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Abstract. Hill functions follow from the equilibrium state of the reaction in which n ligands simul-
taneously bind a single receptor. This result if often employed to interpret the Hill coefficient as
the number of ligand binding sites in all kinds of reaction schemes. Here, we study the equilibrium
states of the reactions in which n ligand bind a receptor sequentially, both non-cooperatively and
in a cooperative fashion. The main outcomes of such analysis are that: n is not a good estimate,
but only an upper bound, for the Hill coefficient; while the Hill coefficient depends quite strongly
on the cooperativity level among ligands. We finally use these results to discuss the feasibility
and constrains of using Hill functions to model the regulatory functions in mathematical models of
gene regulatory networks.
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1. Introduction

The so called Hill functions were introduced by A. V. Hill [5] in 1910 to describe the binding of
oxygen to hemoglobin. Subsequently, they have been widely used in biochemistry, physiology,
and pharmacology to analyze the binding equilibria in ligand-receptor interactions [15]. Hill func-
tions have also been employed in mathematical models of gene expression since the very early
attempts in the late sixties [2, 3], and continue to be used for instance in mathematical models of
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the somitogenesis segmentation clock [6, 7]

The Hill function parameters provide a measure of the ligand affinity for the receptor (param-
eter K in Equation 2.4), but Hill functions are commonly used as well to estimate the number of
ligand molecules that are required to bind the receptor in order to produce a functional effect. The
latter estimate is obtained from the Hill coefficient (n in Equation 2.4). Nevertheless, Hill himself
recognized that the conditions under which the Hill coefficient provides an accurate estimate for
the number of binding sites are very specific: only when extreme positive cooperativity is present
between the binding of the first and subsequent ligand molecules. That is, the affinity of the binding
has to be very asymmetric, with a much lower affinity of binding for the first ligand molecule than
for the subsequent ones. This implies that the Hill coefficient is more appropriately described as
an interaction coefficient, reflecting cooperativity, rather than as a reliable estimate for the number
of binding sites.

This paper is devoted to tackling the above issue discussed in the previous paragraphs. We
start by reproducing in Section 2. Hill’s derivation of the functions that bear his name. To do this
we analyse a reaction in which n ligand molecules simultaneously bind a single receptor. Then,
we study in Section 3. the situation in which n ligands sequentially bind a receptor molecule, in a
non-cooperative fashion. In that case, we demonstrate that increasing the number of ligand binding
sites has very little effect on the Hill coefficient. Indeed, we prove there that the Hill coefficient
tends to 2 In 2 as the ligand count tends to infinity. We further investigate the cooperative sequential
binding of n ligands to a single receptor in Section 4., and prove that Hill functions are recovered
in the limit of very high cooperativity. Finally, we use the results of Sections 2.-4. to discuss
the feasibility and constrains of using Hill functions in mathematical models of gene regulatory
networks in Section 5..

2. Derivation of the Hill function

Consider the reaction
Kp

A+nB = Aup, 2.1)

in which n ligand molecules B bind simultaneously the receptor A. The following relation holds
in the state of chemical equilibrium:

[A][B]" = Kp[A,z], (2.2)

where K is the reaction dissociation constant, and [X] denotes the concentration of chemical
species X. Assume now a constant number of receptors:

[A] + [Ang] = [Aror]. (2.3)
It follows then from Equations (2.2) and (2.3) that the fractions of occupied and free molecules A
are respectively given by
Aws] __ [B)"
[Are] K™+ [B]"

4 K"
[Arer] K™+ [B]"

HY([B)) = and  H?([B]) = (2.4)
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with K" = Kp.

The functions H([B]) and H®([B]), defined in equation (2.4), are both known as Hill
functions. H([B]) is a monotonic growing function of [B] that satisfies the following prop-
erties: HW(0) = 0, HY(K) = 1/2, and limp_o. HY([B]) = 1. Similarly, H®([B]) is a
monotonic decreasing function of [B] that complies with: H®(0) = 1, H®(K) = 1/2, and
lim(p—cc HV([B]) = 0. Finally HY([B]) + H®([B]) = 1.

By defining x = [B]/ K, new renormalized Hill functions can be established as

n

(@) = HY (Kz) = - T and h®(z) = HO(Kz) = (2.5)

+ zn 1+ xm

It’s straightforward to see that AV (1) = h(®)(1) = 1/2, and that h(V)(z) + h(® (x) = 1. Functions
hW(z) and h® (z) = 1 are plotted in Figure 1 for various values of n.

Figure 1: Plots of (A) h)(z) and (B) h(®(z), as respectively defined by Equation (2.5), for dif-
ferent values of n. The solid lines correspond to n = 1, the dashed lines correspond to n = 2,
the dotted lines correspond to n. = 5, the dot-dashed lines correspond to n = 10, and the dot-dot-
dashed lines correspond to n = 20.

As can be seen in Figure 1, the sigmoidicity of both Hill functions increases with n. The
absolute value of a Hill function slope at z = 1, M = abs(dh) /dx|,—,), can be regarded as an
estimate for its sigmoidicity, and it is straightforward to show that M/ = n/4 for both h!) (x) and
h(®(z). Furthermore, it can easily be proven that

0 =<1, 1 <1,
lim AW (z) =< 1/2 z=1, and lim h®@(z)={ 1/2 = =1,
e 1 z>1, e 0 z>1.

3. Sequential binding of » ligands B to a single receptor A

Consider the reaction where n ligands B sequentially bind a receptor A at n independent binding
sites. Assume that the forward and backward reaction rates for the binding of a molecule B are k.
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and k_, respectively. The sequence of reactions that lead to the complex formed by the receptor A
bound by n ligands B (A, ) are [10]:

nky (n—1)k4+ (n—2)k4 ky
k_— 2k _ 3k_ nk_

In the above reactions, the term A;p (1 = 1...n) denotes the complex formed by one receptor A
bound by i ligands B. The following relations hold in the state of chemical equilibrium:

As) = nal4),

[Aos] = " alAs)

Aue] = "l 62)
[Anp] = %x[A(nl)B]a

where © = [B|/K and K = k_/k..

Take the equation set (3.2), solve for [Ag] in the first equation and substitute in the second
one; then, solve for [Ayp] in the resulting equation and substitute in the third equation; repeat
this process until [A,,p] is solved for in the last equation. When this procedure is concluded, the
concentrations of all partially and fully occupied molecules A come out to be:

[Aip] = (T,L)xi[A], i=0...n, (3.3)

()=atm

The total concentration of A receptors can be calculated from Equation (3.3) as

with

n

[Aret] = > [Aip] = (1+2)"[A]. (3.4)

1=0

Thus, from Equations (3.3) and (3.4), the fraction of receptors A bound by ¢ molecules B is:

[Aig] (1)’

= : (3.5
[Aret] (1)
In particular, the factions of totally occupied and free receptors A are respectively given by
Anpl x" [A] 1
S () = Anl _ and SO (z) = = (3.6)
(z) [Aret] (1 +2x)" (z) [Aret] (1 +2x)"
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Let z* be the value of x such that S (2*) = 1/2. From Equation (3.6):

. 1
Notice that x* increases with n. Indeed, lim,, .., x* = oco. In order to compare the behaviour of
SW) () for different values of n define

xn

(x4 21/ — 1)

sW(z) = SW(z*z) = (3.8)
It is easy to see from the definition of Function s (x) that its plots can be constructed by hori-
zontally shrinking the corresponding S™ () vs. z plots, so they reach half their maximum value
at v = 1. Function s")(z) is plotted vs.  for various values of n in Figure 2A. Observe that all
the s(!) vs. 2 curves are sigmoidal and that the their sigmoidicity increases with n. However, this
increase is not as rapid as in the growing Hill function. To see this consider that

lim sW(z) = ¢W(z) = 27V°. (3.9)

n—oo

The proof of this assertion is as follows:

limy o s0(z) = im0 oty

—In((z+2V/7-1) /2
= e&Xp (hm”—>oo (¢ +12/n & )> )

21/7 In(2)
n2(x+21/7—1)

1 ’
n2

= exp | lim,_

— 271/:1:.

Furthermore, a simple calculation leads to

dg™" (x) In2
dx 2

z=1

Recall that the slope at z = 1 of the Hill function h(")(z) is n/4. Therefore, Function s(!)(z) can
be fitted by a Hill function with coefficient ny = 2In2 ~ 1.39 in the limit where the number
of ligand binding sites tends to infinity. This last result proves that the sigmodicity of Function
s (z) does not increase indefinitely with n but is upper bounded, and that the highest possible
sigmoidicity corresponds to that of a Hill function with coefficient ny ~ 1.39.
Let x** be defined as
ot =2l 1, (3.10)

Substitution of z** into S?) (x) —Equation (3.6)— renders

1 1
S@(py= -~ _ =
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Figure 2: Plots of s()(x) and s (z), as defined by Equations (3.8) and (3.11), for different values
of n. The solid lines correspond to n = 1, the dashed lines correspond to n = 2, the dotted lines
correspond to n = 5, and the dot-dashed lines correspond to n = 10. Finally the dot-dot-dashed
lines are the plots of (A) ¢g¥(x) and (B) ¢ (z), as respectively defined by Equations (3.9) and
(3.12).

From its definition, x** is a decreasing function of n. In fact,

lim z** = 0.

n—oo

Define
1

1+ (27" — D)™

That is, the s® () vs. x plots can be traced by horizontally stretching the corresponding S (z)
vs. x plots, so they reach half their maximum value at x = 1. With this, we can study the influence
of the number n of B binding sites on function S (z), while still working in a fixed scale.

Plots of s(? (x) vs. x are shown in Figure 2B for different values of N. Note that, in all cases,
s@(0) = 1, s¥(1) = 1/2, and lim,_., s () = 0. Furthermore, the sigmoidicity of the s (z)
vs. x curves increases with n, but only up to a certain point. To see this, take the limit of s(?)(z) as
n — oo:

s (z) = S (2™ x) =

(3.11)

hmn—>00 3(2) (gj) = hmn—>oo m7

—In n_ 1)z
= ©xp (hmn*’oo : (1+§2/n : )) )

21/ In(2)x
. n2(1+(21/"—1)x)
= eXp lim,, oo -1 |-
T n?

= 27"
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This proves that as n — oo, s? () tends to the function ¢ (z) defined as follows:

gP(z) =27". (3.12)
Moreover,
dg® () ~ In2
de | _, 2

It then follows from this and the fact that the slope at z = 1 of the Hill function h®) (z) is —ny /4 —
where ny is the Hill coefficient— that Function ¢‘®)(z) can be fitted by a decreasing Hill function
with coefficient ngy = 2In2 ~ 1.39.

In conclusion, when n ligands B bind a receptor A sequentially, the fractions of free and fully
receptors can be approximated by Hill functions. The number n of B binding sites has a very
strong influence on the apparent dissociation constant: the larger n, the higher the concentration
of B required to occupy all the binding sites, and the smaller the concentration of B required to
have al least one binding site occupied. On the other hand, n has very little impact on the Hill
coefficient. Even in the limit n — oo, the Hill coefficient only reaches the value 1.39.

4. Sequential cooperative binding of n ligands B to a single re-
ceptor A

Two ligands B bind cooperatively a receptor A if the binding of the first ligand to an available site
increases the chances that a second ligand binds an empty nearby site. Assume that every molecule
A has two identical binding sites for the B ligands, and that the reaction through which the first
ligand binds the receptor if of the form:

%
k_

In the above reaction k. and k_ respectively represent the forward and backward reaction rates.
The factor 2 multiplying &, accounts for the fact that there are two available binding sites. The
equilibrium equation for this reaction is:

K

AY[B) = 5

[Ag], 4.1
where K = k_/k is the reaction dissociation constant.

Because of cooperativity either k. is increased or k_ is decreased in the reaction where the sec-
ond ligand binds the receptor. In either case, the value of the corresponding dissociation constant
diminishes. Hence, the corresponding reaction is

2K ke
AB+B — AQB,
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where the factor 2 accounts for the fact that either two of the bound ligands can detach from
the complex A,p at a given time, and k. > 1 is a constant accounting for cooperativity. The
equilibrium equation for this reaction is

2K
ke

[Ag][B] = [Asp]. 4.2)

Assume that the count of A molecules is constant:
[A] + [Ap] + [A2] = [Ara]. 4.3)

Then, it is possible to solve for [A], [Ap], and [A2p] from Equations (4.1), (4.2), and (4.3). In
particular:

Al _ 1
[ATot] 1—0—2[1[?]_{_]%(%)2’
[A2B] e (%)2 .
[Arot] . 2[;?] s <%)2

Consider the situation in which a receptor A that can be bound by up to n ligands B. Assume
that, when the i-th (¢ = 2,3...n — 1) ligand binds the receptor, it interacts cooperatively with the
1 — 1 ligands already bound. The corresponding reaction sequence is:

K/n
A+ B — AB,
2K/(n—1)k.

AB + B = AQB?
3K/ (n—2)k? 4.4)

AZB + B - AgB.

nK kP!
A(nfl)B +B = AnB-

In the above reaction, K denotes the dissociation constant for the reaction in which a molecule B
binds its corresponding site on molecule A, while the constant k. > 1 accounts for cooperativity.
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The equilibrium equations for the reactions in Equation (4.4) are:

[Ag] = n[ifé,][/l],
[Ap] = = S ! kc[%[AB],
[Asp] = z ; 2]{?3%[1423], 4.5)
[AnB] = %k?_l%[A(n_l)B].

It is straightforward to demonstrate after a little algebra that Equation (4.5) reduces to:

[Ais] = C’) (ﬁ) 4], (4.6)

1B]
o
Hence, under the assumption that the receptor count remains constant, the corresponding conser-

vation equation is: A
Z[AiB] = Z <:L) (%) [A] = [Aro]. 4.7)

(n—1
=0 1=0 kc

where
- kgn—n/z

Finally, the equilibrium concentrations [A;z] (i = 0...n) can be calculated from Equations (4.6)

and (4.7) as '
n x !
7 kén—i)/2
() Ge)
J ] k((:n*])/Q

- () ()

Notice that =Zy(x) = 1 and =, (x) = 2", for all k. > 1. Furthermore, it is not hard to prove that

~[Ara. 4.8)

Define

lim =Z;(z)=0, Vi=1,2...n—1,

ke—o0

as long as = does not diverge. Thus, we have from equation (4.8) that, in the limit of very high
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cooperativity:
4]~ @9)
14 '
:En
Al = ——, 4.10
R (4.10)
[Aig] =~ 0, Vi#0,n. 4.11)

Thus, according to these last results, the situation in which n ligands simultaneously bind a receptor
is recovered, in the limit of very high cooperativity, from the model where n ligands sequentially
bind a receptor in a cooperative fashion.

5. Discussion and conclusions

In the model in which n ligands B bind a receptor A, the fractions of empty and occupied molecules
A are respectively given by the decreasing and increasing Hill functions H® ([B]) and H")([B])
—defined in Equation (2.4). These equations involve two parameters: K and ny. Parameter K
is the value of [B] at which functions H®([B]) and H([B]) reach half their maximum value,
while parameter ny determines the sigmoidicity of the H® vs. [B] and H®" vs. [B] curves: the
larger ny, the steeper the curves at [B] = K. Furthermore, in this particular model, K" = Kp,
where Kp is the dissociation constant of the reaction A + nB = A, g, while ny is the number of
molecules B binding A.

Consider a gene that is regulated by a transcription factor P, and let M denote the RNA molec-
ular species resulting from this gene transcription. Under the assumption that chemical kinetics
can be used to model gene expression and gene regulation, the equation governing the dynamics
of the RNA concentration [M] is:

d[M]

—gr = kmlDIR([P]) — [ M]. (5.1)

In the above equation [ D] represents the concentration of gene copies, kj is the maximum tran-
scription rate of a gene copy, v, is the RNA degradation rate, and R ([P]) accounts for transcrip-
tion regulation by the transcription factor P.

Although in some cases a transcription factor can act as both an activator and a repressor for
different concentration ranges, most transcription factors can be classified as either one or the other.
If P is an activator (repressor), the regulatory function R([P]) comes out to be monotonically
increasing (decreasing).

The transcription rate of every gene is upper bounded and this bound is determined by the
promoter sequence and the type of polymerase carrying out transcription. From this and the fact
that k), is the gene maximum transcription rate, R([P]) can be interpreted as the probability that
a gene copy is transcribed at a given time, as a function of [P].
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Most people believe that transcription factors regulate gene expression in a switch-like fashion.
Indeed, this supposition is behind Boolean-like models of gene regulatory networks, which are
quite popular for networks involving a large number of genes [1]. If true, this means that the
regulatory function R([P]) is highly sigmoidal.

Thus, from the considerations in the previous paragraphs, the gene regulation function R ([P)])
can in general be modelled via Hill-type equations.

Transcription factors (TFs) usually act as polymers (dimers or tetramers). Moreover, there are
frequently multiple TF binding sites on the DNA regulatory region, or a single TF can simulta-
neously bind two different sites. Not only that but, TFs often need to be activated or they can
be inactivated by the binding of two or more metabolites. From these considerations and the fact
that the Hill coefficient corresponds to the number of ligand molecules simultaneously binding a
receptor, as shown in Section 2., the coefficient ny of the Hill function employed to model R ([P])
is often estimated by simply counting the number of binding sites for a given molecule.

In Section 3. we demonstrated that, when n ligands B sequentially bind a receptor A in a
noncooperative manner, the fractions of free and totally occupied molecules A as functions of [B]
can be fit by decreasing and increasing Hill functions, respectively. The values of the resulting half
saturation constants / are quite sensible to n, in opposition to the behaviour of the Hill coefficient.
Indeed, in both cases the the Hill coefficient tends to 1.39 when n — oo. This last result proves
that, although Hill functions are quite useful to model gene regulatory functions, the Hill coefficient
cannot be estimated by simply counting the number of binding sites for a given ligand. At best,
the binding site count is an upper bound for nj, but real situations are usually far from this bound.

The reactions through which n ligands B sequentially bind a receptor A in a cooperative fash-
ion are analysed in Section 4.. In the absence of cooperativity, the results of Section 3. are recov-
ered. On the other hand, the situation where n ligands bind a receptor simultaneously is recovered
in the limit of very high cooperativity. Therefore, contrarily to the number n of binding sites, the
cooperativity level has a quite strong effect on the sigmoidicity of the functions that determine the
fraction of free ([A]/[Aro]) and fully occupied ([A,5]/[Arst]) receptors. In conclusion, when n
ligands bind a receptor sequentially, n represents an upper bound for the coefficient of the Hill
functions that best fit functions [A]/[A7e] and [Are]/[Aret] vs. [B], and the level of cooperativity
determines how much the real system approaches this ideal situation.

Interestingly, the most extensively studied gene regulatory systems (the tryptophan and lac-
tose operons of Escherichia coli) make use of cooperativity to increase the sigmoidicity of the
regulatory functions.

The tryptophan (#rp) operon consists of the genes whose encoded proteins constitute the en-
zymes necessary to synthesize the amino acid tryptophan, and of an upstream regulatory region.
This regulatory region contains a binding site for mRNA polymerases (which carry out transcrip-
tion) as well three binding sites (operators) for repressor molecules. A repressor needs to be acti-
vated by the binding of two tryptophan molecules so it can bind an operator. Therefore, the higher
the intracellular tryptophan concentration, the higher the amount of active repressors. In turn, these
active repressors bind the operators and inhibit transcription initiation by blocking the polymerase
binding site. The above described mechanism receives the name of repression, and is one of the
three regulatory processes found in the #rp operon. The binding of active repressors to the first
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two operators occurs cooperatively and this increases the sigmoidicity of the regulatory function
accounting for repression [4, 14]. Furthermore, it has been shown that a high level on sigmoidic-
ity is necessary for the the bacteria to maintain a constant intracellular tryptophan concentration,
regardless of variations in the amino acid concentration in the extracellular medium [16].

The genes in the lactose (lac) operon code for the proteins necessary to transport and metabolize
the sugar lactose. Repression is also one of the regulatory mechanisms in this operon. In this case,
the repressor is active in its free form and is inactivated when bound by allolactose —a by-product
of lactose metabolism [9]. The lac operon comprises three different repressor binding sites, and a
single active repressor can simultaneously bind two of them by way of DNA folding [8]. Given
that the binding energy of the complex formed by a repressor simultaneously binding two different
operators is larger than the sum of binding energies associated to the complexes formed by one
repressor bound to each operator, this simultaneous binding is a kind of cooperativity. Furthermore,
it has been shown that this cooperativity increases the sigmoidicity of the corresponding regulatory
function, which in turn is essential to explain the operon bistable behaviour [12]. Finally, bistability
has been argued to help E. coli consume glucose and lactose in the most efficient possible way
[13, 11].

In conclusion, Hill functions of the form

_ X
- K [ X

K"

HO([X]) = Ko 1 [X]n

and H®([X])

are extremely useful to model gene regulatory functions, like R([P]) in Equation (5.1), because
they have many of the experimentally-observed required characteristics. However, modellers
should be extremely careful when interpreting the biological significance of parameters /K and
ny. K represents the value of [X] at which both Hill functions reach half their maximum value,
while ny determines the sigmoidicity or steepness at [X] = K of the H® (i = 1,2) vs. [X]
curves. However, it is not possible to deduce the details of the DNA-transcription factor chemical
interactions from the values of K or ny. In particular, a high ny value implies a high level of co-
operativity, but no further assertions can be made from this fact. Conversely, if the gene regulatory
mechanisms are known in detail, it is not possible to deduce by simple inspection the values of the
best fitting Hill function parameters.
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