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S U M M A R Y
Two different equations, both of which are often called ‘the Cole–Cole equation’, are widely
used to fit experimental Spectral Induced Polarization data. The data are compared on the
basis of fitting model parameters: the chargeability, the time constant and the exponent. The
difference between the above two equations (the Cole–Cole equation proposed by the Cole
brothers and Pelton’s equation) is manifested in one of the fitting parameters, the time constant.
The Cole–Cole time constant is an inverse of the peak angular frequency of the imaginary
conductivity, while Pelton’s time constant depends on the chargeability and exponent values.
The difference between the time constant values corresponding to the above two equations
grows with the increase of the chargeability value, and with the decrease of the Cole–Cole
exponent value. This issue must be taken into consideration when comparing the experimental
data sets for high polarizability media presented in terms of the Cole–Cole parameters.
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1 I N T RO D U C T I O N

Over the last two decades, an interest to the use of the spectral
induced polarization (SIP) method has been growing across the dif-
ferent geological applications: hydrogeology (e.g. Slater & Lesmes
2002), mineral exploration (e.g. Vanhala & Peltoniemi 1992) and
biogeophysics (e.g. Abdel Aal et al. 2010). The SIP parameters are
used to predict physical properties of soils and sediments (the hy-
draulic conductivity, see e.g. Binley et al. 2005; Zisser et al. 2010;
the pore or grain size distribution, see e.g. Scott & Barker 2003;
Revil & Florsch 2010) and the content and grain size of dissemi-
nated sulfide minerals (e.g. Zhdanov et al. 2012; Gurin et al. 2013).

Induced polarization (IP) is manifested by frequency-dependent
behaviour of electrical conductivity. This phenomenon is also called
the ‘low-frequency dispersion’ of the electrical conductivity (or its
inverse, the electrical resistivity). So far, no universal physical–
chemical model has been developed to describe the frequency dis-
persion; therefore, the most commonly used approach is to fit the
experimental data on the basis of phenomenological models (e.g.
Kemna 2000; Binley et al. 2005).

One of the commonly used phenomenological models is the
Cole–Cole model (CCM), which was originally formulated for the
complex dielectric constant (Cole & Cole 1941):

ε∗ = ε∞ + ε0 − ε∞
1 + (iωτ )1−α

, (1)

where ε0 and ε∞ are the low-frequency and the high-frequency
dielectric constants values, respectively, τ is the central relaxation

time and c = 1 − α is a so-called CCM exponent, which describes
the broadness of the relaxation time distribution.

Based on the electrostatic analogy, for dielectric materials with
losses, it is easy to re-formulate eq. (1) for the complex electrical
conductivity (by substituting the complex electrical conductivity for
the complex dielectric constant):

σ ∗ = σ∞ + σ0 − σ∞
1 + (iωτ )c

, (2)

where σ0 and σ∞ are the low-frequency and the high-frequency
electrical conductivity values, respectively.

The complex electrical resistivity is often used in practical appli-
cations because it is directly calculated from the measured electrical
impedance. The complex resistivity model, proposed by Pelton et al.
(1978) (PM), can be obtained directly from the original CCM equa-
tion by substituting the complex electrical resistivity for the com-
plex dielectric constant, which, strictly speaking, is not supported
by physical considerations

ρ∗ = ρ∞ + ρ0 − ρ∞
1 + (iωτ )c

, (3)

where ρ0 and ρ∞ are the low-frequency and the high-frequency
electrical resistivity values, respectively.

Both eqs (2) and (3) are typically used to approximate the exper-
imental SIP data. Pelton et al. (1978) named their resistivity model
the ‘CCM’. However, considering the complex resistivity, ρ∗, as the
inverse of the complex conductivity, σ ∗, ρ∗ = 1/σ ∗ and rewriting
the resistivity equation, eq. (3), for conductivity, one does not actu-
ally recover the initial CCM equation (see e.g. Binley et al. 2005;
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Cole–Cole equations 353

Kruschwitz et al. 2010, where Pelton’s model is presented in the
conductivity form).

The CCM had been discussed exhaustively, and had been used in
many papers to fit experimental data. Lesmes et al. (2000) presented
physical–chemical interpretation of the IP parameters based on the
CCM equation in its original form. Revil & Florsch (2010) also
partly based their analysis of the IP phenomenon on the CCM equa-
tion. Conversely, Kemna (2000), Binley et al. (2005) and Slater
et al. (2006) used Pelton’s formulation. Kruschwitz et al. (2010)
compared the different data sets on the basis of the Cole–Cole
parameters retrieved by fitting the experimental data with the gen-
eralized Pelton’s equation. One can expect that, in the near future,
the data obtained by the various research groups will be compared
on the basis of the Cole–Cole parameters. However, the use of
the different equations can lead to inconsistence of the compared
parameters. In this context, it is very important to understand the
difference between the two formulations (the original equation by
the Cole brothers and Pelton’s equation). This difference has been
recently highlighted by Florsch et al. (2012), although it has not
been the focal point of their paper.

In this paper, we establish a link between the parameters obtained
on the basis of the two formulations: the original formulation, CCM
(Cole & Cole 1941) and the PM equation (Pelton et al. 1978). In the
second section, we briefly present the theoretical background. In the
third section, we compare CCM and PM analytically. In the fourth
section, we present an experimental example of the so-called CCM
fitting procedure that is often used to describe the experimental
spectra by the model parameters (chargeability, time constant and
exponent) and we show a significant difference in the relaxation
time values obtained with the use of CCM and PM.

2 T H E O R E T I C A L B A C KG RO U N D

Application of electrical filed to a medium causes displacements of
the bound charges and directional movements of the free charges.
Displacements of the bound charges are characterized by the dielec-
tric constant, ε, while the directional movements are characterized
by the electrical conductivity, σ . The electrical displacement, D, is
related to the electrical field, E and to the polarization, P

D = εaE + P, (4)

where εa = 8.854 × 10−12 F m−1 is the vacuum permittivity.
The polarization of material, P, is defined as the induced dipole

moment per unit volume. The polarization is assumed to be propor-
tionate to the electrical field,

P = εaχE, (5)

where χ is the dimensionless dielectric susceptibility. Considering
eq. (5), eq. (4) can be rewritten as

D = εa(1 + χ )E = εaεE, (6)

where ε = (1 + χ ) is the relative dimensionless dielectric constant
of the material.

The total current density, J, resulting from an alternating elec-
trical field (whose time dependency is E = E0 exp(iωt), with the
angular frequency ω = 2π f ) is the sum of the conduction current
density, Jc, and the displacement current density, Jd,

J = Jc + Jd, (7)

where Jc = σE according to Ohm’s Law, and Jd = ∂D

∂t
= iωεaεE

according to the first Maxwell equation.

Hence, the total current density can be expressed in the form of
Ohm’s Law, considering the electrical conductivity as a complex
value

J = σ · E + iωεεaE = σ ∗E, (8)

where σ ∗ = σ + iωεaε is the effective complex electrical conduc-
tivity, which fully describes the electrical behaviour of a medium
with electrical conductivity and polarization (an imperfect conduc-
tor). Alternatively and equivalently, the electrical behaviour of such
a medium can be expressed through the complex dielectric con-
stant:

D = εεaE + (σ/iω)E = (εaε + σ/iω)E = ε∗εaE, (9)

where ε∗ = ε + σ/iωεa is the complex dielectric constant, which
also fully describes the behaviour of a dielectric with losses. There-
fore, the electrical behaviour of a medium can be expressed through
one of three complex parameters: the dielectric constant, the elec-
trical conductivity or the resistivity

σ ∗(ω) = 1

ρ∗(ω)
= iωεaε

∗(ω). (10)

Which parameter to be used to describe the electrical behaviour of
the studied media is a matter of tradition and of experiment design.
In geophysics, data are often presented in the form of conductivity
or resistivity, and in the colloidal sciences the dielectric constant is
traditionally used.

3 T H E C O L E – C O L E E Q UAT I O N
A N D P E LT O N ’ S E Q UAT I O N

As an extension of the Debye equation (Debye 1929), the CCM
equation converges to Debye’s, when c = 1. The Debye model de-
scribes the orientation polarization of polar molecules in continu-
ous media with macroscopic viscosity. In the Debye model, a single
value of the relaxation time is assumed. In contrast, CCM uses a
distribution of the relaxation time values; the broadness of that dis-
tribution is defined by the exponent, c. The exponent value varies
between 0 and 1. For rocks, soils and disseminated ores, its typical
values range from 0.1 to 0.6 (e.g. Kemna 2000). When c decreases,
the relaxation time distribution becomes broader, the transition be-
tween the low- and the high-frequency values becomes wider, and
the peak on the imaginary part of the dielectric constant or electri-
cal conductivity also becomes wider. Therefore, the CCM can be
viewed as a superposition of multiple Debye models (e.g. Lesmes
et al. 2000). The CCM central relaxation time, τ , is an inverse of
the peak position on the imaginary part of dielectric constant versus
frequency (the critical frequency).

Considering the CCM equation as a result of superposition of
multiple Debye relaxations with a probability distribution, F(τ ),
one obtains (Cole & Cole 1941; Lesmes et al. 2000):

ε∗ = ε∞ +
∞∫

0

F(τ )

1 + iωτ
dτ, (11)

where

F(x) = 1

2π

sin(απ )

cosh [(1 − α) · x] − cos(απ )
, (12)

x = ln(τ/τ0) and τ0 is the geometric mean of the distribution,
eq. (12).
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Figure 1. Equivalent electrical circuits for the Cole–Cole equation in the
dielectric constant (a) and conductivity (b) formulations.

The phenomenological models are often interpreted in terms of
equivalent electrical circuits. As was shown in the original paper by
the Cole brothers (1941), the dielectric CCM (eq. 1) corresponds
to the equivalent circuit with two capacitances and one conduc-
tance (Fig. 1a). The capacitances model the polarization, and the
conductance models the dielectric losses. Two serial elements are
connected with the third element in parallel. With this circuit, the
relaxation time is given by

τ = (ε0 − ε∞)/σ 1/c. (13)

In the circuit (Fig. 1a), substituting two conductances for two
capacitances, and one capacitance for one conductance, one obtains
the equivalent circuit (Fig. 1b) for the conductivity CCM, (eq. 2).
Similarly, the relaxation time for the conductivity CCM is

τ = ε/(σ∞ − σ0)1/c. (14)

The equivalent circuit (Fig. 1b) corresponds, for example, to two
pores (polarized and non-polarized) connected in parallel. When
c = 1, eq. (2) also describes polarization of a single spherical grain
surrounded by a surface layer with frequency-dependent surface
conduction (Schwarz 1962). The grain gives the Debye response
with the relaxation time

τ = r 2

2D
, (15)

where r is the grain radius and D is the surface diffusion coefficient.
As was shown by Revil & Florsch (2010), assuming a log normal
distribution of the grain radii and using eq. (15), one obtains the
relaxation time distribution that is close to the one in CCM, eq.
(12). Consequently, CCM can be used to approximate the electrical
conductivity dispersion associated with a log normal distribution of
grain sizes.

Eq. (2) can be expressed using the high-frequency or the low-
frequency electrical conductivity and the polarization magnitude
(chargeability, defined by Seigel 1959)

σ ∗
CC = σ∞

(
1 − m

1 + (iωτ )c

)

= σ0

(
1 + m

1 − m
·
(

1 − 1

1 + (iωτ )c

))
, (16)

where m = σ∞−σ0
σ∞ is the chargeability, the ‘CC’ index denotes the

CCM.
We defined the critical frequency as the peak frequency of the

imaginary conductivity. However, it is also often defined as the peak
frequency of the conductivity (or resistivity) phase distribution (e.g.
Kruschwitz et al. 2010),

ϕ = arctan

(
σ ′′

σ ′

)
. (17)

Figure 2. Equivalent electrical circuits for Pelton’s equation in terms of
resistance and resistivity.

By differentiating eq. (17), and considering eq. (16), one can
obtain, after simple algebraic operations, a relationship between the
phase peak position and the relaxation time

ω
peak
ϕCC = 1

τ
(1 − m)

1
2c . (18)

Eq. (18) shows that the phase peak shifts towards lower frequen-
cies relative to the imaginary conductivity peak with the increase of
chargeability and with the decrease of the exponent.

In geophysical applications, the frequency-depended electrical
impedance is usually obtained. Pelton et al. (1978) proposed the
following original equation for impedance:

Z (ω) = R0

[
1 − m

(
1 − 1

1 + (iωτ )c

)]
, (19)

where R0 is the DC (low frequency) resistance,

m = R0

R0 + R1
is the chargeability,

τ = X

(
R0

m

)1/c

= X (R0 + R1)1/c,

R0 R1
R0+R1

is the high-frequency limit of the resistance and X is the effec-
tive capacitance.

Pelton et al. (1978) believed that eq. (19) described the equivalent
circuit for the CCM (Fig. 1b), where R0corresponded to 1/σ0, R1

corresponded to 1/(σ∞ − σ0), m corresponded to Seigel’s (1959)
chargeability and (iωε)−c corresponded to (iωX )−c (their Fig. 1).
However, simple analysis shows that this is not true. Eq. (19) corre-
sponds to another circuit, shown in Fig. 2. This circuit illustrates that
PM can be used to describe the impedance of two serially connected
pores (a ‘passive’ non-polarized pore and an ‘active’ polarized pore)
(see, e.g. Marshall & Madden 1959).

Pelton’s equation can be expressed in terms of the complex resis-
tivity. Using Seigel’s (1959) definition of the chargeability, based on
the resistivity, m = (ρ0 − ρ∞)/ρ0, and substituting these resistivi-
ties for the resistances in eq. (19), one obtains (e.g. Kemna 2000)

ρ∗
P = ρ∞ + ρ0 − ρ∞

1 + (iωτ )c
= ρ∞ ·

[
1 + m

1 − m

(
1

1 + (iωτ )c

)]

= ρ0 ·
[

1 − m

(
1 − 1

1 + (iωτ )c

)]
, (20)
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where ρ0, ρ∞ are the low-frequency resistivity limit and the high-
frequency resistivity limit, respectively, index P denotes Pelton’s
model. The relaxation time of the PM equation is

τ = ε · (ρ0 − ρ∞)1/c. (21)

The phase peak of the complex resistivity is also shifted relative
to the peak of the imaginary part of the resistivity. However, contrary
to the case of conductivity, it shifts towards the higher frequencies
with increase of m and with decrease of c (Major & Silic 1981)

ω
peak
ϕP = 1

τ
· 1

(1 − m)1/2c
. (22)

Obviously, eq. (20) is not identical to eq. (16). Pelton’s equation
is often presented in terms of electrical conductivity (e.g. Binley
et al. 2005; Slater et al. 2006; Kruschwitz et al. 2010). Algebraic
operations show that the following forms of Pelton’s equation, writ-
ten with the use of the low-frequency or high-frequency limits of
the conductivity, are equivalent

σ ∗
p = σ∞ ·

[
1 − m

1 + (iωτ )c · (1 − m)

]

= σ0 ·
[

1 + m ·
(

(iωτ )c

1 + (iωτ )c · (1 − m)

)]

= σ0

[
1 + m

1 − m

(
1 − 1

1 + (iωτ )c · (1 − m)

)]
. (23)

Direct comparison of eq. (16) and the right-hand side of eq. (23)
shows that they are formally identical if

τCC = τP (1 − m)1/c (24)

(see Florsch et al. 2012).
Therefore, the PM equation converges to the CCM equation when

the chargeability approaches zero.

4 D I F F E R E N C E I N R E L A X AT I O N
T I M E B E T W E E N T H E C O L E – C O L E
A N D P E LT O N ’ S E Q UAT I O N S

In the CCM equation, the relaxation time is directly related to the
critical frequency, which we defined as the peak position on the
imaginary part of the complex conductivity

ωpeak = 1

τCC
. (25)

However, eq. (24) shows that this is not true for the PM equation.
Differentiating the imaginary part of eq. (23) by frequency, and
equating the result to zero, one obtains the critical frequency for the
PM equation

ωpeak = 1

τP
· 1

(1 − m)1/c
. (26)

As follows from eq. (26), contrary to CCM, the relaxation time
in PM depends not only on the critical frequency, but also on the
chargeability and the exponent value. The higher the chargeability,
and the lower the exponent, the more the relaxation time τp increases
as compared to the value of τCC = 1/ωpeak.

Eq. (24) enables us to easily obtain the numerical difference
between the relaxation time values according to CCM and PM
(Fig. 3). At low chargeability values (m < 0.1), typical of common
soils (e.g. Zisser et al. 2010), the τCC/τP ratio varies between 0.6
and 1 depending on the exponent value. This means that the PM
application leads to relatively small systematic overestimation of
the relaxation time value as compared to that obtained with CCM.

Figure 3. The ratio of the Cole–Cole relaxation time and Pelton’s relaxation
time versus chargeability for the different exponent values.

At higher chargeability values, the differences between τCC and
τp become more noticeable. High chargeability values are typical
for the media containing metallic particles (e.g. Slater et al. 2006).
In these cases, it becomes critical to indicate which model (CCM or
PM) was used to fit the experimental data. We recommend using eq.
(24) to compare the results of the Cole–Cole fitting when different
equations (CCM and PM) are used.

Theoretical models link the relaxation time to permeability. For
example, Revil et al. (2012) derived an equation

k = τCC Di

4F
, (27)

where k is the permeability, Di is the ion diffusion coefficient and
F is the formation factor. They based eq. (27) on CCM. Let us as-
sume the relaxation time is obtained on the basis of PM. For typical
chargeability values (m < 0.2) and the Cole–Cole exponent in the
range of 0.2–1, the minimum difference between the CCM and PM
relaxation time values is 3 times (see Fig. 3). This results in overesti-
mation of the permeability value by the factor of up to 3, which is not
very significant, considering its typically log normal distribution.

Nordsiek & Weller (2008) based their Debye decomposition
approach on the superposition of Pelton’s equations with the
exponent c equal to 1, the relaxation time values equally distributed
in logarithmic scale, and with the magnitude values named ‘specific
chargeability’ (their eq. 2). In principle, this also can be done on
the basis of CCM. The specific chargeability values are typically
low (<0.1) for both the ion-conducting media (Tarasov & Titov
2007) and the media containing metallic particles (Nordsiek &
Weller 2008; Gurin et al. 2013). According to eq. (24) and Fig. 3,
for these values of the specific polarizability and with c = 1, the
relaxation time values obtained with PM and CCM are close to each
other. At higher specific chargeability values, one can see how the
peak of relaxation time distribution shifts depending on the used
model in Fig. 3 (the graph corresponding to c = 1). Our numerical
experiments (not shown here) reveal that for the total chargeability,
m < 0.5, the peak position shifts by a factor of less than 2.

In the next section, we use experimental data to illustrate the
difference between the relaxation time values derived from CCM
and PM.

5 C O L E – C O L E R E L A X AT I O N T I M E
F RO M E X P E R I M E N TA L DATA

We use the data from Slater et al. (2006), where IP spectra were mea-
sured on a synthetic sample obtained by mixing Ottawa sand with
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Figure 4. Real and imaginary parts of the electrical conductivity versus
frequency obtained on a mixture of Ottawa sand and 10 per cent iron fillings
(data from Slater et al. (2006)). Open symbols are the real conductivity,
and solid symbols are the imaginary conductivity. The data fits for PM and
CCM are shown by the solid (magnitude) and dashed (phase) lines. Three
model parameters are the same for Pelton’s and the Cole–Cole models (σ0 =
0.0271 S m−1, m = 0.51; c = 0.424) but the relaxation time values are very
different (τP = 0.33 s, and τCC = 0.061 s).

10 per cent iron filings (Fig. 4). To fit these data with CCM and
PM, we applied an algorithm based on the least-squares approach
with Marquardt regularization, which was proposed by Kemna
(2000). Three model parameters (the low-frequency conductivity,
the chargeability and the exponent) were the same for CCM and
PM, and corresponded to the parameters determined by Slater et al.
(2006). However, the relaxation time values for the two formula-
tions showed significant difference (τp = 0.33 s, and τCC = 0.061 s)
according to eq. (23).

6 C O N C LU S I O N S

In this paper, we show that two formulations, both called the ‘CCM’
in geophysics (CCM and PM) are formally and computationally dif-
ferent. In terms of equivalent circuits, these formulations are based
on serial and parallel connections of polarized and non-polarized
elements. These models converge at low chargeability values.

The Cole–Cole fitting procedure produces three equal model pa-
rameters (DC conductivity, chargeability and exponent) regardless
of the used formulation. However, the relaxation time value de-
pends on the applied model. Pelton’s relaxation time differs from
the Cole–Cole relaxation time by the factor of (1 − m)1/c. CCM is
easier to use in practice because the inverse of the critical angular
frequency of the imaginary conductivity is equal to the relaxation
time, regardless of the chargeability and exponent values.

When experimental data are compared in terms of the Cole–Cole
parameters, it is important to use the same model, especially for
the cases where the chargeability values are high. Eq. (24) presents
the link between the two models, and can be used to convert the
relaxation time values from one model to the other.
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