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Abstract

Stable isotope analysis (SIA) has proven to be a useful tool in reconstruct-

ing diets, characterizing trophic relationships, elucidating patterns of re-

source allocation, and constructing food webs. Consequently, the number

of studies using SIA in trophic ecology has increased exponentially over the

past decade. Several subdisciplines have developed, including isotope mix-

ing models, incorporation dynamics models, lipid-extraction and correction

methods, isotopic routing models, and compound-specific isotopic analy-

sis. As with all tools, there are limitations to SIA. Chief among these are

multiple sources of variation in isotopic signatures, unequal taxonomic and

ecosystem coverage, over-reliance on literature values for key parameters,

lack of canonical models, untested or unrealistic assumptions, low predictive

power, and a paucity of experimental studies. We anticipate progress in SIA

resulting from standardization of methods and models, calibration of model

parameters through experimentation, and continued development of several

recent approaches such as isotopic routing models and compound-specific

isotopic analysis.
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SIA: stable isotope
analysis

INTRODUCTION

Stable isotope analysis (SIA) has been accepted broadly by ecologists, evolutionary biologists,

wildlife biologists, and conservation biologists as an important tool to examine animal migration

and movement (Hobson 1999, Rubenstein & Hobson 2004); resource partitioning ( Jackson et al.

1995, Young et al. 2010); host-parasite interactions (El-Hajj et al. 2004, Neilson et al. 2005); plant

water use and nutrient status (Flanagan & Ehleringer 1991, Dawson et al. 2002); ecophysiological

processes (Gannes et al. 1998, Cernusak & Hutley 2011); and ecosystem fluxes of carbon, nitrogen,

and water (Peterson & Fry 1987).

The focus of this review is on the application of SIA to trophic ecology. SIA is used to reconstruct

diets (Minson et al. 1975, Tieszen et al. 1983, Samelius et al. 2007), to assign species to trophic po-

sitions in food webs (Minagawa & Wada 1984, Fry 1991, Post 2002; see also Hoeinghaus & Zeug

2008), to elucidate patterns of resource acquisition and allocation (O’Brien et al. 2000, Cherel

et al. 2005, Waas et al. 2010), and to characterize niche properties (Genner et al. 1999, Bearhop

et al. 2004, Newsome et al. 2007). It is not surprising that SIA has had a major impact on these

research areas, as SIA offers significant advantages over traditional methods that may be unethical

(destructive sampling of endangered species), impractical (quantifying complex food webs over

large temporal and spatial scales), prohibitively expensive (observational studies of ocean-going

and deep-sea organisms), or simply impossible (reconstructing diets of long-extinct species).

The central conjecture of SIA in trophic ecology is perhaps best represented by the obser-

vation, “You are what you eat (plus a few per mil)” (DeNiro & Epstein 1976). This conjecture

follows from the pioneering work of Smith & Epstein (1970), Minson et al. (1975), and Haines

(1976), which suggested that the isotopic signatures (expressed as δ, the ratio of heavy to light

isotope, and reported in parts per thousand as per mil) of consumers resembled the isotopic sig-

natures of associated plants. This conjecture was given greater exposition by Fry et al. (1978) and

DeNiro & Epstein (1978, 1981), who noted consistent differences between the isotopic signa-

tures of consumers and their dietary resources. Elucidating the sources of variation in the isotopic

signatures of species and understanding the magnitudes and causes of the differences between

consumer and resource isotopic signatures (consumer-resource discrimination, expressed as �)

are the centerpieces of SIA in trophic ecology.

Three decades of work and several thousand papers have identified many factors that con-

tribute to variation in isotopic signatures and consumer-resource discrimination (Table 1). These

factors have been addressed largely in an effort to define more precisely those “. . . few per mil.”

We consider two sources of variation as emergent factors: diet and trophic position. These are

the principal factors that SIA in trophic ecology hopes to explain. We submit that variation in

these factors is driven at a fundamental level by isotopic differences among resources, such as in

photosynthetic pathways (Park & Epstein 1960, Smith & Epstein 1971) and by consumer-resource

discrimination (DeNiro & Epstein 1978, 1981). We regard these factors as principal mechanistic

factors. Secondary mechanistic factors include biotic and abiotic factors that can be partitioned

according to properties of the consumer, properties of the dietary resources, properties of the en-

vironment, and properties of SIA analysis. Properties of the consumer can be partitioned further

to reflect variation in tissue properties, life histories, physiological condition, and ecological and

evolutionary history and circumstance.

The large number of factors generating variation in isotopic signatures makes comparison

across studies problematic. Conceptually, each study must be placed in a multidimensional space

defined by the factors. The high dimensionality of this space means that each study will likely

occupy a unique position and that many coordinates in the space (combinations of factors) will be

empty. Consequently, it will be difficult to generate large samples of studies that match in even a
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Table 1 Sources of variation in the isotopic signatures of organisms

Factors Source of variation Reference

Emergent factors Diet Smith & Epstein 1970

Trophic position Haines 1976

Principal

mechanistic factors

Consumer-resource

discrimination

DeNiro & Epstein 1978

Photosynthetic pathway Park & Epstein 1960

Secondary

mechanistic factors

Properties of the

organism

Tissue level Tissue examined Tieszen et al. 1983

Lipid content McConnaughey & McRoy 1979

Carbon:nitrogen ratio Mintenbeck et al. 2008

Uric acid and urea content Bearhop et al. 2000

Life-history level Ontogenetic stage Tibbets et al. 2008

Body size Fry & Arnold 1982

Gender Mariano-Jelicich et al. 2008

Reproductive status Fuller et al. 2004

Physiological level Metabolic rate MacAvoy et al. 2006

Starvation and nutrient stress Hobson et al. 1993

Water stress Ambrose & DeNiro 1986

Isotopic routing Schwarcz 1991

Trophic versus source amino

acids

McClelland & Montoya 2002

Excretion dynamics Olive et al. 2003

Ecological/

evolutionary level

Diet switch Tieszen et al. 1983

Feeding guild Hobson & Clark 1992

Taxonomic identity Vanderklift & Ponsard 2003

Symbionts and parasites Miura et al. 2006

Migratory status Hobson 1999

Intraspecific competition Forero et al. 2002

Properties of the

resource

Lipid content Gaye-Siessegger et al. 2004

Protein content Kelly & Martinez del Rio 2010

Elemental concentration Pearson et al. 2003

Isotopic signatures Caut et al. 2009

Properties of the

environment

Biome level Marine versus terrestrial Michener & Schell 1994

Tropical versus temperate Martinelli et al. 1999

Benthic versus pelagic Hobson et al. 1994

Inshore versus offshore Cherel & Hobson 2007

Habitat level Drought Peuke et al. 2006

Latitude Kelly & Finch 1998

Season Perga & Gerdeax 2005

Temperature Bosley et al. 2002

Humidity Murphy et al. 2007

Elevation Graves et al. 2002

Pollution Schlacher et al. 2005

Fire Grogan et al. 2000

(Continued )
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Table 1 (Continued)

Factors Source of variation Reference

Surface runoff McClelland et al. 1997

El Niño southern oscillation Stapp et al. 1999

Analytical

properties

Mass-spectrometer bias Mill et al. 2008

Tissue preservation Kelly et al. 2006

Lipid correction method Sweeting et al. 2006

Acidification Jaschinski et al. 2008

small subset of factors. Without sufficient sample sizes, statistically robust models are not possible

and those “few per mil” will not be estimated precisely.

Several factors listed in Table 1 have attracted sufficient research interest to have produced

several subdisciplines in trophic ecology SIA. These include trophic positioning and food web

reconstruction, lipid correction of tissue samples, mixing models and diet reconstruction, iso-

tope incorporation dynamics, and most recently, isotopic routing and single-compound-specific

SIA. Disagreements over the conjectures, assumptions, models, and caveats attendant to each

subdiscipline have fueled vigorous research programs.

The remainder of this review is in five parts. The first is a meta-analysis of SIA studies published

between 2007 and 2009, inclusive. Here, we address issues such as taxonomic and ecosystem

coverage and prevalence of experimental studies. We examine variation in isotopic signatures

with respect to trophic position, ontogenetic stage, biome, taxonomic group, and tissue type. The

second part analyzes mixing models (Phillips & Gregg 2001, 2003; Ward et al. 2010) used to

reconstruct diets of consumers that use two or more resources. We discuss several mathematical

and statistical constraints inherent in diet reconstruction based on SIA. We also examine the

predictive power of mixing models. The third part reviews isotope incorporation dynamics models

(Fry & Arnold 1982, Hobson & Clark 1992, Hesslein et al. 1993, Martinez del Rio & Wolf 2005).

These models describe the change in isotopic signatures of consumers following a diet switch and

are used to estimate isotopic turnover rates in consumer tissues. The fourth part of the review

addresses the practice of lipid correction of tissue samples prior to the determination of isotopic

signatures (McConnaughey & McRoy 1979, Post et al. 2007, Mintenbeck et al. 2008). Last, we

examine two emerging areas of SIA in trophic ecology: isotopic routing (Podlesak & McWilliams

2007, Kelly & Martinez del Rio 2010) and compound-specific SIA (Chamberlain et al. 2004).

META-ANALYSIS OF STABLE ISOTOPE ANALYSIS (2007–2009)

We were motivated to conduct this meta-analysis simply because we wanted to understand the

characteristics of the typical study using SIA in trophic ecology. In particular, we are interested in

the extent of taxonomic and ecosystem coverage. We are particularly interested in the prevalence

of experimental studies. This review follows other such reviews (e.g., Kelly 2000, Dawson et al.

2002, McCutchan et al. 2003, Vanderklift & Ponsard 2003, Caut et al. 2009, Martinez del Rio

et al. 2009) and assesses progress in the field.

Methods

We examined the ISI Web of Knowledge using the key phrase “stable isotopes.” The papers

returned were then filtered by subject area. We restricted the analysis to papers in the following
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disciplines: biochemistry and molecular biology; biodiversity conservation; biotechnology and ap-

plied microbiology; ecology; entomology; environmental sciences; evolutionary biology; fisheries;

limnology; marine and freshwater biology; microbiology; ornithology; paleontology; parasitology;

plant sciences; zoology; and agriculture, dairy and animal science. We eliminated papers from this

analysis when unsuccessful in obtaining electronic copies. These were relatively few in number,

and we are confident that their omission does not significantly bias our analysis with respect to

taxonomic group or ecosystem type. We used the biome classification provided by the University

of California Museum of Paleontology (http://www.ucmp.berkeley.edu/exhibits/biomes). In

total, we compiled data from 249 studies, representing 1,720 species and species groups, and 3,791

separate determinations of carbon and/or nitrogen isotopic signatures.

Taxonomic and Ecosystem Coverage

The isotopic literature examined a diverse collection of organisms, with 39 major taxonomic

groups represented. However, the literature was dominated by fish, mammals, plants, crustaceans,

birds, and mollusks (Figure 1a). These taxa collectively constituted approximately 76% of all

isotopic determinations. A total of 16 major biomes were represented in the literature. There was a

significant bias in ecosystem coverage (Figure 1b): Approximately 72% of all isotopic samples were

collected from marine, estuarine, and freshwater ecosystems. The bias toward marine, estuarine,

and freshwater studies is not surprising given that these systems are the least amenable to traditional

methods of trophic analysis. Isotopic determination involving direct experimentation constituted

less than 2% of all records.

Tissue and Trophic Level Coverage

A diverse set of tissue types were represented in the literature (Figure 1c). Approximately 61%

of all isotopic determinations involved two tissue types: whole body and muscle. Carnivores were

the most common trophic level represented (Figure 1d ), whereas detritivores and parasites were

largely neglected.

MIXING MODELS AND DIET RECONSTRUCTION

A variety of isotope mixing models have been proposed to reconstruct consumer diets. The simplest

ones are one-isotope, two-source linear models (e.g., France 1996, Raikow & Hamilton 2001,

Dawson et al. 2002, Doi et al. 2008, Marquez & Boecklen 2010). They generally take the form

δ′ X = pδ1 X + (1 − p)δ2 X + �,

where δ′X is the isotopic ratio of element X in the consumer’s tissue, p is the percentage

contribution of source 1, � is the consumer-resource discrimination, and δ1X and δ2X are the iso-

topic ratios of element X in source 1 and 2, respectively. Models of this type are fully determined

as the number of equations equals the number of unknowns. Kwak & Zedler (1997) extended

linear models to two isotopes and three sources.

End-member models (Forsberg et al. 1993, Tĕšitel et al. 2010) are generally rearrangements

of one-isotope, two-source linear models and are of the form

%E1 = [δ′ X − δ2 X ]/[δ1 X − δ2 X ] × 100,

where %E1 is the percent elemental contribution of source 1 to the consumer, and δ′X, δ1X,

and δ2X are as defined above. End-member models have been applied widely to terrestrial and
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Figure 1

Relative frequency histogram of metadata from 249 studies published on stable isotope analysis (SIA) in 2007–2009. The studies
provided 3,791 separate determinations of carbon and/or nitrogen isotopic signatures. These determinations are sorted by (a) taxonomic
group (greater than 0.7% representation), (b) biome, (c) tissue examined (greater than 0.47% representation), and (d ) trophic level.

aquatic ecosystems and to both plant and animal consumers. For example, Doucett et al. (1996)

use an end-member model to determine the relative amount of carbon in fish tissues derived from

allochthonous versus autochthonous sources. Millett et al. (2003) used an end-member model to

determine the relative contribution of insect prey to the nitrogen content of sundews.

Euclidean-distance models (Kline et al. 1993, Ben-David et al. 1997) were proposed to distin-

guish among three or more sources using two isotopes. However, Phillips (2001) notes several

shortcomings with these models. First, when the number of sources exceeds the number of iso-

topes by more than one, the models are underdetermined. Underdetermined systems of equations

have an infinite number of solutions. Second, the models underestimate the contributions of the

most commonly used source and overestimate the contributions of less used sources. The models
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assume that all sources are actually consumed and that the partitioning of sources is the same for

both elements. Last, the models return estimates of source contributions even when the consumer’s

isotopic ratios do not overlap those of the sources.

Phillips & Gregg (2001) present a mixing model that addresses most, but not all, the short-

comings identified for the Euclidean-distance models. The Phillips & Gregg (2001) model is

structurally the same as the linear model proposed by Kwak & Zedler (1997). Perhaps the major

advance over previous models is that the Phillips & Gregg (2001) model generates error estimates

about predicted source contributions (http://www.epa.gov/wed/pages/models.htm). It is im-

portant to note, however, that the error estimates assume no covariation between isotopic ratios.

This assumption is unlikely to be met in most systems. In addition, the Phillips & Gregg (2001)

model assumes that the partitioning of sources is the same for all elements. Phillips & Koch (2002)

relax this assumption by incorporating concentration dependency.

As noted above, when the number of unknowns (sources) exceeds the number of equations

(number of isotopes + 1), the system of equations is underdetermined and has an infinite number

of solutions. Two strategies have been proposed to address undetermined models: combining

sources and the IsoSource mixing model (Phillips & Gregg 2003). Phillips et al. (2005) present

two strategies for combining sources and discuss the relative merits of both approaches. The

IsoSource model has, in many ways, become the workhorse of isotopic diet reconstruction. It

is the most commonly used model by ecologists (see below). The IsoSource model considers

all possible contributions of each source. These are incremented in small units (typically 1%),

and combinations that sum to the consumer’s isotopic signature (within a tolerance of 0.1 per

mil) are considered feasible solutions. A frequency distribution of the percentage contribution

of each source is generated. Of course, this approach does not solve the problems inherent with

undetermined systems of equations. Phillips & Gregg (2003) clearly recognize the problem as

they encourage researchers to report the range of percentage contribution of each source rather

than simply reporting point estimates.

Wilson et al. (2009) adapted the IsoSource model to account for concentration dependency.

The IsoSource model and the concentration-dependent IsoSource model (two isotopes and four

sources) were applied to a variety of consumers inhabiting Apalachicola Bay, FL, and substantial

differences were observed between the models. Wilson et al. (2009) conclude that concentration

effects are a significant factor in determining source contributions and that mixing models should

be modified to incorporate them.

Rasmussen (2009) presents a spatially explicit, gradient-based mixing model to examine con-

tributions of sources whose isotopic signatures vary little but exhibit spatial gradients. Rasmussen

(2009) argues that this approach may be useful especially in river systems where isotope ratios

of autochthonous carbon exhibit gradients along rivers, but the isotope ratios of allochthonous

contributions do not.

Bayesian Models

Bayesian models offer an alternative to the IsoSource family of models. Proponents of Bayesian

models argue that such models better accommodate uncertainties regarding consumer-resource

discrimination, variation in consumer and source isotopic signatures, and external sources of

variation not directly connected to isotopic variation per se (Ogle et al. 2004, Moreno et al. 2010).

Proponents also claim that Bayesian models can solve the problem of undetermined systems of

equations common in mixing models (Moore & Semmens 2008, Parnell et al. 2010). We disagree.

Bayesian methods may represent an alternative to other methods (e.g., maximum entropy methods)

for constraining the set of feasible solutions in undetermined systems of equations, but they do not
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eliminate the problem. Freely available Bayesian mixing model software includes MixSIR (Moore

& Semmens 2008, Jackson et al. 2009, Semmens et al. 2009) and SIAR (Parnell et al. 2010).

Model Selection and Application

An electronic literature search using the ISI Web of Knowledge with the keywords “stable isotope

mixing models” yielded 119 studies that form the basis of the following analyses. These studies

generated 1,481 separate mixing models. In terms of model selection, the literature is dominated

by the IsoSource model (Phillips & Gregg 2003), as 37% (47/127; several studies used more

than one model) of all studies used it (Figure 2a). End-member models were used in roughly

15% of studies, whereas Bayesian models were used in only approximately 5% of studies. We are

not surprised by the low representation of Bayesian models in the literature, as these models are

relatively new (e.g., Semmens et al. 2009, Ward et al. 2010).

The studies exhibited substantial differences in their use of consumer-resource discrimination

values, treatment of source categories, and inclusion of supporting evidence. Most studies (approx-

imately 92%) used mixing models that incorporated values of consumer-resource discrimination

(Figure 2b). Of these, only approximately 8% (9/110) used estimates derived directly from the

study organisms; the majority used values extracted from the literature. Most studies (roughly

83%) used sources that represented a combined category of separate dietary items (Figure 2c).

For example, Reich & Worthy (2006) used a two-isotope, three-source model to characterize

the diets of manatees. The three sources were marine, estuary, and freshwater vegetation. Each

vegetation category represented the average isotopic signature of 7–13 species. In most instances,

an isotopic ratio was estimated for a mixture of dietary items treated as a single sample. It was

common practice to present diet reconstructions based solely on the results of mixing models and

without benefit of supporting evidence (Figure 2d ). Only about 21% of studies complemented

the results of the mixing model analysis with gut-content or fecal data, and only about 4% provided

experimental evidence.

The studies covered a broad taxonomic range of consumers (Figure 2e), but were dominated

by fish, crustaceans, mollusks, and aquatic insects. In fact, the studies were directed primarily at

wet things and wet places—approximately 71% of the studies examined marine or aquatic taxa and

only approximately 20% of the studies represented the terrestrial biome (Figure 2f ). Terrestrial

insects are clearly underrepresented in the SIA literature (Yarnes et al. 2005), whereas vertebrates

may be overrepresented.

At the level of individual mixing models, the literature is dominated by one-isotope, two-source

models and two-isotope, four-source models (Figure 3a). Of the two-isotope models, approxi-

mately 68% of models are underdetermined. Fish, crustaceans, mollusks, and aquatic insects

collectively represent roughly 65% of all mixing models (Figure 3b).

Predictive Power

Mixing models return estimates of the percentage contribution of each dietary source to the

consumer’s overall diet. Consequently, the predictive power of mixing models will be related

directly to the precision of these point estimates. Studies using linear models report standard

deviations as estimates of the variation about point estimates. Bayesian models typically report

95% confidence intervals or ranges, whereas IsoSource models (Phillips & Gregg 2003) most

frequently report ranges (Table 2). Models based on the Phillips & Gregg (2001) model report

standard errors, standard deviations, or 95% confidence intervals. It is surprising that roughly 43%

of studies do not present error estimates of any sort. We have excluded Euclidian-distance models
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Figure 2

Frequency histogram of metadata from studies using isotope mixing models for diet reconstruction. Models are characterized by
(a) type of model, (b) type of consumer-resource discrimination value, (c) source category, (d ) type of supporting evidence,
(e) taxonomic group, and ( f ) ecosystem. Abbreviations: POM, particulate organic matter; SOM, soil organic matter.
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Figure 3

Frequency histograms of isotope mixing models by (a) number of isotopes and sources and (b) taxonomic groups. Abbreviations: POM,
particulate organic matter; SOM, soil organic matter.

from this analysis because of their limited use in the literature and because of many concerns raised

by Phillips & Gregg (2001) regarding their construction and use.

Direct comparisons of the predictive power of the various models are complicated by differ-

ences in the type of error estimate used. Nevertheless, several generalizations obtain. First, the

one-isotope, two-source models [linear, end-member (Phillips & Gregg 2001, 2003; Phillips &

Koch 2002)] exhibit roughly similar performance. These models generally estimate the percent-

age contribution of dietary items with a 95% confidence interval that spans approximately 33%

(weighted average of 95% confidence intervals and 4× standard errors). Second, the two-isotope,

three-source models based on the Phillips & Gregg (2001) model generally exhibit less preci-

sion than do their one-isotope, two-source counterparts. Third, the two-isotope, three-source

IsoSource models (Phillips & Gregg 2003) return relatively precise estimates with a median range

(n = 291) that spans only 12%. Last, as the IsoSource models become increasingly underdeter-

mined, the median of range estimates generally increases (Figure 4).

Phillips & Gregg (2001) present a sensitivity analysis that indicates that the level of precision of

point estimates should be inversely related to the magnitude of the difference in isotopic signatures

of the sources. We have sufficient data to test this proposition for two-isotope IsoSource models

with three, four, and five-or-more sources. We used linear regression with the average range for

sources returned by a given model as the response variable, and range in source carbon signatures

and range in source nitrogen signatures as predictor variables. We found no significant relationship

for the three-source models ( p = 0.38, R2
= 3.3%). We found a significant relationship with low

explanatory power for the four-source models ( p = 0.031, R2
= 12.1%), and a highly significant

relationship with moderate explanatory power for the five-or-more source models ( p < 0.001,

R2
= 33.5%). In all cases, differences in source nitrogen signatures had the stronger effect. Al-

though we consider these results to be highly preliminary, they do suggest that further experimental

investigation is warranted.

We also have sufficient data to test for an effect of type of fraction estimates (none, estimated,

literature) on the average range returned by two-isotope IsoSource models with three and four
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Table 2 Number and type of error estimates (variation about point estimates) associated isotope mixing models

Model

Number

of isotopes

Number

of sources

Error

estimate N Median Q1 Q3 Min Max

Linear 1 2 SD 14 19 12 23 3 33

End member 1 2 Range 8 39 15 49 6 66

95% CI 2 27 27 27

SD 2 13 11 15

SE 4 4 3 11 3 13

Phillips & Gregg 2001 1 2 95% CI 11 35 17 45 1 63

SD 5 17 5 17 4 17

SE 9 10 10 30 1 43

2 3 95% CI 27 53 38 69 15 93

SD 49 13 8 17 0 31

SE 27 17 11 22 6 34

Phillips & Koch 2002 1 2 SE 6 5 4 7 4 7

2 3 SE 18 5 3 7 3 8

Phillips & Gregg 2003 1 2 SE 12 10 6 12 5 29

1 3 Range 48 32 17 46 0 92

1 4 Range 12 28 15 56 6 86

2 2 Range 6 10 8 23 3 30

2 3 Range 291 12 6 22 0 100

SD 15 7 4 12 3 27

2 4 Range 828 15 6 31 0 100

SD 136 5 2 8 0 15

2 5 Range 348 27 14 45 1 100

SD 205 6 3 10 0 24

Quart 5 20 13 28 12 32

2 6 Range 364 22 12 35 0 78

2 7+ Range 29 40 29 58 12 82

SE 17 7 5 11 3 14

3 6 Range 12 56 41 71 21 82

Bayesian 2 4 Range 92 29 18 51 6 82

2 6 95% CI 18 7 3 18 1 33

2 7 95% CI 21 14 11 18 5 20

2 6+ 95% CI 39 12 7 17 1 33

N is the number of error estimates calculated per model type (one for each source) pooled over all studies. Median values are the medians of those

estimates. Q1 and Q3 are the first and third quartiles of those error estimates, respectively. Abbreviations: CI, confidence interval; SD, standard deviation;

SE, standard error.

sources. We used a general linear model with number of sources and type of fractionation estimate

as main effects. There were significant effects due to number of sources ( p = 0.011), type of fraction

estimate ( p = 0.032), and their interaction ( p = 0.048). Average ranges were smallest in models

using literature estimates (mean = 20.8), intermediate in models using no fractionation estimate

(mean = 28.8), and largest in models using fractionation estimates derived internally (mean =

37.3). These results are highly preliminary; the general linear model explained only about 6%
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Figure 4

Performance of two-isotope, IsoSource mixing models (Phillips & Gregg 2003) as a function of the number
of diet sources. Solid circles represent median values for the ranges in source contributions. Vertical bars
represent the interquartile range.

of the variation in average ranges, and sample sizes were relatively small for models using no

estimates and for models using internal estimates.

Ikeda et al. (2010) constructed two-isotope, four-source mixing models for 14 species of harpa-

line ground beetles using both IsoSource and a Bayesian model [MixSIR (Semmens et al. 2009)]

and concluded that the models gave similar results, but that the IsoSource models tended to re-

turn higher percentages for principal food items and smaller ranges for the estimates than did the

MixSIR models. We can directly compare the performance of the IsoSource and MixSIR models

by first taking the difference of paired range estimates, and then testing whether the median paired

difference is different from zero with a one-sample Wilcoxon Signed-Rank Test. MixSIR mod-

els returned ranges that were significantly ( p < 0.001) larger than those returned by IsoSource.

The median paired difference was 17.5%. A determination regarding the accuracy of the point

estimates of both models must await laboratory experiments using known diets.

ISOTOPE INCORPORATION DYNAMICS

The isotopic signatures of a consumer’s tissues are assumed to be in equilibrium with the isotopic

signature of its diet (plus consumer-resource discrimination). When a consumer first switches to a

new diet that has an isotopic signature distinct from that of the original diet, the consumer’s tissues

will be in disequilibrium. Isotope incorporation models track the changes in isotopic signature in

a consumer’s tissue as it approaches a new equilibrium consistent with the new diet.

The degree of consumer-resource discrimination varies by tissue type (Hobson & Clark 1992).

In addition, tissues vary with respect to metabolic rate and turnover. Consequently, different tissues

are assumed to change isotopic signatures at different rates following a diet switch (Teiszen et al.

1983, Bauchinger & McWilliams 2009). In other words, tissues with distinct rates of turnover

may represent diets integrated over various temporal scales (Hesslein et al. 1993, Dalerum &

Angerbjorn 2005, Wolf et al. 2009). For example, isotopic signatures in bone may integrate diets

over the course of a year, hair over a few months, muscle over several weeks, and blood plasma

over several days.

Understanding the dynamics of isotopic turnover may allow ecologists to detect seasonal,

or even episodic, changes in an organism’s diet. It might also be possible to back-calculate and
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determine the timing of a diet switch (Phillips & Eldridge 2006, Klaassen et al. 2010, Oppel

& Powell 2010). Of course, to make these approaches operational, the dynamics of isotopic

turnover must be modeled, and the models must be calibrated to the particulars of the system

examined.

Parameter estimates from incorporation models can be used to estimate tissue-specific isotopic

half-lives. It is important to note, however, that the concept of half-life in isotope incorporation

models differs from the more widely used concept used in physics and other disciplines. The

traditional interpretation of half-life is the time required, assuming exponential decay, to reduce

the initial amount of something by one half. In isotope incorporation models, half-life measures

the time required for an isotope ratio to change halfway from its initial equilibrium value to its new

equilibrium value. (We suggest the use of isotopic half-life in order to avoid confusion.) Because

equilibrium values are determined by the isotopic compositions of the diets, estimates of isotopic

half-lives are a function of the tissue and element examined and of the isotopic magnitude of the diet

shift. Experimenters have used a wide range of isotopic diet shifts, introducing an additional source

of variation in estimates of tissue-specific isotopic half-lives. This variation makes comparisons

across studies complicated and cautions against the use of literature values in modeling isotopic

turnover.

Models and Assumptions

There are four major classes of isotope incorporation models: growth-dependent models (Fry &

Arnold 1982, Maruyama et al. 2001), time-dependent models (Hobson & Clark 1992, O’Brien

et al. 2000, Martinez del Rio & Wolf 2005), growth-and-time-dependent models (Hesslein et al.

1993, Carleton & Martinez del Rio 2010), and multi-compartment models (Ayliffe et al. 2004,

Cerling et al. 2007, Carleton et al. 2008). Within each major class there are variations.

Growth-dependent models. These models track changes in isotopic ratios as a function of the

growth of the consumer. Fry & Arnold (1982) and Maruyama et al. (2001) present models of the

following forms:

δX (t) = δX (∞) − [δX (0) − δX (∞)][w(t)/w(0)]C and

δX (t) = δX (∞) − [δX (0) − δX (∞)][w(0)/w(t)]C t,

respectively. δX(t) is the isotopic ratio of element X in the consumer’s tissue at time t, δX(∞) is the

asymptotic isotopic ratio, δX(0) is the initial isotopic ratio, w(t) is the body mass at time t, and w(0)

is the initial body mass. In the Fry & Arnold (1982) model, C is the metabolic decay constant. C is

dimensionless and represents the relative contribution of metabolic turnover to changes in isotopic

ratios. A value of C = −1 indicates turnover due to growth only (simple dilution), whereas greater

contributions of metabolic turnover are indicated as C becomes progressively more negative. It is

possible to solve for half-lives in these models if one knows the parameters of the growth curve as

a function of time.

Time-dependent models. These models track changes in isotopic ratios as a function of time

and have the general form

δX (t) = δX (∞) − [δX (∞) − δX (0)]e−λt,

where λ is the turnover rate constant and has units of (time)−1. Isotopic half-life is calculated as

ln(2)/λ. Martinez del Rio & Anderson-Sprecher (2008) suggest a model where λ is replaced by

1/T. T is the average residence time of an element. Isotopic half-lives can be calculated as ln(2)T.
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Growth-and-time-dependent models. Hesslein et al. (1993) suggest a modification of the above

model to account for the joint contributions of growth and metabolism to isotopic turnover. In

particular, λ is replaced by (k + m), where k is the isotopic turnover constant owing to growth

and m is the turnover constant owing to metabolism. The estimation of k typically assumes that

growth is related to time as a function of e−kt and is determined either by nonlinear regression of

growth versus time or by solving the equation, k = ln[w( f )/w(0)]/t, where t is the time between

initial and final measurements, and w(0) and w( f ) are the initial and final masses, respectively.

Both k and m are rate constants with units of (time)−1. Nevertheless, many authors report k as

grams per day. Isotopic half-lives can be calculated as ln(2)/(k + m).

The model assumes that growth and metabolism act independently. This assumption is unlikely

to be true in real systems as covariation between body size and metabolism has long been recognized

(e.g., Kleiber 1932). This assumption can also cause problems in parameter estimation. Typically,

nonlinear regression is used to fit a model with the exponential term, e−βt. Once β is estimated,

the metabolic turnover constant is calculated as m = β − k, where k has been estimated as

described above. Unless the effects of growth and metabolism act independently on isotopic

turnover, then estimates of m are incorrect. In fact, we have seen models that have returned values

of m < 0. Attempts to partition isotopic turnover into the percentage contributions of growth

and metabolism from these models (e.g., MacAvoy et al. 2005, Reich et al. 2008, Buchheister &

Latour 2010) are likewise suspect.

Multicompartment models. Ayliffe et al. (2004) developed a time-dependent, exponential model

with three distinct isotope pools to examine carbon isotopic turnover in tail hair and breath of

horses following a change from a C3 to C4 diet. The dynamics of both tail hair and breath

were best described by three isotopic pools that exhibited short-, intermediate-, and long-term

turnover. Cerling et al. (2007) proposed the reaction progress variable as a means of determining

the number of isotopic pools. The reaction progress variable (F) measures the degree of progress

made in the approach of the system (F = 0 at t = 0) to a new isotopic equilibrium (F = 1).

For a one-pool system, ln(1 − F) = −λt, where λ is the isotopic turnover rate constant. Con-

sequently, a plot of ln(1 − F) versus time should be linear with slope = −λ. Deviations from

a linear relationship are assumed to indicate the presence of more than one isotope pool (see

also Martinez del Rio & Anderson-Sprecher 2008). Carleton et al. (2008) tested the generality of

multicompartmental models on a variety of tissues from house sparrows (Passer domesticus). Some

tissues were better described by one-compartment models, others by two-compartment models.

Significantly, estimates of isotopic half-lives varied by model type. Recently, Carleton & Martinez

del Rio (2010) presented a multicompartment model that includes both growth-dependent and

metabolic-dependent turnover.

We can identify several potentially problematic issues with the application and testing of mul-

ticompartmental models. First, a nonlinear relationship between ln(1 – F) and time may obtain

for a variety of reasons other than the presence of multiple isotope pools. For example, values

of λ may not be invariant temporally as assumed by the models. A nonlinear relationship might

obtain simply from model lack-of-fit—isotopic turnover may be better modeled by higher pow-

ered exponential functions (e.g., e−βt, where β = λx and x > 1). Second, Akaike’s information

criteria are used for model selection. The models are hierarchical in nature, and we suggest us-

ing the principle of conditional error to determine whether the inclusion of terms representing

additional isotope pools significantly improves the one-pool model. Last, the models assume that

the isotope pools act independently. Perhaps a more realistic model would allow the pools to

interact.
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Model Application and Isotopic Half-Life Estimates

An electronic literature search returned 75 studies that modeled isotope incorporation dynamics.

Collectively, these studies generated 262 separate models for carbon isotopes, 174 for nitrogen,

and 15 for sulfur. Of the 75 studies, 37 used time-dependent models, 28 used growth-and-time-

dependent models, 9 used compartmental models, and 8 used growth-dependent models. There

was substantial bias in taxonomic coverage for isotopic half-life determination (growth-dependent

models excluded), as approximately 80% of studies and 85% of individual models were directed

at birds, mammals, and fish (Table 2). Muscle, liver, whole blood, and whole body were the most

common tissues examined.

There was considerable variation in carbon isotopic half-lives between taxa (birds, mammals,

and fish) and between tissue types (Figure 5). We had estimates of median half-lives for 9 tissues

common to birds and mammals. The half-lives for mammals were significantly longer than those

for birds ( p = 0.030; n = 9) as indicated by a Wilcoxon Signed-Rank Test on paired differ-

ences. Small sample sizes did not permit a meaningful test for nitrogen isotopic half-lives between

mammals and birds (n = 3) or for comparisons of birds versus fish or mammals versus fish.

Overall, there was little consistency within a tissue type across taxa. For example, half-lives

for bird and mammal livers were similar (3–7 days), but those for fish were quite distinct

(1–7 weeks). Mammal muscles exhibited half-lives on the order of 1–3 months, birds 1–3 weeks, and

fish 2–8 weeks. We have sufficient data to test for differences in carbon isotopic half-lives between

taxa (birds, mammals, and fish) and tissue type (muscle, whole blood, liver). There were signifi-

cant effects due to taxa ( p < 0.001), tissue type ( p = 0.002), and their interaction ( p = 0.007)

as determined by a general linear model. For fish and bird tissues, isotopic half-lives were or-

dered: liver < muscle < whole blood. For mammals the order was liver < whole blood < muscle.

Differences between tissues were greatest for fish and least for birds.

Fisk et al. (2009) suggest that rates of isotopic change may depend on the direction (enriched

versus depleted) of the diet switch. Juvenile corn snakes exhibited larger metabolic rate constants

(thus, smaller isotopic half-lives) when switched to depleted diets (elimination phase) than they did

when switched to enriched diets (uptake phase). We tested for this pattern in birds, in mammals,

and in fish. For each taxon, we restricted the analysis to tissue types that had replication at the level

of direction of diet switch. We used general linear models with tissue and direction as main effects

for both carbon and nitrogen isotopic half-lives. We found little evidence to support the pattern

observed by Fisk et al. (2009). Only mammalian carbon half-lives varied significantly with respect

to direction of diet switch ( p = 0.010). This effect was largely due to several unusually large half-

lives for muscle. When muscle was excluded from the analysis, there was no longer a significant

effect for direction ( p = 0.124). Of the six possible comparisons (three taxa by two elements),

switches to enriched diets had lower half-lives than did switches to depleted diets—a pattern

qualitatively at odds with that observed by Fisk et al. (2009). Of course, we may have introduced

excessive variation into these tests by combining data from multiple studies. Consequently, we

feel that directionality effects remain an open question.

LIPID EXTRACTION AND CORRECTION

Individuals and tissues within individuals vary in lipid content. Lipids tend to be depleted in

heavier 13C isotopes (DeNiro & Epstein 1977, 1978; Focken & Becker 1998). Consequently,

comparisons of carbon isotopic ratios between individuals or across species may be confounded

by variation in lipid content (Post et al. 2007). Several chemical procedures have been suggested

to extract lipids from tissue samples prior to isotopic determination (Logan et al. 2008). However,

these procedures may introduce their own artifacts as they may affect nitrogen isotopic signatures
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Isotopic half-life (days)
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Figure 5

Median isotopic half-lives by taxa and by tissue types. Horizontal bars represent the interquartile range.
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Lipid extraction
methods: accelerated
solvent extraction (A),
Bligh & Dyer (and
with modifications)
(B), Soxhlet (S),
ultrasonication (U),
and other (O)

C:N: carbon-to-
nitrogen ratio

LE: lipid extracted

NLE: not lipid
extracted

(Sotiropoulos et al. 2004). To avoid these complications, several mathematical models have been

proposed to correct, or normalize, tissues for lipid content after isotopic determination (Logan

& Lutcavage 2008). Despite several recent reviews (Kelly 2000, Logan et al. 2008, Post et al.

2007, Mintenbeck et al. 2008), no consensus has emerged regarding the use and efficacy of lipid

extraction. In fact, Mateo et al. (2008) suggested that the literature is replete with “. . . abundant

puzzling and contradictory results . . . .” Our focus here is to address how carbon isotopic correction

varies by lipid extraction method, how nitrogen isotopic ratios are affected by lipid extraction, and

how lipid extraction may introduce additional variation into carbon isotopic signatures.

Methods

An electronic literature search (ISI Web of Knowledge) returned 20 studies that provided data on

tissue carbon-to-nitrogen ratios (C:N) and on carbon (δ13CLE–δ13CNLE) and nitrogen (δ15NLE–

δ15NNLE) isotopic ratios prior to and after lipid extraction. Collectively, these studies provide data

on 289 tissue samples. We characterized lipid extraction methods according to criteria listed in

Smedes (1999), Manirakiza et al. (2001), and Iverson et al. (2001). We identified six major methods:

accelerated solvent extraction (A; Ramos et al. 2002), Bligh & Dyer (1959) with modifications

(B), Soxhlet (S), B plus ultrasonication (B+U), B plus Soxhlet (B+S), and other (O; incomplete

information or not specified). Tissue samples were sorted by taxonomic group and tissue type.

All combinations of extraction method by taxonomic group by tissue type were not well rep-

resented. In fact, roughly 60% of the estimates of δ13CLE–δ13CNLE and 71% of δ15NLE–δ15NNLE

are from fish. Of these, roughly 64% are from muscle. Consequently, we had to partition the data

set in various ways in order to test specific hypotheses regarding the effects of lipid extraction on

isotopic signatures.

Effects on Carbon

There was considerable variation in values of δ13CLE–δ13CNLE (Figure 6a). Values ranged from

−1.80� (a depletion) to 6.78�. The median enrichment of δ13C due to lipid extraction was
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Figure 6

Frequency histograms of the effects of lipid extraction on (a) carbon and (b) nitrogen isotopic ratios. Values are pooled over taxonomic
groups and tissue types.
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KW: Kruskal-Wallis
test

0.975 δ13C (Wilcoxon Signed-Rank Test p < 0.001; 95% Wilcoxon confidence interval: 0.800�,

1.170�).

We suspect that some of this variation may be attributable to the lipid extraction method.

We had sufficient data to test for differences in extraction methods (A, B, S, B+U, B+S) for

fish muscle. There were marginally significant differences between methods as determined by a

Kruskal-Wallis Test (KW) ( p = 0.065; n = 117). The greatest differences in δ13CLE–δ13CNLE

were with B and B+U, while the smallest were with S.

A substantial part of the variation in δ13CLE–δ13CNLE is due to differences in tissue type. There

were highly significant differences between liver, bone, and muscle within fish (KW; p < 0.001;

n = 133). The median difference was 0.19� for bone, 0.64� for muscle, and 4.98� for liver.

The small median difference for muscle is surprising, given how often researchers correct for lipids

in muscle samples and given the widely held assumption that fish tissues are relatively lipid-rich

(Portner 2002). Differences of magnitudes observed here call into question the need for lipid

correction of muscle and bone tissues.

There was also substantial variation in δ13CLE–δ13CNLE due to taxonomic group. We had

sufficient data to test for differences between birds, fish, and mammals with respect to muscle.

A Kruskal-Wallis Test indicated significant differences between taxa ( p < 0.001; n = 142). The

median difference was 0.70� for fish, 0.20� for birds, and −0.04� for mammals. Once again,

these results challenge the need to lipid-correct muscle tissues.

Lastly, we have sufficient data to test whether variation in δ13CLE–δ13CNLE can be attributed

to habitat. There were significant differences between marine, terrestrial, and freshwater birds

in median differences in muscle (KW; p = 0.028; n = 31). Median differences were 0.60�

for marine birds, 0.02� for freshwater birds, and −0.01� for terrestrial birds. There were also

significant differences between marine, estuarine, and freshwater fishes (KW; p = 0.036; n = 94).

Median differences were 1.10� for marine fish, 0.49� for estuarine fish, and 0.50� for freshwater

fish.

Effects on Nitrogen

There was substantial variation in δ15NLE–δ15NNLE owing to lipid extraction (Figure 6b). Values

ranged from −2.11� to 2.00�. The median difference (0.30�) was significantly different from

0.0�, as determined by a Wilcoxon Signed-Rank Test ( p < 0.001; n = 185). A 95% Wilcoxon

confidence interval spanned 0.25� to 0.35�.

We had sufficient data to test for differences in δ15NLE–δ15NNLE between taxa (fish, birds, and

mammals) and between extraction methods (B and S). A general linear model indicated signifi-

cant differences between extraction methods ( p = 0.012) and marginally significant differences

between taxa ( p = 0.074). The interaction effect was not significant ( p = 0.294).

The magnitude of δ15N enrichment following lipid extraction was greatest for the Bligh &

Dyer (1959) method with ultrasonication (B+U) for data pooled across taxa and tissue types. The

median enrichment for method B was 0.30�, while that for B+U was 0.71�. The difference

in these medians (0.41�) represents the added enrichment due to ultrasonication alone. While

we consider these results to be highly preliminary, they do suggest that further experimental

investigation is warranted.

Lipid Correction Models

Various mathematical corrections, or lipid normalizations, have been suggested to “correct”

nonlipid-extracted tissue samples in postisotopic analysis (Kiljunen et al. 2006, Post et al. 2007).
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CSIA: compound-
specific isotope
analysis

IRMS: isotope-ratio
mass spectrometer

EA-IRMS: elemental
analyzer-IRMS

The models relate δ13CLE–δ13CNLE to C:N ratios (or in a few cases,%lipids or %C) and fall into

three major categories: linear, mass-balance, and nonlinear models. Linear models are most ap-

propriate for relatively low values of C:N (i.e., 2 < C:N < 10), while nonlinear models are used

over a broader range of C:N values (2 < C:N < 63). Mass-balance models typically assume that

tissue samples are composed of only protein and lipids and require estimates of C:N ratios of

pure proteins specific to a given tissue (Sweeting et al. 2006). Lipid correction models vary greatly

in terms of predictive power (0.25 < R2 < 0.96) and in terms of generality; many authors add

additional parameters to fine-tune a more general model to their specific systems. Consequently,

the number of parameters varies from two in linear models to eight in some nonlinear models. It

is not uncommon to use literature values for several of these parameters.

COMPOUND-SPECIFIC ISOTOPE ANALYSIS

Analytical techniques are now readily available for the measurement of isotope ratios from in-

dividual compounds (Krummen et al. 2004, Sessions 2006), known as compound-specific iso-

tope analysis (CSIA), primarily through the coupling of capillary gas-chromatography or liquid-

chromatography systems to an isotope-ratio mass spectrometer (IRMS). Applications of CSIA in

trophic ecology center on the stable isotopic measurement of two of the major biological macro-

molecules: amino acids (e.g., Fantle et al. 1999, Fogel & Tuross 2003) and fatty acids (e.g., Hammer

et al. 1998, Morrison et al. 2010). As the metabolism and biochemistry of these compounds are

generally well known, CSIA has the potential to increase greatly the resolution of SIA in forag-

ing studies and to elucidate underlying physiological assumptions concerning the stable isotope

ecology of organisms.

Advantages

In general, CSIA may provide greater clarification of foraging studies than bulk analysis alone

(elemental analyzer isotope-ratio mass spectrometry, EA-IRMS). First, isotopic signatures esti-

mated by averaging over individual constituent compounds closely agree with those estimated

directly from bulk tissues (Popp et al. 2007, McMahon et al. 2010, Morrison et al. 2010). How-

ever, isotopic variation among individual compounds produces a much greater range of isotopic

values, and therefore, the potential for additional ecological information. Second, the interpreta-

tion of CSIA requires fewer assumptions than bulk isotopic values. Specifically, the metabolic and

physiological forces affecting isotopic values of a single group of compounds are less numerous,

and often better understood, than the diversity of forces that are known to affect bulk tissues.

Further, because the sample matrix is less complicated and individual compounds are separated,

concerns about sample contamination are often less grave.

Amino Acids

The carbon and nitrogen isotopes found in amino acids reflect both diet composition and metabolic

processes. Additionally, hydrogen isotopes of amino acids may also provide source information

regarding drinking water, and ultimately, geographic origin. To date, applications using oxygen

isotopes of amino acids have not been published.

Average amino acid δ15N mirrors bulk δ15N (McClelland & Montoya 2002); however, the range

of δ15N is much greater for amino acids than for bulk tissues. For example, Lorrain et al. (2009)

report a δ15N range of 3.4� for blood samples from penguin chicks, but a 26.2� δ15N range for

amino acids in the same experimental group, as some amino acids are strongly fractionated relative
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FAME: fatty acid
methyl ester

to diet, whereas others are not. The pattern of isotopic discrimination between amino acids appears

to be predictable based on differences in metabolic processing (Chikaraishi et al. 2009). This has

led to the categorization of trophic and source amino acids (McClelland & Montoya 2002, Popp

et al. 2007). Trophic amino acids are strongly fractionated relative to diet and include glutamic

acid, alanine, aspartic acid, leucine, isoleucine, and proline, whereas source amino acids are not

strongly fractionated relative to diet and include glycine, phenylalanine, and histidine. Importantly,

Chikaraishi et al. (2009) and others (e.g., Olson et al. 2010) suggest that the comparison of trophic

and source amino acid δ15N may allow for the trophic placement of organisms in cases where the

direct measurement of producers is not feasible.

Average amino acid δ13C also mirrors that of bulk tissues (McMahon et al. 2010). The carbon

isotopic signatures of amino acids are largely defined by the differences between essential and

nonessential amino acids. Essential amino acids appear to be very conservative indicators of diet,

while nonessential amino acids may show increased or decreased isotopic discrimination, reflecting

variation in amino acid catabolism as well as the various origins of carbon skeletons (metabolites of

glycolysis or the citric acid cycle) used during de novo amino acid synthesis. In general, synthesis

of nonessential amino acids should decrease as the protein content of diet increases ( Jim et al.

2006), reflecting rates of direct incorporation, but exceptions have been found (McMahon et al.

2010). Amino acid δ13C may also indicate the degree of carnivory in omnivores, as essential amino

acids should be preferentially derived from high-protein animal sources (Fogel & Tuross 2003).

Presently, only scant effort has been directed at understanding the δD of amino acids. However,

early studies indicate that hydrogen isotopes of amino acids may be particularly useful. Using

bacterial cultures grown with deuterium-labeled water and growth media, Fogel and colleagues

determined that while δD of essential amino acids matched the δD of diet, the δD of nonessential

amino acids instead matched that of the supplied water (Fogel et al. 2010). Although additional

study of δD of amino acids in other organisms and natural conditions is required, the utility of the

dual tracer presented by hydrogen isotopes of amino acids would add a desirable spatial component

to stable isotope applications in foraging studies.

Fatty Acids

Fatty acid profiling of fatty acid methyl esters (FAMEs) has been used extensively in foraging

studies, especially in marine systems (Iverson et al. 2004, Loseto et al. 2009). However, until

recently (Hammer et al. 1998, Chamberlain et al. 2006, Budge et al. 2008), the CSIA of FAME

has been restricted to a handful of marine (e.g., Uhle et al. 1997, McLeod & Wing 2007, Pace

et al. 2007) and soil ecosystem studies (e.g., Zak & Kling 2006). CSIA of FAME has the advantage

of providing both fatty acid profiles and isotopic information for dietary studies. The δ13C of

bulk carbon is similar to the pooled isotopic value of the individual FAME (Morrison et al. 2010);

however, individual storage fatty acid will differ from dietary fatty acid due to subsequent chain

elongation and dehydrogenation as well as turnover processes (Stott et al. 1997, Hammer et al.

1998). This is not the case for essential fatty acids, such as omega fatty acids (e.g., linoleic acid

18:2n–6), as this group of fatty acids is directly incorporated and represents dietary fatty acids

(Stott et al. 1997).

Limitations

CSIA is not, however, a panacea and bears some notable limitations. First, in contrast to bulk

isotope studies, CSIA applications have been limited to the stable isotopes of carbon, nitrogen
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DEB: dynamic energy
budget

DIB: dynamic isotope
budget

and hydrogen; oxygen and sulfur techniques have not been well demonstrated and pose significant

analytical problems to date (Sessions 2006).

The precision of CSIA also often varies dramatically between compounds, presumably through

differences in combustion and chromatography. For example, Popp et al. (2007) report a repro-

ducibility range of 0.1–4.4� for δ15N measurements of individual amino acids (average: 1.4�);

similar values have been reported elsewhere for both amino acids and other compounds (Fogel

& Tuross 2003, McCarthy et al. 2007). In contrast, the precision of δ15N from bulk analysis via

EA-IRMS is routinely near 0.2�. Sufficient separation of compounds and strict data processing

are critical (Ricci et al. 1994). Additionally, for many nonvolatile compounds, compounds must be

derivatized prior to analysis by gas chromatography. Problematically, the derivative molecule will

inevitably contain some nonanalyte carbon and/or nitrogen, forcing the measured isotope-ratio

to be corrected, thereby leading to additional measurement error.

ISOTOPIC ROUTING

The differential incorporation of dietary macronutrients into various tissues poses problems for

diet reconstruction using stable isotopes (Schwarcz 1991). One example of isotopic routing in-

volves the carbon isotope variation of bone. Carbon in bone collagen originates disproportion-

ately from dietary protein due to the necessary recycling of essential amino acids, whereas the

apatite carbon that originates from blood bicarbonate should be isotopically similar to bulk diet

(Ambrose & Norr 1992). Unfortunately, the problem of isotopic routing is not limited to bone.

For example, Podlesak & McWilliams (2006) demonstrate that the δ13C of protein-rich tissues

of yellow-rumped warblers (Dendroica coronata) fed a high-protein diet was derived equally from

protein and nonprotein dietary sources, while those fed a low-protein diet derived most carbon

from sources other than dietary protein. Additionally, variation in consumer-diet discrimination

was amplified for δ15N in low-protein diets, presumably due to the homogenization of amine ni-

trogen during transamination reactions. A companion study of δ13C of storage lipids (Podlesak &

McWilliams 2007) also demonstrated that consumer-diet discrimination was highest in low-lipid

diets. High-lipid diets result in storage lipids with similar isotopic composition (Stott et al. 1997,

Podlesak & McWilliams 2007). Similarly, Voigt et al. (2008) found that the δ13C of breath CO2

from short-tailed bats, Carollia perspicillata, was derived primarily from nectar and fruit sources,

while the δ13C of bat wing tissue matched the δ13C from protein-rich insect prey. Significant

isotopic routing of dietary protein has been demonstrated in omnivorous fish, as well (Kelly &

Martinez del Rio 2010). These findings pose serious problems for foraging studies that include

omnivores, as diet estimation from certain tissues may require prior knowledge of dietary protein

content and quality.

Isotopic routing also poses significant problems for the application of mixing models, yielding

biased results that may over- or underestimate the contribution of various sources to diet. While

isotopic routing can be easily estimated by measuring different tissues under controlled-diets and

conditions, only limited attempts have been made to model the phenomenon. The primary difficul-

ties come in modeling the complexity of diet variation and metabolism, and the parameterization of

subsequent models. Pecquerie and colleagues (2010) extend dynamic energy budget (DEB) mod-

eling (Kooijman 2010) to explore the impact of metabolism on the flux of stable isotopes within

organisms. Their dynamic isotope budget (DIB) specifically defines points of isotopic discrim-

ination during metabolism, while incorporating the processes of turnover and isotopic routing.

A promising application of DIB modeling involves the identification of key metabolic processes

and physiological traits associated with patterns of isotopic variation in organisms, including iso-

topic routing. Another, presently more utilitarian, model presented by Martinez del Rio & Wolf
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(2005) attempts to account for isotopic routing within the framework of a linear mixing model. In

principle, this model adjusts the mixing line to account for the fractional abundance of protein in

the diet, as well as the quality of protein. However, additional research is still needed to determine

the rates of the direct incorporation and endogenous production of amino acids under different

dietary compositions (e.g., Jim et al. 2006).

CONCLUSIONS

The eminent statisticians George Box and Norman Draper once remarked, “Remember that all

models are wrong; the practical question is how wrong do they have to be to not be useful”

(Box & Draper 1987). In many ways, similar considerations face stable isotope ecologists. On one

hand, SIA offers great promise to trophic ecology, allowing investigation of species that would

not be tractable using traditional techniques. On the other hand, much variation in stable isotope

metrics remains unexplained, hindering the development of statistically robust predictive models.

All things considered, we suspect that SIA in trophic ecology will remain a vigorous research

program.

SIA in trophic ecology works best for systems for which key isotopic parameters have been cal-

ibrated with laboratory and field data. As literature values are substituted for these parameters, the

predictive power of models declines and inferences become increasingly limited; the models may

serve to illustrate broad patterns, but it is unlikely that they can define diets and trophic positions

reliably and precisely. A fundamental challenge facing stable isotope ecology is an understand-

ing of how error (variation) in isotopic signatures propagates throughout models and ecological

systems, and to what degree this error limits inferences derived from SIA.

SUMMARY POINTS

1. Experimentation is still a minor component of SIA in trophic ecology. This is disap-

pointing given the numerous and repeated calls for more laboratory experiments (e.g.,

Haines 1976, Gannes et al. 1997, Martinez del Rio et al. 2009).

2. SIA in trophic ecology is unequally focused across taxonomic groups and across major

habitats. In fact, the literature appears inordinately concerned with wet things and wet

places.

3. The use of mixing models for diet reconstruction is characterized by an excessive use

of underdetermined models, overreliance on literature values for key parameters, and a

general lack of experimental or complementary evidence.

4. There is substantial unexplained variation in isotopic half-lives within a given tissue,

across taxa, and across tissue types. The assumption that a given tissue type will integrate

diets over a consistent time frame for a diverse set of systems appears to be unwarranted.

5. The appropriateness of lipid correction varies according to taxonomic groups, method

of extraction, habitat, and tissue type. The potential of lipid extraction to alter nitrogen

isotopic ratios may introduce unwanted bias into SIA.

6. Compound-specific stable isotope analysis is a promising development in SIA. However,

refinement of analytical techniques and increased experimental study may be necessary

to make the approach operational for field-based research.
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FUTURE ISSUES

1. We anticipate more efforts directed at quantifying intrapopulation variation in key iso-

topic variables, including isotopic ratios, values of consumer-resource discrimination,

source utilization, and isotopic turnover rates (Grey et al. 2004, Urton & Hobson 2005,

Hatase et al. 2006, Barnes et al. 2008, Anseeuw et al. 2009).

2. At some point, the generation of new models (and variants of existing models) may

become counterproductive. The field may be best served by a few well-tested models that

have sufficient generality. This may be especially true for the areas of lipid correction

and isotopic incorporation.

3. Continued application and development of compound-specific stable isotope analysis in

trophic ecology will not only expand the tools and library of SI information available to

ecologists but also likely shed light on variation in bulk SIA, as well as inform emerging

issues such as isotopic routing, turnover, and incorporation dynamics.
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