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Abstract. In this paper we consider the modeling of a selected portion of signal
transduction events involved in the angiogenesis process. The detailed model of
this process contains a large number of parameters and the data available from
wet-lab experiments are not sufficient to obtain reliable estimates for all of them.
To overcome this problem, we suggest ways to simplify the detailed representa-
tion that result in models with a smaller number of parameters still capturing the
overall behaviour of the detailed one.

Starting from a detailed stochastic Petri net (SPN) model that accounts for
all the reactions of the signal transduction cascade, using structural properties
combined with the knowledge of the biological phenomena, we propose a set of
model reductions.

1 Introduction

Formal modeling is a central theme in systems biology in which mathematical model-
ing and simulation can play an important role. The Petri net (PN) formalism [18] is a
framework that allows the construction of a precise and clear representation of biologi-
cal systems based on solid mathematical foundations. This formalism permits the study
of qualitative properties related to the structure of the model (e.g., the structure of a
biological pathway). The variant of PNs, called Stochastic Petri Nets (SPNs) [16,15,2]
and characterized by the addition of timing and/or stochastic information, can be used
for quantitative analysis (e.g., analysis that involve the rates in biochemical reactions).
PNs have been first proposed for the representation of biological pathways by Reddy
et al [17]. Since their introduction, many other researchers constructed PN models of
biological pathways [11] with the aim of using their representations to obtain qualita-
tive information about the behavior of these systems, mostly via simulation [12,9]. The
interaction of qualitative and quantitative analysis is necessary to check a model for
consistency and correctness; following this idea, Heiner et al [10] proposed a method-
ology to develop and analyze large biological models in a step-wise manner.

In this paper we present our experience in modeling signal transduction pathways for
the angiogenesis process using SPNs. The general goal is to analyze the temporal dy-
namics of a few relevant biological products and this requires to build and parameterize
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the model of the phenomenon under study. A detailed model is built by biologists and
then the parameters are estimated on the basis of data obtained by wet-lab experiments.
It is often the case however that the amount of available wet-lab data is not sufficient to
have reliable estimates of the many parameters involved in the model. The key contri-
bution of this paper aims at alleviating this problem by providing a simplification pro-
cess which transforms the detailed model into a simpler one with less parameters. The
proposed simplification process is guided by qualitative properties together with knowl-
edge on the phenomenon under study and it is validated by comparing the quantitative
properties of the detailed and simplified models. Moreover, this process represents the
basis of the development of arguments useful for identifying both critical complexes
and interactions that play a crucial role in the biochemical system under study. With
respect to the framework proposed by Gilbert et al [8], where the main idea is to il-
lustrate the complementarity among the three different ways of modeling biochemical
network , i.e. qualitative, stochastic and continuous, here we focus our attention on
the definition and robustness of the simplification process to limit the complexity of
the model.

Techniques that can be seen as simplification procedures have already been published
in the literature. See, for example, [4,3] where approximate analysis methods based on
aggregation of states are proposed. The goal of these techniques is however different
from ours, since they aim at reducing the complexity of the analysis of the model and
not the difficulty of its parametrization. Indeed, they result in simpler models in which
the number of parameters is identical to that of the original one.

The paper is organized as follows. Section 2 provides an overview of PNs and SPNs
and of their use in biochemical systems. Section 3.1 describes the angiogenesis case
study. Section 3.2 presents the approach we followed to build the SPNs and Section 3.3
shows the formal and biological rules used in the simplification process as well as the
resulting SPNs. The quantitative analysis performed in order to verify the mathematical
robustness of the simplified model is proposed in Section 3.4. We conclude with a
discussion and an outlook of future works in Section 4.

2 Modeling Formalism and Solution Techniques

The descriptions commonly applied in biology, where the relations among components
are expressed by biochemical reactions, or by interactions of genes as well as by cell
population interactions, are easy to transform into PNs in which places correspond to
genes/proteins/compounds (substrates) and transitions to their interactions.

2.1 Petri Net Representation for Biochemical Entities Interactions

PNs are a graphical language for the formal description of distributed systems with
concurrency and synchronization. PNs are bipartite graphs with two types of nodes,
namely places and transitions, connected by directed arcs. The state of the system is
given by the distribution of tokens over the places of the net. The dynamics of the
model (starting from an initial marking) is captured by state changes due to firing of
transitions and by the consequent movement of tokens over the places.
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Definition 1. [PN - syntax ]A Petri Net graph is a tuple (P, T, W,m0), where

– P is a finite set of places;
– T is a finite set of transitions;
– P and T are such that P ∩ T = ∅;
– W : (P × T ) ∪ (T × P ) → IN defines the arcs of the net and assigns to each of

them a multiplicity;
– m0 is the initial marking which associates with each place a number of tokens.

When applied in systems biology, places represent biochemical entities (enzymes, com-
pounds, etc.) and transitions represent the interactions among entities [17]. The quan-
tities of the entities are represented by tokens in the places. The biological system we
consider consists of biochemical reactions similar to those reported in Fig. 1-a where
we show the PN representation scheme we adopted to describe all reactions of this type.
Fig. 1-b represents the state evolution due to firing of transition k53.

Pip3

Pten

Pip3 : Pten

Pip3

Pten

Pip3 : Pten

(a) (b)

k53 k53

k54 k54

Fig. 1. PN representation of reactions Pip3 + Pten
k53
�
k54

Pip3 : Pten

2.2 Analysis Techniques Based on Structural Properties

The PN graph inspection can provide several functional properties of the model, whose
validity is true independently of the initial state of the system: such properties are, for
instance, the boundedness and the existence of structural deadlocks and traps [18,2].
In deriving such kinds of information an important role is played by the so called
net’s invariants. There exist two kinds of invariants: place invariants (P-invariants) and
transition invariants (T-invariants) [18]. In this paper we deal with P-invariants only.
A P-invariant is a weighted sum of tokens contained in a subset of places of the net
that remains constant through the entire evolution of the model, starting from an initial
marking. The subset of places used for computing the P-invariant is the support (i.e.,
the set of nonzero components) of a P-semiflow f [14], which is a vector of nonnegative
weights assigned to all the places of the net. A P-semiflow f is an integer and nonnega-
tive solution of the matrix equation fC = 0, where C is the incidence matrix of the net,
obtained by properly using the information provided by the flow relation W .

The interpretation of a P-invariant in a biological context, where tokens
represent compounds, enzymes etc., is relatively simple: the places that support the
semiflow f represent a portion of the PN where a given kind of correlated matter is
preserved.
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2.3 Quantitative Temporal Analysis

To study the temporal dynamics of a biological system it is natural to apply an extension
of PNs that allows to introduce in the model temporal specifications. SPNs are time
extensions of PNs in which exponentially distributed random delays (interpreted as
durations of certain activities) are associated with the firings of the transitions. SPNs are
qualitatively equivalent to PNs, meaning that for their structural analysis it is sufficient
to disregard their time specifications. The temporal stochastic behaviour of an SPN is
isomorphic to that of a continuous time Markov chain (CTMC). This CTMC can be
built automatically from the description of the SPN and corresponds to the behaviour of
the biological system described by the Master Chemical Equations [7]. This “stochastic
approach” based on SPNs, adopts a discrete view of the quantity of the entities and sees
their temporal behaviour as a random process.

Another possibility is to adopt a “deterministic approach” in which the temporal
behaviour of the entities is seen as a continuous and completely predictable process. In
our context we make use also of the deterministic approach because it allows for faster
and simpler evaluation of the simplification process we propose for SPNs.

The deterministic approach translates the interactions into a set of coupled, first-order,
ordinary differential equations (ODE) with one equation per entity. These equations de-
scribe how the quantities of the entities change based on the speed and the structure of
the interactions among reactants. Referring again to the reactions considered in Figure
1, the corresponding ODEs are

dXPip3(t)

dt
= −k53XPip3(t)XPten(t) + k54XPip3:Pten(t),

dXPten(t)

dt
= −k53XPip3(t)XPten(t) + k54XPip3:Pten(t),

dXPip3:Pten(t)

dt
= k53XPip3(t)XPten(t) − k54XPip3:Pten(t)

where Xi(t) denotes the quantity of reactant i at time t. Having the ODEs and informa-
tion on the initial amount of the different entities, numerical integration of the ODEs is
applied to calculate the quantities at a given time instant.

3 A Stochastic Petri Nets Based Approach Applied to Signal
Transduction Pathways for the Angiogenesis Process

One main objective in systems biology is to model and analyze temporal dynamics of
the phenomenon under study. By using SPNs as the formalism for the construction of
the model, the analysis is performed in two steps: the first provides qualitative infor-
mation on the structure of the model and the second investigates quantitative properties
including statistical indices describing the temporal behavior of the system. Here we
use this approach to study the angiogenesis process.

3.1 Biological Case Study Definition

Angiogenesis, defined as the formation of new vessels from the existing ones, is a
topic of great interest in all areas of human biology, particularly to scientists study-
ing vascular development, vascular malformation and cancer biology. Angiogenesis is
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a complex process involving the activities of many growth factors and relative recep-
tors, which trigger several signaling pathways resulting in different cellular responses.
The Vascular Endothelial Growth Factor (VEGF) family proteins are widely regarded
as the most important growth factors involved in angiogenesis. VEGF-A, a member of
VEGF family, has been most carefully studied and is thought to be of singular impor-
tance. VEGF receptor-2 (KDR in humans) is thought to mediate most of VEGF-A’s
angiogenic functions, including cell proliferation, survival, and migration. Although the
core components of the main KDR-induced pathways have been identified, the molec-
ular mechanisms involved need to be characterized in fine details in order to better
understand the flow of information. Indeed, a strong body of evidences indicates the
presence of common adaptor/effector proteins involved in the survival and prolifera-
tion pathways induced by VEGF-A/KDR axis, pointing out the difficulty to isolate a
specific pathway and suggesting the presence of common nodes which contribute to
create an intricate signaling network. In particular, the phosphorylated active receptor,
indicated as KDR∗, catalyzes phosphorylation of several intracellular substrates in-
cluding the adaptor protein Gab1 [13,5]. The main pathway through which VEGF-A
induces cell proliferation involves the activation of PLCγ [19]. Activation of PLCγ
promotes phosphatidylinositol 4,5-bisphosphate (Pip2) hydrolysis giving rise to 1,2-
diacylglycerol (DAG). VEGF-A-induced cell survival is dependent on the activity of
Pi3K [6]. The activated Pi3K phosphorylates Pip2 generating phosphatidylinositol-
3,4,5-triphosphate (Pip3). This recruits Akt to the membrane where it is activated
trough phosphorylation. Activated Akt induces cell survival. Taking into account these
notions, we wrote a system of biochemical reactions based on the available biological
information together with further supposed mechanisms which could contribute to un-
derline the presence of additional molecular nodes in the context of VEGF-A-induced
proliferation and survival pathways.

3.2 Model Construction

In this section we discuss the approach we followed to represent the signal transduction
cascade by SPN. Consider the detailed biological model depicted in Fig. 2.

These reactions describe KDR-proximal signaling events in the context of the sur-
vival and proliferation signal modules induced by receptor activation. In particular, re-
actions are split into four blocks. The First Block represents the earliest signaling events
which include KDR∗ (we use the star to denote that proteins are active), Gab1, and
Pip3. The Second Block concerns the regeneration of Pip2, a common substrate for the
two signal modules that we are considering. In this block Pip2 recovery was considered
to result from the contribution of Pten-dependent dephosphorylation of Pip3 in com-
bination with DAG catabolism (here recapitulated in the pseudo-enzyme E). The Third
Block includes the reactions describing the survival pathway triggered by the PI3K/Akt
axis. The Fourth Block represents the proliferation pathway involving PLCγ activation.
Using the reaction representations outlined in Section 2.1 and the GreatSPN tool [1] the
SPN model of the angiogenesis process was built as illustrated in Fig. 3. Exploiting the
block organization and the structure of the model we analyzed the biochemical reactions
in order to identify possible pathways and sub-pathways that describe embedded behav-
iors of the complete model. We denoted the reactions by means of their kinetic constants.
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Pip2 Production (Second Block)

Pip3 + Pten
k53
�
k54

Pip3:Pten

Pip3:Pten
k55→ Pip2 + Pten

—————-

Pten + Pip2
k56
�
k57

Pten:Pip2

Pten:Pip2 + Pip3
k58
�
k59

Pten:Pip2:Pip3

Pten:Pip2:Pip3
k60→ Pten:Pip2 + Pip2

—————-

Dag + E
k61
�
k62

Dag:E

Dag:E
k63→ Pip2 + E

Survival (Third Block)

Gab1∗:Pip3 + Pi3k
k12
�
k13

Gab1∗:Pip3:Pi3k

Gab1∗:Pip3:Pi3k + Kdr∗
k14
�
k15

Kdr∗:Gab1∗:Pip3:Pi3k

—————-

Kdr∗:Gab1∗ + Pi3k
k16
�
k17

Kdr∗:Gab1∗:Pi3k

Kdr∗:Gab1∗:Pi3k
k18→ Kdr∗:Gab1∗:Pi3k∗

Kdr∗:Gab1∗:Pi3k∗ + Pip2
k19
�
k20

Kdr∗:Gab1∗:Pi3k∗:Pip2

Kdr∗:Gab1∗:Pi3k∗:Pip2
k21→ Kdr∗:Gab1∗:Pi3k + Pip3

—————-

Kdr∗:Gab1∗:Pip3 + Pi3k
k22
�
k23

Kdr∗:Gab1∗:Pip3:Pi3k

Kdr∗:Gab1∗:Pip3:Pi3k
k24→ Kdr∗:Gab1∗:Pip3:Pi3k∗

Kdr∗:Gab1∗:Pip3:Pi3k∗ + Pip2
k25
�
k26

Kdr∗:Gab1∗:Pip3:Pi3k∗:Pip2

Kdr∗:Gab1∗:Pip3:Pi3k∗:Pip2
k27→ Kdr∗:Gab1∗:Pip3:Pi3k + Pip3

—————-

Pip3 + Akt
k28
�
k29

Pip3:Akt

P ip3:Akt
k30→ Pip3 + Akt∗

KDR-Receptor (First Block)

Kdr∗ + Gab1
k0
�
k1

Kdr∗:Gab1

Kdr∗:Gab1
k2→ Kdr∗:Gab1∗

Gab1 + Pip3
k3
�
k4

Gab1:Pip3

Kdr∗ + Gab1:Pip3
k5
�
k6

Kdr∗:Gab1:Pip3

Kdr∗:Gab1:Pip3
k7→ Kdr∗:Gab1∗:Pip3

Kdr∗:Gab1∗:Pip3
k8
�
k9

Gab1∗:Pip3 + Kdr∗

Kdr∗:Gab1∗ + Pip3
k10
�
k11

Kdr∗:Gab1∗:Pip3

Proliferation (Fourth Block)

Kdr∗ + Plcγ

k31
�
k32

Kdr∗:Plcγ

Kdr∗:Plcγ
k33→ Kdr∗:Plc∗γ

Kdr∗:Plc∗γ + Pip2
k34
�
k35

Kdr∗:Plc∗γ:Pip2

Kdr∗:Plc∗γ:Pip2
k36→ Kdr∗:Plcγ + Dag

—————-

Kdr∗:Gab1∗ + Plcγ

k37
�
k38

Kdr∗:Gab1∗:Plcγ

Kdr∗:Gab1∗:Plcγ
k39→ Kdr∗:Gab1∗:Plc∗γ

Kdr∗:Gab1∗:Plc∗γ + Pip2
k40
�
k41

Kdr∗:Gab1∗:Plc∗γ:Pip2

Kdr∗:Gab1∗:Plc∗γ:Pip2
k42→ Kdr∗:Gab1∗:Plcγ + Dag

—————-

Kdr∗:Gab1∗:Pip3 + Plcγ

k43
�
k44

Kdr∗:Gab1∗:Pip3:Plcγ

Kdr∗:Gab1∗:Pip3:Plcγ
k45→ Kdr∗:Gab1∗:Pip3:Plc∗γ

Kdr∗:Gab1∗:Pip3:Plc∗γ + Pip2
k46
�
k47

Kdr∗:Gab1∗:Pip3:Plc∗γ:Pip2

Kdr∗:Gab1∗:Pip3:Plc∗γ:Pip2
k48→ Kdr∗:Gab1∗:Pip3:Plcγ + Dag

—————-

Gab1∗:Pip3 + Plcγ

k49
�
k50

Gab1∗:Pip3:Plcγ

Gab1∗:Pip3 : Plcγ + Kdr∗
k51
�
k52

Kdr∗:Gab1∗:Pip3:Plc∗γ

Pip2 Regeneration (Second Block)

Fig. 2. Reactions of the detailed model

In the model Akt and DAG have been considered as the end points of the survival and
proliferation pathways, respectively. Taking into account these end points in combination
with the notion that Akt activation is strictly Pip3-dependent, we examined the signal
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transduction cascade focusing our attention mainly on the reactions that lead to the pro-
duction of Pip3 (i.e. k21 and k27) and DAG (i.e. k36, k42, and k48).

This analysis (supported also by a careful drawing of the SPN) allowed us to rec-
ognize different sub-pathways that lead to the survival or proliferation effects. In the
context of the survival signal module we identified two sub-pathways, each one charac-
terized by the presence of a distinguishing complex, KDR∗:Gab1∗ or KDR∗:Gab1∗:
Pip3, belonging to the First Block. Actually, the sub-pathways that determine the sur-
vival behavior are three since an additional element, Gab1∗:Pip3, also contributes to the
formation of KDR∗:Gab1∗:Pi3k:Pip3 complex already involved in one of the iden-
tified sub-pathways. Summarizing there are three sub-pathways that lead to survival
effect starting from: KDR∗:Gab1∗, KDR∗:Gab1∗:Pip3 and Gab1∗:Pip3. Consider-
ing the proliferation module, we identified four different sub-pathways that are distin-
guished by the compounds belonging to the First Block, i.e.: KDR∗, KDR∗:Gab1∗,
KDR∗ :Gab1∗ :Pip3 or Gab1∗ :Pip3. Notice that the distinguishing elements of the
detected sub-pathways are the same within the survival and proliferation modules, with
the exception of the compound KDR∗.

Referring again to the SPN of Fig. 3, we can notice that the time evolution of this SPN
is intuitively portrayed by a top-down view. On the top is depicted the place KDR∗

that represents the starting point of the signal cascade induced by its ligand. From the
KDR∗ cascade start all the sub-pathways that characterize the proliferation and sur-
vival pathways. The places describing DAG and Pip3 are aligned on the bottom of the
net. It is interesting to note that the sub-pathways we identified in the detailed model
are represented in the SPN with structures, such as that outlined by a dashed box in Fig.
3, which correspond to the reaction groups separated by continuous lines in Fig. 2. We
denote these Sub-Components by SC. Each SC involves:

– the binding between an enzyme and other species present in the cascade (e.g. tran-
sitions k31k32);

– the enzyme activation (e.g. transition k33);
– the recruitment of the Pip2 (e.g. transitions k34k35);
– the production of the molecules representing the pathway end point and the enzyme

deactivation (e.g. transition k36).

3.3 Model Simplification

The SPN we obtained requires a simplification process to take place in order to limit
the complexity of the parameterization and analysis of the model as we pointed out
before. The computation of the P-semiflows of this SPN show that the net is bounded
(the net is covered by P-semiflows, i.e., every place of the net is member of the support
of one P-semiflow, at least). Interpreting the P-semiflows in biological terms, we can
recall again that this means that all the compounds associated with the places of the net,
independently of their original amounts, cannot grow indefinitely during the evolution
of the model out of its initial state

The presence of repeated structures in the SPN corresponds to the fact that the bio-
logical model is characterized by the existence of several similar reaction groups, and
this observation can be used to identify simplification steps to be applied to the detailed
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KDR*

Plc
Gab1Pip3Gab1

Pi3k

KDR*Gab1Pip3

KDR*Gab1

KDR*Gab1*

KDR*Gab1*Pip3

Gab1*Pip3

G*PgP3
Kd*G*PgP3

Kd*G*Pg Kd*Pg

Kd*Pg*

Kd*Pg*P2
Kd*G*Pg*P2

Kd*G*Pg*P3P2

DAG

E

DAGE

Pip2

Kd*G*Pg*P3 Kd*G*Pg*

Akt*

AktP3

Akt
Pip3

PtP3P2

PtP3

Pten

PtP2

G*P3kP3

Kd*G*P3kP3

Kd*G*P3k

Kd*G*P3k*

Kd*G*P3k*P2

Kd*G*P3k*P3P2

Kd*G*P3k*P3

K4

K3

K0 K5K6K1

K2 K7

K11 K10

K9 K8

K16 K17

K22 K23 K12
K13

K50 K49 K44 K43 K38 K37 K32 K31

K52

K51

K45 K39 K33

K34

K36

K35K40

K42

K41K46

K48

K47

K61

K62

K63

K18 K24

K15

K14

K21 K27

K26K25

K20K19

K30

K28K29

K60

K59 K58

K57 K56

K54

K53

n1

n2

n3

n4

n5

n6 n7

n8

K55

γ

n9

Fig. 3. SPN representing the detailed model. Compound symbols: KDR ≡ Kd, Gab1 ≡ G,
Pi3k ≡ P3k, P lcγ ≡ Pg, Pip3 ≡ P3, Pip2 ≡ P2, Pten ≡ Pt.
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model. In particular, the SCs shown in the previous section are enzymatic kinetics re-
action groups. Each of these groups can be written as the reactions set (1) where the
enzyme E binds reversibly to the compound C.

E + C � EC → E∗C (1)

E∗C + S � E∗CS

E∗CS → EC + P

This complex EC irreversibly becomes E∗C, which means that the enzyme is acti-
vated. E∗C binds reversibly to the substrate S (forming E∗CS), before converting it
into a product P and releasing the complex EC. In order to simplify the detailed model
we can represent each SC by the following couple of “merging” pseudo-reactions:

E + S → E∗S (2)

E∗S + S′ � E + S + P

Survival (Third Block)

Gab1∗:Pip3 + Kdr∗ + Pi3k
k12→ Kdr∗:Gab1∗:Pip3:Pi3k∗

Kdr∗:Gab1∗:Pip3:Pi3k∗ + Pip2
k13→ Gab1∗:Pip3 + Kdr∗ + Pi3k + Pip3

—————-

Kdr∗:Gab1∗ + Pi3k
k14→ Kdr∗:Gab1∗:Pi3k∗

Kdr∗:Gab1∗:Pi3k∗ + Pip2
k15→ Kdr∗:Gab1∗ + Pi3k + Pip3

—————-

Kdr∗:Gab1∗:Pip3 + Pi3k
k16→ Kdr∗:Gab1∗:Pip3:Pi3k∗

Kdr∗:Gab1∗:Pip3:Pi3k∗ + Pip2
k17→ Kdr∗:Gab1∗:Pip3 + Pi3k + Pip3

—————-

Pip3 + Akt
k18
�
k19

Pip3:Akt

P ip3:Akt
k20→ Pip3 + Akt∗

KDR-Receptor (First Block)

Kdr∗ + Gab1
k0
�
k1

Kdr∗:Gab1

Kdr∗:Gab1
k2→ Kdr∗:Gab1∗

Gab1 + Pip3
k3
�
k4

Gab1:Pip3

Kdr∗ + Gab1:Pip3
k5
�
k6

Kdr∗:Gab1:Pip3

Kdr∗:Gab1:Pip3
k7→ Kdr∗:Gab1∗:Pip3

Kdr∗:Gab1∗:Pip3
k8
�
k9

Gab1∗:Pip3 + Kdr∗

Kdr∗:Gab1∗ + Pip3
k10
�
k11

Kdr∗:Gab1∗:Pip3

Pip2 Production (Second Block)

Pip3 + Pten
k29
�
k30

Pip3:Pten

Pip3:Pten
k31→ Pip2 + Pten

—————-

Pten + Pip2
k32
�
k33

Pten:Pip2

Pten:Pip2 + Pip3
k34
�
k35

Pten:Pip2:Pip3

Pten:Pip2:Pip3
k36→ Pten:Pip2 + Pip2

—————-

Dag + E
k37
�
k38

Dag:E

Dag:E
k39→ Pip2 + E

Proliferation (Fourth Block)

Kdr∗ + Plcγ
k21→ Kdr∗:Plc∗γ

Kdr∗:Plc∗γ + Pip2
k22→ Kdr∗ + Plc∗γ + DAG

—————-

Kdr∗:Gab1∗ + Plcγ
k23→ Kdr∗:Gab1∗:Plc∗γ

Kdr∗:Gab1∗:Plc∗γ + Pip2
k24→ Kdr∗:Gab1∗ + Plcγ + DAG

—————-

Kdr∗:Gab1∗:Pip3 + Plcγ
k25→ Kdr∗:Gab1∗:Pip3:Plc∗γ

Kdr∗:Gab1∗:Pip3:Plc∗γ + Pip2
k26→ Kdr∗:Gab1∗:Pip3 + Plcγ + DAG

—————-

Gab1∗:Pip3 + Kdr∗ + Plcγ
k27→ Kdr∗:Gab1∗:Pip3:Plc∗γ

Kdr∗:Gab1∗:Pip3:Plc∗γ + Pip2
k28→ Gab1∗:Pip3 + Kdr∗ + Plcγ + DAG

Pip2 Regeneration (Second Block)

Fig. 4. Reactions after first step of simplification

By exploiting this representation, we rewrite the reactions of the Third and the Fourth
Blocks as shown in Fig. 4, and we use them to simplify the original SPN obtaining the
net depicted in Fig. 5, that is still covered by P-semiflows, meaning that these trans-
formations are acceptable also from a qualitative point of view. Note that in this new
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n1

n2

n3

n4

n5

n6

n7

n8

γ

n9

Fig. 5. SPN obtained after the first step of simplification (Simpl1)

SPN any SC is represented by a sequence of transition-place-transition, such as the one
outlined by the dashed box, again. These SCs are defined by reaction groups separated
by continuous line in Fig. 4. A further simplification step can be performed on the basis
of the following reaction:

E + S + S′ → E + S + P (3)

The application of this observation to reactions of the Third and Fourth Blocks provides
the reactions illustrated in Fig. 6, used to define the new simplified net illustrated in
Fig. 7 (which is again covered by P-semiflows). Note that in this last SPN any SC is
represented by a singular transition such as the one outlined again by the dashed box.
Moreover reactions k29k30, k31 and k37k38, k39 of the Second Block are simplified
following the scheme: E + S → E + P . The structural criteria that we used to guide
the simplification process helped us to verify that the reduced models maintain the
biological significance of the original one and provide a good approximation of its
behavior. Notice that the reaction substitutions represented by Eq. (2 and 3) can be
seen as patterns (or net substructures) that can be replaced every time they occur in
the detailed and intermediate nets of the simplification process. In reality, it has not
been possible to perform these transformations ”mechanically”. Instead, the invariant
conditions had to be checked for each simplification substitution. At the end of this
process, considering that the P-semiflows of the simplified SPNs have smaller supports,
we found the same eight P-semiflows in all the three nets:

– one P-semiflow including KDR∗ and the complexes containing it that are present
in the sub-pathways (both in proliferation and in survival) that bring to the recruit-
ing of substrate Pip2;
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Pip2 Production (Second Block)

Pip3 + Pten
k22→ Pten + Pip2

—————-

Pten + Pip2
k23
�
k24

Pten:Pip2

Pten:Pip2 + Pip3
k25
�
k26

Pten:Pip2:Pip3

Pten:Pip2:Pip3
k27→ Pten:Pip2 + Pip2

—————-

Dag + E
k28→ Pip2 + E

Proliferation (Fourth Block)

Kdr∗ + Plcγ + Pip2
k18→ Kdr∗ + Plcγ + DAG

—————-

Kdr∗:Gab1∗ + Plcγ + Pip2
k19→ Kdr∗:Gab1∗ + Plcγ + DAG

—————-

Kdr∗:Gab1∗:Pip3 + Plcγ + Pip2
k20→ Kdr∗:Gab1∗:Pip3 + Plcγ + DAG

—————-

Gab1∗:Pip3 + Kdr∗ + Plcγ + Pip2
k21→ Gab1∗:Pip3 + Kdr∗ + Plcγ + DAG

KDR-Receptor (First Block)

Kdr∗ + Gab1
k0
�
k1

Kdr∗:Gab1

Kdr∗:Gab1
k2→ Kdr∗:Gab1∗

Gab1 + Pip3
k3
�
k4

Gab1:Pip3

Kdr∗ + Gab1:Pip3
k5
�
k6

Kdr∗:Gab1:Pip3

Kdr∗:Gab1:Pip3
k7→ Kdr∗:Gab1∗:Pip3

Kdr∗:Gab1∗:Pip3
k8
�
k9

Gab1∗:Pip3 + Kdr∗

Kdr∗:Gab1∗ + Pip3
k10
�
k11

Kdr∗:Gab1∗:Pip3

Survival (Third Block)

Gab1∗:Pip3 + Kdr∗ + Pi3k + Pip2
k12→ Gab1∗:Pip3 + Kdr∗ + Pi3k + Pip3

—————-

Kdr∗:Gab1∗:Pip3 + Pi3k + Pip2
k13→ Kdr∗:Gab1∗:Pip3 + Pi3k + Pip3

—————-

Kdr∗:Gab1∗ + Pi3k + Pip2
k14→ Kdr∗:Gab1∗ + Pi3k + Pip3

—————-

Pip3 + Akt
k15
�
k16

Pip3:Akt

P ip3:Akt
k17→ Pip3 + Akt∗

Pip2 Regeneration (Second Block)

Fig. 6. Reactions after second step of simplification

– one P-semiflow including Gab1 and the complexes containing it that are present in
the sub-pathways (both in proliferation and in survival) that bring to the recruiting
of substrate Pip2;

– one P-semiflow including Akt and the complexes that lead to its activation;
– one P-semiflow including both Pip3 and Dag, and Pip2 that is the common sub-

strate in both pathways. This semiflow includes also the cascade complexes con-
taining Pip3;

– each enzyme present in the model (Pi3k, Plcγ, Pten, E) has a semiflow including
the complexes containing it.

The consistency among the structural properties of all the nets allowed us to consider
the simplified models valid from a qualitative point of view.

3.4 Model Analysis for Accuracy Assessment

The simplification process proposed in Section 3.3 results in SPNs which maintain the
qualitative properties of the original SPN, but are approximations of the detailed model
from a quantitative point of view. In this section we report in silico experiments that
were performed in order to check the validity of the simplifications from the point of
view of quantitative properties. Indeed, before using the simplified models in a param-
eter identification experiment which uses real data coming from wet-lab experiments,
it is necessary to make sure that an overall agreement exists between the quantitative
temporal behaviours of the detailed and the simplified models for a wide range of model
parameters. This test allows to build confidence on the fact that the reduced model is
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n2

n3

n4

n5

n6 n7

n8

n1

γ

n9

Fig. 7. SPN obtained after the second step of simplification (Simpl2)

suited for a preliminary analysis of the angiogenesis process as it can be done with in
silico experiments.

This accuracy assessment was performed applying the “deterministic approach” de-
scribed in Section 2.3. We compared the temporal behaviours of the detailed SPN with
those of the simplified SPNs obtained for several different initial markings and sev-
eral sets of transition rate parameters. Throughout the comparisons we concentrated
on three important entities, in particular Pip3 and Dag, and the substrate Pip2 which
is common to both the survival and the proliferation pathways. Hereafter we report
on two cases which illustrate the obtained results. The initial condition is identical for
the two cases: for all three SPNs (see Figures 3, 5 and 7) we use the initial marking
n1 = 2, n2 = n3 = n4 = 1, n5 = 20, n6 = n7 = n8 = n9 = 1 which reflects
the concentration differences that are likely to exist in wet-lab experiments. Different
sets of transition rates are used in the two cases to push the behaviours of the models
in opposite directions. In the first case the rates are such that the transitions along the
survival pathway are ten times faster than all the others. Figure 8A depicts the tempo-
ral behaviour for the detailed model. With these parameters the concentration of Pip3

increases, the concentration of Pip2 decreases and the concentration of DAG remains
low. The temporal behaviour of the simplified models, depicted in Figures 8B-C, shows
the same major characteristics. In the second case the transitions along the proliferation
pathway are ten times faster than all the others. Figures 8E-F-G depict the temporal be-
haviour for the three models. Also in this case, the major characteristic, i.e. the fact that
the concentration of DAG prevails over the concentration of Pip2 and Pip3, is main-
tained. The general agreement among the results of all these models was also tested by
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Fig. 8. The left (right) column shows the ODE results from the first (second) set of parameters

computing the steady state distribution of tokens in the places corresponding to com-
pounds Pip3 and DAG and to the substrate Pip2, obtained from the solutions of the
CTMCs corresponding to all the SPN models we have constructed (that we do not report
in detail in this paper, due to space constraints).

For the first set of experiments reported here, the rates of corresponding transitions
in the simplified and detailed models were set equal independently of the fact that in
the simplified SPNs they often represent the compound effect of a few transitions of the
detailed one. As a result, even if the overall characteristics are maintained, the shape
of the curves can be rather different and the dynamics take place on different time
scales. Focusing our attention on the curves corresponding to the first set of parameters
(Figures 8A-B-C), we can notice that the crossing of the two concentration curves for
Pip2, which decreases, and Pip3 that grows takes place at time instants that are not of
the same order of magnitude in all the three cases. A more important difference, how-
ever, is observed when we concentrate on the dynamics of DAG that shows a small
initial growth followed by a descent to a value next to zero. For this case, the most
simplified model predicts an important initial climb that makes the shape of the curve
quite different from the others (see Figure 8C). Turning our attention to the curves cor-
responding to the second set of parameters (Figures 8E-F-G), we can notice that all the
models predict a crossing between the concentration of Pip2 which decreases and the
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concentration of DAG that instead grows. With these parameters the concentration of
Pip3 remains always extremely small. In this case the predictions of the more compact
model are quantitatively quite different since the crossing is reported to happen much
sooner and the shapes of the curves are very different.

In order to mimic better the temporal behaviour of the detailed SPN, we applied
an optimization technique to determine the transition rates for the simplified SPNs.
We used the nonlinear optimization function of MatLab to find these transition rates
with which the curves resulting from the simplified SPNs became closer to the curves
resulting from the detailed SPN. The results are illustrated for the SPN obtained after
the second step of simplification (Simpl2) in Figure 8D and 8H. It can be seen that by
properly setting the transition rates, even the simplest of our SPNs (Simpl2) can mimic
quite precisely the behaviour of the detailed model (compare the diagrams A with D
and E with H of Figure 8).

4 Discussion

In this paper we showed how to use structural properties of SPNs and biochemical prop-
erties of the system in guiding the simplification process. The procedure was presented
through a case study, namely, the model of signaling transduction pathways involved in
the angiogenesis process. We showed that the procedure results in simplified SPNs that
are able to mimic precisely the temporal behavior of the detailed SPN.

One non trivial step is to determine the transition rates in the simplified SPNs in
such a way that the resulting temporal behavior is a good approximation of that of the
detailed SPN. In this work we faced this problem by applying optimization.

In the future, on the basis of the simplification schemes presented in this paper, we
plan to work on generalizations of these reduction steps which will allow to operate on
other portions of the detailed model and on the identification of rules concerning the
relations existing among the corresponding rates of the detailed and simplified models.
In addition, we will study the possibility of defining formally the quantitative charac-
teristics that have to be maintained by the simplification process. In particular, temporal
logics will be considered to this purpose.

Furthermore, we will consider the study of the whole VEGF-induced intracellular
network, including signal modules that were not considered here, such as the migra-
tion pathway. This could contribute to a better understanding of the intricate signaling
induced by VEGF-A during the angiogenesis.
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