates a small zone of 

indifference when actual and desired authority are both high.  However, comparing this surface 

to the surface for the one-seam equation in Figure 13a shows that the surfaces are quite similar, 

which is consistent with the finding that the equations for both surfaces explained nearly the 

same amount of variance in job satisfaction. 

Discussion 

 This article has presented spline regression as a useful analytical approach for the study 

of congruence in organizational research.  Spline regression represents a key step forward in the 

development of alternatives to absolute difference scores, which have yet to progress beyond the 
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piecewise regression approach proposed by Edwards (1994).  Although this approach avoids 

certain problems with absolute difference scores, it does not allow the researcher to determine 

whether outcomes are maximized or minimized along the Y = X line.  This assumption is central 

to congruence research, and the inability to corroborate or refute this assumption renders tests of 

congruence hypotheses incomplete.  This assumption can be rigorously examined with spline 

regression, thereby allowing researchers to comprehensively test congruence hypotheses cast in 

terms of the absolute difference between two component variables, as set forth by Locke (1969), 

McGrath (1976), Venkatraman (1989), and implied by numerous empirical studies that have 

used absolute difference scores to represent the effects of congruence.  Spline regression also 

enables researchers to investigate congruence hypotheses that go beyond those represented by 

absolute difference scores, such as surfaces with seams that are shifted or rotated from the Y = X 

line and with multiple seams, as exemplified by two-seam surfaces that depict a zone of 

indifference that spans the Y = X line.  As such, spline regression constitutes an important 

contribution to the set of analytical tools available in congruence research. 

 With spline regression, congruence researchers now have viable alternatives to algebraic, 

squared, and absolute difference scores, which historically represented the three dominant ways 

that congruence has been operationalized (Edwards, 1994).  For algebraic difference scores, a 

viable alternative is linear regression using the component variables as predictors, supplemented 

by analyses to determine whether the hypothesis represented by an algebraic difference is 

supported.  For squared difference scores, researchers can rely on polynomial regression along 

with response surface methodology, in which the regression equation is a quadratic function of 

the component variables (Edwards, 2002; Edwards & Parry, 1993).  For absolute difference 

scores, we now have spline regression, which overcomes limitations with piecewise regression 

and rounds out the alternatives to the three primary difference scores that historically dominated 

congruence research. 

 Spline regression bears certain similarities to polynomial regression, in that both methods 

provide alternatives to difference scores that depict functions in which an outcome is maximized 
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or minimized along the Y = X line and decreases or increases symmetrically as the component 

variables differ in either direction.  However, these two methods have some relevant differences.  

For instance, polynomial regression specifies the effects of congruence as curvilinear, whereas 

spline regression treats these effects as linear.  In addition, polynomial regression requires that 

the effects of incongruence are symmetric, given that any cross-section of a quadratic surface is a 

parabolic function with equal but opposite curvature on either side of a vertical line termed the 

axis of symmetry (Kuang & Kase, 2012).  In contrast, spline regression surfaces can have slopes 

that differ on either size of the seam.  Moreover, the estimation of polynomial regression 

coefficients is exact, meaning there is only one solution for a given set of data and variables, 

whereas spline regression coefficient estimates can differ depending on the starting values and 

estimation algorithms used.  In our experience, we have found that polynomial regression and 

spline regression tend to yield similar substantive interpretations when applied to the same data, 

with the primary differences involving the asymmetries and zones of indifference that spline 

regression can depict. 

 We see several worthwhile opportunities for the further development of spline regression.  

One opportunity involves the integration of spline regression and polynomial regression under a 

single unified analytical framework.  This integration would begin by supplementing the linear 

terms used in spline regression with the three quadratic terms included in polynomial regression.  

The resulting equation would allow curvature of the surface on either side of the seam, which in 

turn would follow a quadratic rather than linear function through the X,Y plane.  An equation of 

this form is as follows: 

 Z = b0 + b1X + b2Y + b3X
2 + b4XY + b5Y

2 +  

       b8(Y – c0 – c1X – c2X
2)(Y < c0 + c1X + c2X

2) + e. (47) 

Equation 47 subsumes spline regression and polynomial regression as special cases.  

Specifically, if b8 equals zero, Equation 47 becomes the quadratic regression equation typically 

used in polynomial regression analysis.  Alternately, if b3, b4, b5, and c2 equal zero, Equation 47 

reduces to Equation 39, which is a spline regression equation with one linear seam.  Thus far, our 
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limited attempts to estimate Equation 47 have brought challenges involving convergence and 

interpretation.  As such, further work is needed to determine whether Equation 47 will provide 

the basis for generating a useful and practical method for integrating spline and polynomial 

regression. 

 Although the application of spline regression presented here has several strengths, it also 

has certain limitations that signify areas for further development.  First, like OLS regression, 

spline regression relies on the assumption that the variables involved in the analysis are 

measured without error.  Measurement error in Z will attenuate R2 estimates, whereas 

measurement error in X and Y can bias coefficient estimates upward or downward.  We have 

explored the estimation of spline regression estimation using structural equation modeling with 

latent variables but have yet to devise a viable procedure.  Future work along these lines would 

be very beneficial. 

 Second, when applying spline regression, obtaining useful starting values can be difficult.  

The approaches we illustrated relied on theoretical assumptions about seam locations, which 

were used to code dummy variables for piecewise regression equations, the results of which were 

used to derive starting values for nonlinear estimation.  If theoretical assumptions such as those 

we employed are grossly incorrect, starting values can differ markedly from values that best fit 

the data, and nonlinear estimation procedures can encounter local minima or fail to converge.  In 

general, it is prudent to try different sets of starting values to determine whether parameter 

estimates are stable.  If available theory does not suggest seam locations, then data can be plotted 

to visually identify where the dependent variable changes in slope relative to the independent 

variables, or systematic combinations of lines passing through the X,Y plane could be examined 

(e.g., all lines one unit apart that run parallel or perpendicular to the Y = X line). 

 Third, because the estimation algorithms used to implement nonlinear regression are 

iterative, they can fail to converge in practice.  Moreover, differ statistical packages rely on 

different algorithms and incorporate different convergence criteria, which means that the same 

data can produce different results depending on which package is used.  For our example, we 
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applied four statistical packages (i.e., SPSS, Stata, SAS, and SYSTAT), and although the 

obtained results were very close, they were not identical.  As such, the nonlinear estimation 

procedures used for spline regression involve some degree of instability that should be kept in 

mind when drawing conclusions from nonlinear regression. 

 In addition to these limitations, researchers who apply spline regression should keep 

various practical issues in mind.  First, although we consider spline regression a method for 

testing a priori congruence hypotheses, it could also be used for exploratory research, as when 

knots or seams are progressively added to spline regression equations and the increment in R2 is 

tested.  Although such analyses are possible, they would rarely be useful, because congruence 

research has progressed beyond the point where exploratory analyses would be necessary or 

informative.  For example, virtually all theories of congruence discuss how the fit between two 

constructs relates to outcomes, and such discussions are sufficient to hypothesize the location of 

a seam and slopes on either side of the seam, and testing hypotheses such as these calls for 

analyses that are confirmatory rather than exploratory.  Second, the use of spline regression 

raises the usual considerations of statistical power.  Although statistical power has received scant 

attention in the spline regression literature, it stands to reason that the statistical power associated 

with spline regression analysis is a function of sample size, effect size, and the chosen Type I 

error rate.  In spline regression, the effects of interest include the location of the seam, the slopes 

of the surface on either side of the seam, the slope of the surface along the seam, and the change 

in slope of the surface at the seam.  These effects can be more readily detected when samples are 

large in absolute terms and also when the data are distributed throughout the X,Y plane.  If the 

data are clustered on one side of the hypothesized seam location, then a change in the slope of 

the surface along the seam, as well as the location of the seam itself, will be difficult to detect. 

Summary and Conclusion 

 Spline regression holds great promise for the study of congruence in organizational 

research.  In this article, we reviewed the fundamentals of spline regression and distinguished it 

from piecewise regression, explained methods for specifying and interpreting two-dimensional 
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spline regression functions, and extended these methods to three-dimensional surfaces.  The 

empirical example we presented demonstrates how spline regression can be used to conduct 

detailed tests of congruence hypotheses and generate substantively meaningful results.  We 

encourage researchers to consider spline regression as the culmination of alternatives to absolute 

difference scores and a useful companion to polynomial regression in the arsenal of analytical 

methods for congruence research. 
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Footnotes 

1 The derivations that follow are intentionally thorough and take the reader through every step 

that leads from two-dimensional piecewise and spline functions to three-dimensional functions 

for absolute difference scores, piecewise regression, and spline regression.  For readers who wish 

to skip these derivations, the key equations that result are as follows: (1) Equation 11 is a two-

dimensional spline function with one knot; (2) Equation 14 is a two-dimensional spline function 

with two knots; (3) Equation 39 is a three-dimensional spline surface with one seam; and (4) 

Equation 43 is a three-dimensional spline surface with two seams. 

2 In practice, W can be coded either 0 or 1 with for cases where X = c.  For this article, we chose 

to code W as 0 for these cases, acknowledging that this choice is arbitrary.  Fortunately, when the 

piecewise function is constrained to be continuous, the obtained results are the same regardless 

of whether W equals 0 or 1 for cases where X = c.  This condition applies to work presented here, 

which focuses on continuous functions. 

3 Although Edwards (1994) expressed the absolute difference between X and Y as |X – Y|, we use 

|Y – X| because, in the derivations that follow, the dummy variable W will be coded 0 on the left 

side of the surface and 1 on the right side of the surface.  This coding parallels that used for two-

dimensional piecewise functions, for which W was coded 0 for the left portion of the function 

and 1 for the right portion of the function (see Equation 1). 

4 We suspect some researchers might feel uneasy about the notion that spline regression results 

can vary depending on the estimation algorithm, starting values, and convergence criteria used.  

However, these nuances are shared by other methods of analysis, such as structural equation 

modeling with maximum likelihood estimation.  These issues underscore the fact that analytical 

choices can influence the obtained results, and it is prudent to consider different options and 

compare how they influence the conclusions drawn from an investigation. 
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Appendix 

Determining Where Seams Cross Lines of Interest 

 To determine where a seam of a spline surface crosses a line of interest, we begin with an 

equation for the seam (for these derivations, we consider a surface with one seam): 

 Y = c0 + c1X (A1) 

We start with the Y = –X line, which runs perpendicular to the Y = X line and intersects at the 

point X = 0, Y = 0.  To find where the seam crosses the Y = –X line, we substitute the equation for 

this line into Equation A1, replacing Y with –X: 

 –X = c0 + c1X. (A2) 

Solving for X gives the point on the X axis where the seam crosses the Y = –X line: 

 X = –c0/(c1 + 1). (A3) 

Note that Equation A3 is express in terms of X.  To recover the corresponding value of Y, we 

note that Y is the negative of X along the Y = –X line, which means the Y coordinate where the 

seam crosses the Y = –X line is the negative of the right side of Equation A3, which is: 

 Y = c0/(c1 + 1). (A4) 

Hence, the point at which the seam crosses the Y = –X line is X = –c0/(c1 + 1), Y = c0/(c1 + 1). 

 We now derive the distance of this point from the Y = X line, which indicates how far the 

seam is shifted from the line of congruence along the Y = –X line.  This distance is the difference 

between the point X = 0, Y = 0, where the Y = X line intersects the Y = –X line, and the point X = 

–c0/(c1 + 1), Y = c0/(c1 + 1), which is the point where the seam crosses the Y = –X line.  Because 

the X and Y axes are perpendicular, the distance between these points along the Y = –X line can 

be conceived as the diagonal of a right triangle, where the side with respect to the X axis is the 

difference between the points X = 0 and X = –c0/(c1 + 1), which is –c0/(c1 + 1), and the side with 

respect to the Y axis is the difference between the points Y = 0 and Y = c0/(c1 + 1), or c0/(c1 + 1).  

Using the Pythagorean theorem, the length of the diagonal can be computed as c = √a2 + b 2 , 

where c is the length of the diagonal along the Y = –X line and a and b are the sides with respect 

to the X and Y axes, which are –c0/(c1 + 1) and c0/(c1 + 1), respectively.  Because the length of 
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one side is the negative of the other, a = –b, the expression under the radical a2 + b2 simplifies to 

2a2 or, equivalently, 2b2, and therefore c = √2a = √2b .  When computing c, we recommend 

using √2b, because b refers to the shift of the seam from the Y = X line with respect to the Y axis, 

such that negative values of c indicate a downward shift and positive values signify an upward 

shift.  Thus, we compute the shift of the seam from the Y = X line as c�� �� = √2��/ (�� + 1) , 

where the subscript Y = –X on c refers to shift along the Y = –X line. 

 The interpretation of cY = –X  can be clarified by referring to Figure A1, which plots the 

seam for the surface relating actual and desired relationships to job satisfaction, corresponding to 

the floor of Figure 12b.  Drawing from Table 8, the estimates of c0 and c1 are 1.54 and 3.32, 

respectively.  Substituting these values into the equation c�� �� = √2��/ (�� + 1)  yields a value 

of 0.51.  This value is reported in Table 10 and shown in Figure A1 near the center of the graph.  

As indicated in Table 10, this value differs from zero, meaning that the upward shift of the seam 

from the Y = X line along the Y = –X line can be deemed statistically significant. 

 Other lines that run parallel Y = –X line can also be of interest.  For instance, consider the 

Y = 2 – X line, which crosses the Y = X line at the point X = 1, Y = 1.  Substituting this expression 

into the equation for the seam gives: 

 2 – X = c0 + c1X. (A5) 

Solving for X yields: 

 X = (2 – c0)/(c1 + 1). (A6) 

This is the point where the seam crosses the Y = 2 – X line, as measured on the X axis.  The point 

on the Y axis is found by substituting Equation A5 into Y = 2 – X, which gives: 

 Y = 2 – (2 – c0)/(c1 + 1). (A7) 

Thus, the seam crosses the 2 – X line at the point X = (2 – c0)/(c1 + 1), Y = 2 – (2 – c0)/(c1 + 1).  

The distance of this point from the point where the 2 – X line intersects the Y = X line is found by 

subtracting the X and Y values for this intersection, which are X = 1, Y = 1.  Subtracting these 

values and rearranging terms yields X = (1 – c0 – c1)/(c1 + 1), Y = –(1 – c0 – c1)/(c1 + 1).  Again, 

these values for X and Y serve as a and b in the equation for the Pythagorean theorem, and 
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applying the expression c = √2b derived earlier gives c�� ��� = −√2(1 − �� − ��) / (�� + 1) .  

Using the estimates 1.54 and 3.32 for c0 and c1, we obtain cY = 2 – X = 1.26, as reported in Table 10 

and shown in the upper right corner of Figure A1.  This value differs statistically from zero, as 

shown in Table 10. 

 As a third example, we address the Y = –2 – X line, which crosses the Y = X line at the 

point X = –1, Y = –1.  Substituting Y = –2 – X into the seam equation yields: 

 –2 – X = c0 + c1X. (A8) 

Solving for X gives: 

 X = –(2 + c0)/(c1 + 1). (A9) 

Hence, the seam crosses the Y = –2 – X line at the point (–2 – c0)/(c1 + 1) on the X axis.  The 

corresponding point on the Y axis, which is found by substituting Equation A9 into Y = –2 – X, 

is: 

 Y = –2 + (2 + c0)/(c1 + 1). (A10) 

The distance from this point to the point where the –2 – X line crosses the Y = X line is found by 

subtracting the coordinates X = –1, Y = –1.  Performing these operations and rearranging terms 

yields X = –(1 + c0 – c1)/(c1 + 1), Y = (1 + c0 – c1)/(c1 + 1).  Substituting the Y coordinate for b 

into the expression  c = √2b yields c = √2(1 + c0 – c1)/(c1 + 1) = –.0.25, which is the distance 

from the Y = X line to the seam along the Y = –2 – X line, as depicted in the lower left corner of 

Figure A1.  As shown in Table 10, this value does not statistically differ from zero. 

 The procedures developed here can be applied to other lines of interest to the researcher.  

For congruence hypotheses, we believe it is worthwhile to consider lines that run parallel to the Y 

= –X line that cross the Y = X line at points that represent unit increases and decreases of both X 

and Y within the range of the data.  In the present example, these points were X = 1, Y = 1 and X 

= –1, Y = –1.  If X and Y had been measured on 7-point scales, such that their scale-centered 

counterparts ranged from –3 to 3, then we would add the points X = 2, Y = 2 and X = –2, Y = –2, 

such that the lines of interest would be Y = –4 – X, Y = –2 – X, Y = –X, Y = 2 – X, and Y = 4 – X.  

Of course, these are general guidelines, and the researcher could choose other lines as dictated by 
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the hypothesis under consideration.  Again, tests of where the seam crosses these lines should 

only be conducted with the range of the data, as represented by the bivariate scatterplot of the 

observed values of X and Y. 
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Table 1 

Means, Standard Deviations, Reliabilities, and Correlations of Study Variables 

Variable M SD 1. 2. 3. 4. 5. 6. 7. 8. 9. 

 

 1. Actual Authority 3.31 0.98 (.90) 

 2. Desired Authority 3.57 0.72 .02 (.87) 

 3. Actual Relationships 2.85 0.81 .28 .18 (.90) 

 4. Desired Relationships 3.27 0.79 .12 .28 .39 (.91) 

 5. Actual Variety 3.16 0.90 .23 .20 .42 .17 (.90) 

 6. Desired Variety 3.67 0.70 .19 .25 .21 .32 .39 (.88) 

 7. Actual Autonomy 3.10 0.82 .30 .20 .47 .16 .63 .28 (.82) 

 8. Desired Autonomy 3.74 0.64 .13 .29 .17 .28 .26 .57 .35 (.79) 

 9. Job Satisfaction 3.68 0.92 .22 .18 .36 .13 .35 .13 .44 .12 (.90) 

 

Note: N = 950.  Reliability estimates (Cronbach’s alpha) are reported along the diagonal.  Correlations greater than .06 in absolute 

magnitude are statistically significant (p < .05). 
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Table 2 

Results for Absolute Difference Scores Predicting Job Satisfaction 

 d0 d1 R
2 

 

Authority 3.97** –0.32** .09** 

  LLN 3.89 –0.38 

  ULN 4.05 –0.25 

Relationships 3.88** –0.29** .05** 

  LLN 3.80 –0.37 

  ULN 3.96 –0.21 

Variety 3.97** –0.40** .10** 

  LLN 3.90 –0.48 

  ULN 4.05 –0.33 

Autonomy 4.03** –0.46** .14** 

  LLN 3.95 –0.54 

  ULN 4.11 –0.39 

 

Note: N = 950.  For columns labeled d0 and d1, table entries are unstandardized regression 

coefficients estimated using Equation 18, followed by the lower and upper limits of 95% 

confidence intervals (LLN and ULN, respectively), with the subscript N indicating that the 

intervals are based on normal theory, computed from the standard errors reported in the 

regression output.  For the column labeled R2, table entries are squared multiple correlations. 

* p < .05  ** p < .01 
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Table 3 

Absolute Difference Score Surfaces on Left and Right of Y = X Line 

 Left of Y = X Line  Right of Y = X Line 

   

 INT X Y INT X Y 

   

 d0 –d1 d1 d0 d1 –d1 

 

Authority 3.97** 0.32** –0.32** 3.97** –0.32** 0.32** 

  LLN 3.89 0.24 –0.38 3.89 –0.38 0.25 

  ULN 4.05 0.38 –0.25 4.05 –0.25 0.38 

Relationships 3.88** 0.29** –0.29** 3.88** –0.29** 0.29** 

  LLN 3.80 0.21 –0.37 3.80 –0.37 0.21 

  ULN 3.96 0.37 –0.21 3.96 –0.21 0.37 

Variety 3.97** 0.40** –0.40** 3.97** –0.40** 0.40** 

  LLN 3.90 0.33 –0.48 3.90 –0.48 0.33 

  ULN 4.05 0.48 –0.33 4.05 –0.33 0.48 

Autonomy 4.03** 0.46** –0.46** 4.03** –0.46** 0.46** 

  LLN 3.95 0.39 –0.54 3.95 –0.54 0.39 

  ULN 4.11 0.54 –0.39 4.11 –0.39 0.54 

 

Note: N = 950.  Table entries are based on unstandardized regression coefficients estimated using 

Equation 18, followed by the lower and upper limits of 95% confidence intervals (LLN and ULN, 

respectively), with the subscript N indicating that the intervals are based on normal theory, 

computed from the standard errors reported in the regression output. 

* p < .05  ** p < .01 
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Table 4 

Results for Unconstrained Piecewise Regression Equations Predicting Job Satisfaction 

 a0 a1 a2 a3 a4 a5 R
2 

 

Authority 3.71** 0.42** 0.02 0.12 –0.66** 0.52** .15** 

  LLN 3.59 0.34 –0.10 –0.07 –0.82 0.34 

  ULN 3.84 0.51 0.14 0.31 –0.51 0.70 

Relationships 3.84** 0.51** –0.09 –0.02 –0.36** 0.29** .14** 

  LLN 3.74 0.42 –0.19 –0.18 –0.58 0.08 

  ULN 3.93 0.61 0.01 0.14 –0.14 0.50 

Variety 3.81** 0.56** –0.15** –0.03 –0.74** 0.57** .17** 

  LLN 3.70 0.47 –0.26 –0.21 –0.96 0.33 

  ULN 3.91 0.65 –0.05 0.15 –0.51 0.82 

Autonomy 3.79** 0.61** –0.15** 0.01 –0.40** 0.73** .22** 

  LLN 3.68 0.53 –0.25 –0.19 –1.14 0.42 

  ULN 3.89 0.70 –0.04 0.21 –0.53 1.05 

 

Note: N = 950.  For columns labeled a0 through a5, table entries are unstandardized regression 

coefficients estimated using Equation 21.  Below the coefficients are the lower and upper limits 

of 95% confidence intervals (LLN and ULN, respectively), with the subscript N indicating that 

the intervals are based on normal theory, computed from the standard errors reported in the 

regression output.  For the column labeled R2, table entries are squared multiple correlations. 

* p < .05  ** p < .01 
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Table 5 

Unconstrained Piecewise Regression Surfaces on Left and Right of Y = X Line 

 Left of Y = X Line  Right of Y = X Line 

   

 INT X Y INT X Y 

   

 a0 a1 a2 a0 + a3 a1 + a4 a2 + a5 

 

Authority 3.71** 0.42** 0.02 3.83** –0.24** 0.54** 

  LLN 3.59 0.34 –0.09 3.69 –0.37 0.40 

  ULN 3.84 0.51 0.14 3.98 –0.11 0.68 

Relationships 3.84** 0.51** –0.09 3.82 0.15 0.20* 

  LLN 3.74 0.42 –0.19 3.69 –0.04 0.02 

  ULN 3.93 0.61 0.01 3.94 –0.35 0.38 

Variety 3.80** 0.56** –0.15** 3.78** –0.18 0.42** 

  LLN 3.70 0.47 –0.26 3.63 –0.38 0.20 

  ULN 3.91 0.65 –0.05 3.92 0.03 0.64 

Autonomy 3.79** 0.61** –0.15** 3.80** –0.23 0.58** 

  LLN 3.68 0.53 –0.25 3.62 –0.52 0.29 

  ULN 3.89 0.69 –0.04 3.97 0.07 0.88 

 

Note: N = 950.  Table entries are based on unstandardized regression coefficients estimated using 

Equation 21.  Below the coefficients are the lower and upper limits of 95% confidence intervals 

(LLN and ULN, respectively), with the subscript N indicating that the intervals are based on 

normal theory, computed from the standard errors reported in the regression output.  For the 

column labeled R2, table entries are squared multiple correlations. 

* p < .05  ** p < .01 
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Table 6 

Results for Constrained Piecewise Regression Equations Predicting Job Satisfaction 

 a0
* a1

* a2
* a3

* R
2 

 

Authority 3.72** 0.42** –0.03 0.60** .15** 

  LLN 3.67 0.34 –0.13 0.46 

  ULN 3.86 0.49 0.07 0.74 

Relationships 3.83** 0.50** –0.10* 0.33** .14** 

  LLN 3.75 0.41 –0.19 0.14 

  ULN 3.90 0.58 –0.01 0.52 

Variety 3.79** 0.51** –0.17** 0.72** .16** 

  LLN 3.70 0.43 –0.26 0.51 

  ULN 3.88 0.59 –0.07 0.93 

Autonomy 3.79** 0.59** –0.15** 0.82** .22** 

  LLN 3.70 0.52 –0.25 0.55 

  ULN 3.87 0.67 –0.06 1.10 

 

Note: N = 950.  For columns labeled a0
* through a3

*, table entries are unstandardized regression 

coefficients estimated using Equation 29.  Below the coefficients are the lower and upper limits 

of 95% confidence intervals (LLN and ULN, respectively), with the subscript N indicating that 

the intervals are based on normal theory, computed from the standard errors reported in the 

regression output.  For the column labeled R2, table entries are squared multiple correlations. 

* p < .05  ** p < .01 
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Table 7 

Constrained Piecewise Regression Surfaces on Left and Right of Y = X Line 

 Left of Y = X Line  Right of Y = X Line 

   

 INT X Y INT X Y 

   

 a0
* a1

* a2
* a0

* a1
* – a3

* a2
* + a3

* 

 

Authority 3.76** 0.42** –0.03 3.76** –0.19** 0.57** 

  LLN 3.67 0.34 –0.12 3.67 –0.29 0.46 

  ULN 3.86 0.49 0.07 3.86 –0.08 0.68 

Relationships 3.83** 0.50** –0.10* 3.83** 0.17* 0.23** 

  LLN 3.75 0.41 –0.19 3.75 0.00 0.07 

  ULN 3.90 0.58 –0.01 3.90 0.33 0.39 

Variety 3.79** 0.51** –0.17** 3.79** –0.21* 0.56** 

  LLN 3.70 0.43 –0.26 3.70 –0.39 0.37 

  ULN 3.88 0.59 –0.07 3.88 –0.03 0.74 

Autonomy 3.78** 0.59** –0.15** 3.78** –0.23 0.67** 

  LLN 3.70 0.52 –0.25 3.70 –0.48 0.41 

  ULN 3.87 0.67 –0.06 3.87 0.02 0.92 

 

Note: N = 950.  Table entries are based on unstandardized regression coefficients estimated using 

Equation 29.  Below the coefficients are the lower and upper limits of 95% confidence intervals 

(LLN and ULN, respectively), with the subscript N indicating that the intervals are based on 

normal theory, computed from the standard errors reported in the regression output.  For the 

column labeled R2, table entries are squared multiple correlations. 

* p < .05  ** p < .01 
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Table 8 

Results for Spline Regression Equations Predicting Job Satisfaction 

 b0 b1 b2 b3 c0 c1 R
2 

 

Authority 3.69** 0.39** 0.02 0.73** –0.72** 1.20** .16** 

  LLN 3.59 0.32 –0.07 0.50 –1.17 0.82 

  ULN 3.78 0.46 0.12 0.97 –0.28 1.59 

  LLB 3.59 0.30 –0.08 0.46 –1.83 0.81 

  ULB 3.78 0.47 0.13 1.03 –0.29 1.86 

Relationships 4.14** 0.84** –0.10 0.21** 1.54* 3.32**† .16** 

  LLN 3.90 0.61 –0.21 0.06 0.18 1.11 

  ULN 4.38 1.06 0.01 0.37 2.91 5.52 

  LLB 3.85 0.54 –0.23 0.04 –0.01 1.80 

  ULB 4.51 1.17 0.03 0.37 6.18 11.98 

Variety 3.88** 0.69** –0.15** 0.55** 0.12 1.59**† .18** 

  LLN 3.75 0.56 –0.27 0.35 –0.20 1.14 

  ULN 4.02 0.81 –0.04 0.76 0.45 2.04 

  LLB 3.76 0.53 –0.29 0.28 –0.03 1.18 

  ULB 4.08 0.88 –0.02 0.81 0.71 2.69 

Autonomy 3.85** 0.69** –0.17** 0.73** 0.09 1.23** .23** 

  LLN 3.72 0.58 –0.28 0.44 –0.16 0.94 

  ULN 3.97 0.79 –0.05 1.01 0.34 1.53 

  LLB 3.73 0.58 –0.30 0.37 –0.26 0.99 

  ULB 3.98 0.80 –0.04 1.14 0.35 1.67 

 

Note: N = 950.  For columns labeled b0 through c1, table entries are unstandardized spline 

regression coefficients estimated using Equation 37.  Below the coefficients, the rows labeled 
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LLN and ULN contain the lower and upper limits, respectively, of 95% confidence intervals 

based on normal theory, and the rows labeled LLB and ULB contain the lower and upper limits, 

respectively, of 95% bias-corrected percentile based confidence intervals derived using the 

bootstrap.  The column labeled R2 contains squared multiple correlations. 

* p < .05  ** p < .01 

† The 95% confidence interval for c1 excluded 1.00. 
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Table 9 

Spline Regression Surfaces on Left and Right of Seam 

 Left of Seam Right of Seam 

   

 INT X Y INT X Y 

   

 b0 b1 b2 b0 – b3c0 b1 – b3c1 b2 + b3 

 

Authority 3.69** 0.39** 0.02 4.22** –0.49** 0.76** 

  LLN 3.59 0.32 –0.07 3.90 –0.72 0.54 

  ULN 3.78 0.46 0.12 4.53 –0.27 0.97 

  LLB 3.59 0.30 –0.08 3.90 –0.85 0.52 

  ULB 3.78 0.47 0.13 4.76 –0.25 1.03 

Relationships 4.14** 0.84** –0.10 3.82** 0.14 0.11* 

  LLN 3.90 0.61 –0.21 3.74 –0.01 –0.00 

  ULN 4.38 1.06 0.01 3.90 0.29 0.22 

  LLB 3.85 0.54 –0.23 3.74 –0.06 0.00 

  ULB 4.51 1.17 0.03 3.92 0.28 0.24 

Variety 3.88** 0.69** –0.15** 3.82** –0.19 0.40** 

  LLN 3.75 0.56 –0.27 3.69 –0.38 0.23 

  ULN 4.02 0.81 –0.04 3.94 –0.01 0.57 

  LLB 3.76 0.53 –0.29 3.71 –0.40 0.19 

  ULB 4.08 0.88 –0.02 3.92 0.02 0.63 

Autonomy 3.85** 0.69** –0.17** 3.78** –0.21 0.56** 

  LLN 3.72 0.58 –0.28 3.65 –0.48 0.30 

  ULN 3.97 0.79 –0.05 3.92 0.06 0.82 

  LLB 3.73 0.58 –0.30 3.67 –0.64 0.24 
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  ULB 3.98 0.80 –0.04 3.96 0.14 0.97 

 

Note: N = 950.  Table entries are based on unstandardized spline regression coefficients 

estimated using Equation 37.  Below the coefficients, the rows labeled LLN and ULN contain the 

lower and upper limits, respectively, of 95% confidence intervals based on normal theory, and 

the rows labeled LLB and ULB contain the lower and upper limits, respectively, of 95% bias-

corrected percentile based confidence intervals derived using the bootstrap. 

* p < .05  ** p < .01 
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Table 10 

Shifts of Seams Along Three Lines of Interest 

 Shift Along Shift Along Shift Along 

 Y = –2 – X line Y = –X line Y = 2 – X line 

    

 
√�(�� � ���)

��� 1
 

√2��

��� 1
 

√�(��� ���)

��� 1
 

 

Authority –0.59* –0.46** –0.33* 

  LLN –1.00 –0.69 –0.53 

  ULN –0.19 –0.23 –0.13 

  LLB –1.31 –0.85 –0.52 

  ULB –0.16 –0.21 –0.07 

Relationships –0.26 0.50* 1.26** 

  LLN –1.00 0.20 0.76 

  ULN 0.19 0.81 1.77 

  LLB –0.65 0.00 0.41 

  ULB 0.14 0.98 2.02 

Variety –0.26* 0.07 0.39* 

  LLN –0.56 –0.11 0.18 

  ULN 0.05 0.25 0.60 

  LLB –0.62 –0.02 0.13 

  ULB –0.00 0.36 0.80 

Autonomy –0.09 0.06 0.20* 

  LLN –0.38 –0.11 0.03 

  ULN 0.19 0.22 0.37 

  LLB –0.48 –0.15 0.04 
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  ULB 0.17 0.23 0.34 

 

Note: N = 950.  Table entries are based on unstandardized spline regression coefficients 

estimated using Equation 37.  Below the coefficients, the rows labeled LLN and ULN contain the 

lower and upper limits, respectively, of 95% confidence intervals based on normal theory, and 

the rows labeled LLB and ULB contain the lower and upper limits, respectively, of 95% bias-

corrected percentile based confidence intervals derived using the bootstrap. 

* p < .05  ** p < .01 
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Table 11 

Intercepts and Slopes Along Seams 

 Intercept Slope 

 b0 + b2c0 b1 + b2c1 

 

Authority 3.67** 0.42** 

  LLN 3.51 0.30 

  ULN 3.83 0.54 

  LLB 3.43 0.30 

  ULB 3.81 0.60 

Relationships 3.98** 0.50** 

  LLN 3.84 0.26 

  ULN 4.13 0.73 

  LLB 3.82 0.25 

  ULB 4.24 0.91 

Variety 3.87** 0.44** 

  LLN 3.77 0.31 

  ULN 3.96 0.58 

  LLB 3.76 0.30 

  ULB 3.96 0.64 

Autonomy 3.83** 0.48** 

  LLN 3.74 0.37 

  ULN 3.93 0.59 

  LLB 3.73 0.38 

  ULB 3.92 0.61 
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Note: N = 950.  Table entries are based on unstandardized spline regression coefficients 

estimated using Equation 37.  Below the coefficients, the rows labeled LLN and ULN contain the 

lower and upper limits, respectively, of 95% confidence intervals based on normal theory, and 

the rows labeled LLB and ULB contain the lower and upper limits, respectively, of 95% bias-

corrected percentile based confidence intervals derived using the bootstrap. 

* p < .05  ** p < .01 
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Table 12 

Results for Constrained Piecewise Regression Equations Predicting Job Satisfaction 

 R
2

AD R
2

UP R
2

CP R
2

SP 

 

 
**08.  

**
a15.  

**
a15.  

**
c,b,a16.  

 
**05.  

**
a14.  

**
a14.  

**
c,b,a16.  

 
**10.  

**
a17.  

**
a16.  

**
c,b,a23.  

 
**14.  

**
a22.  

**
a22.  

**
c,b,a23.  

 

Note: N = 950.  Table entries are square multiple correlations obtained from Equations 18, 21, 

29, and 37, which correspond to the absolute difference score, unconstrained piecewise 

regression, constrained piecewise regression, and spline regression, respectively.  The subscripts 

a, b, and c indicate that the squared multiple correlation was larger than that obtained from 

Equations 18, 21, and 29, respectively. 

* p < .05  ** p < .01 

Authority 

Relationships 

Variety 

Autonomy 
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Figure Captions 

Figure 1.  Two-dimensional unconstrained piecewise regression functions. 

Figure 2.  Two-dimensional constrained piecewise regression functions. 

Figure 3.  Two-dimensional spline regression functions with one knot. 

Figure 4.  Two-dimensional spline regression functions with two knots. 

Figure 5.  Three-dimensional absolute difference functions. 

Figure 6.  Three-dimensional unconstrained piecewise regression functions. 

Figure 7.  Three-dimensional constrained piecewise regression functions. 

Figure 8.  Three-dimensional spline regression functions with one seam. 

Figure 9.  Three-dimensional spline regression functions with two seams. 

Figure 10.  Estimated surfaces for absolute difference scores. 

Figure 11.  Estimated surfaces for unconstrained piecewise regression equations. 

Figure 12.  Estimated surfaces for constrained piecewise regression equations. 

Figure 13.  Estimated surfaces for spline piecewise regression equations with one seam. 

Figure 14.  Estimated spline regression surface with two seams for authority. 

Figure A1.  Illustration of seam crossing three lines of interest for relationships. 
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