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ON THE USE OF THE INTERPOLATION POLYNOMIAL FOR SOLUTIONS
OF SINGULAR INTEGRAL EQUATIONS*

By STEEN KRENK (Technical University of Denmark, Lyngby)

Abstract. On the basis of integration of singular integral equations by means of

Gaussian quadrature, it is demonstrated how to obtain the corresponding approximate

polynomial solution. For some special cases compact formulas are given for the strength

of the singularities at the endpoints of the integration interval.

1. Introduction. For singular integral equations of the form

af(x) + - f /(0 —+ f k{t, x)f(t) dt = g(x), -1 < x < 1, (1.1)
7T J-i I — X J-i

where g{x) and k(l, x) are known Holder-continuous functions and a and b are real

constants, two effective ways of numerical solution have been devised [1-4], They both

result in an approximate solution of the form

n— 1

fix) = w(x)F(x) ~ w(x) £c,.Pi(x), (1.2)
1-0

where w(x) is the fundamental function of (1.1), and p, , j = 0, • ■ • , n — 1, are the

orthogonal polynomials associated with w(x). It is easily shown [5] that w(x) is of the

form

w(x) = (1 — x)°(l + xY, — 1 < a, (3 < 1, (1.3)

and accordingly Pi(x) are the Jacobi polynomials denoted by P(x) [6],

Although the two methods yield results of the same form, the underlying principles

are different. The first method is based upon the development of F(x) as an infinite

series

F{x) = E CjP(1.4)
i =0

By use of the orthogonality relation [6]

- t)"i 1 + tf dt = K Sik , (1.5)

= 2°+g+1 r(j + a + l)r(j + <3 + 1) ,

' 2j + a + 0 + 1 j\ Tii + a + p + 1) ' V ^

an infinite system of linear equations is obtained for the determination of the coefficients

Cj [1, 4], As a rule numerical evaluation of integrals must be used extensively. By trunca-
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tion an approximate system of equations is obtained for the determination of the n

coefficients C, , j = 0, 1, • • • , n — 1.

The second method starts with an approximating polynomial of finite degree,

F(x)~ (1.7)
7 =0

By applying the quadrature formulas given in [2] and [3], approximate values of F(x)

are obtained in the points x, determined by P„ia 'f> (x,) = 0, i = 1, 2, • • • , n*. It is

important to note that this is accomplished without performing numerical evaluation

of integrals.

The present paper gives simple summation formulas for the determination of the

coefficients c,- in (1.7). For the important cases (a, /3) = (±1/2, ±1/2), which cor-

respond to a = 0, special formulas are derived in terms of Chebyshev polynomials.

These include formulas for direct determination of F(l) and F(— 1).

2. General formulas. Polynomials orthogonal over a finite interval satisfy a

recurrence relation which may be put in the form [6, 8]

cij-iPj-iix) + bfp^x) + a,p,+1(x) = xpi(x). (2.1)

In the following, p,(x), j = 0, 1, • • • , n — 1, will be considered as normalized. By

choosing x as

Pnixt) =0, i = 1, 2, • ■ ■ , n, (2.2)

and defining p-i(x) = 0, (2.1) may be written using a symmetrical tridiagonal matrix

K a0

q*o by a i

G&1 f?2 &2

&n~3 bn—2 &n—2

an-2 b,n—1_

Po(.Xi)

Pi(Xi)

PiiXi)

_Pn-x{Xi)_

= Xi

PoiXi)

Pi(x,)

ViiXi) (2.3)

The vectors [p0(Xi), p1(xi), ■ ■ ■ , p„_i(Xi)], i = 1, 2, • • • , n, are eigenvectors corre-

sponding to the eigenvalues x, . These vectors are normalized by calculating

gp,U) = f- (2.4)j=0 At'n

By using the Christoffel-Darboux formula [6], the Ain , i = 1, 2, • • • , n, are seen to be

the weights from the corresponding Gaussian quadrature formula. As the matrix

{\/x,„ Pi(Xi)\ is orthogonal with respect to both rows and columns, we obtain the

formula

X) x.nViixdVkiXi) = &ik • (2.5)
i' = l

Just as Cj , j = 0, 1, • • • are determined by the continuous orthogonality relation,

c, , j = 0, 1, • • • , n — 1, are determined by use of the discrete orthogonality relation

(2.5). The result is

For a = 0 = ±1/2 the connection between Cj and c,- is discussed in [7].
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F(x) ~ E c,Vj(x), c, = Y^\inPi(Xi)F(Xi). (2.6)
j = 0 i=l

For the Jacobi polynomials (2.6) is slightly modified:

F(x) ~ E c, = f E X^"'"^®,), (2.7)
i=o t =0

where hj is given by (1.6) and X,„ by [3, 4]

^ T(w + a + l)T(n + 0+1) 2w + a + + 2

(n + 1)! r(» + « + 0 + 2) iVa'*)'(xi)Pn+1("'p)(.?i)

3. Special cases. The cases (a, /3) = (±1/2, ±1/2) are special because the cor-

responding Jacobi polynomials can be expressed by Chebyshev polynomials. This gives

the possibility of direct determination of x{ from (2.2) by means of trigonometric func-

tions [4], Furthermore, the index j may be summed analytically in the calculation of

F( 1) and F(— 1). These values are of special physical importance, for example, in evalua-

tion of stress intensity factors [4] and [9-11].

In the following the summation sign E' means that the first term must be multiplied

by 1/2. Use of E" implies that both first and last terms must be multiplied by 1/2.

The derivation of the formulas is based on the trigonometric definition of the Chebyshev

polynomials and the two relations

n

E" cos (jd) = \ sin (710) cot (§0), (3.1)
1=0

E cos [(2j + 1)0] = |(3.2)
j = o z sin a

a = p = -1/2:

F(x) ~ E' c,T,(x),
I- 0

c,- = IE = I e cos

x> = cos *]' (3-3)

F{\) ~ I E ^-.[(1 + xt)/2y/2F(Xi)
71 i = 1

i - sin (2i - 1),r]

nS L, V2i - 1 1 ^ (3'4)
Sm L 4n ""J

E ^-.[(1 - Xi)/2]l/2F{Xi)
n —

1 " Sin [^4n 1 (2i ~ 1)?r]

= ' E L r,. , J Ffe+1-,)- (3.5)
ft

sm
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« = /3 = 1/2:

F(x) ^ £ c,Ut{x),
J-0

c,- = Ed- xfiufamxi)

= nhtlsin t + TT]sin [jTTI(i +

x,. = cosf-^Tr]- (3.6)

F( 1) ̂  E (1 + Xi)Un-i(Xi)F(Xi)

= Ecotr-^5iSinr-^,v
frf Ln + 1 2J Ln + 1 .

F(-l)~ E (1 - XjUn-A-XtMXi)

F(x<). (3.7)

Ffe+i-i). (3.8)• Sco'thl]si"t+T"]

= -0 = 1/2:

F(x) =* E c, t/2i[(l + a:)/2]1/2,
1-0

2^-j Ed- ^)f/2,[Va + x,)/2]f(.t,)

2n+i% Sm [2n + 1 *"] Sm [2^+1 (2; + 1)7r]fd0-

354 = 608 [^TTt]- (3-9)

F(l) ~ E t/2„-2[V(l + a:,)/2]F(xt)
1 = 1

2n — 1 . "I
■jlrj

c,- =
art

4

„ sin
= E-

i = 1 .

sin

2 n +

?T']

F(xt) (3.10)

.2 n +

n-D =* E V(1 - x<)/2 Va - x,)/2]F(*,)

t £cot [Itt l]sin fcrr(2i ~ "']2 n +
F(z„+1_0. (3.11)
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a = — /3 = —1/2:

F(x) ~ £ c,V2/(l + ®) T2,.+1[V(T+ aO/2],
1=0

_4
2n

Cj = ^ . , X) V^T + ajj)/2 r2l+i[V(l + Xi)/2]F(a;v)
~r J- i = i

4
i £008 [stft l]cos [ir+i(2i + ih1'''2n +

x- =cos [Itt *] • (3-12)

F(1) - 2n~-f-T 5 U2n-W( 1 + ^)/2]F(x,.)

2

2n +

v 2t — 1 ir . /0. , NI § sin _^TT (2» - 1VJ|F(x,). (3.13)

F(-1) ~ £ U2n.2[V(1 - x,)/2]F(Xi)
i = 1

~2n —1.1
7WJ„ sin

= E-
i = i .

sin

.2 w +

+7']

F(x„+1_,) (3.14)

_2n +

4. Example. The equation for this example is taken from [2]:

- [ dt - X [ f(t) dt = 1, -1 < x < 1.
TT J-i t — X J-1

(4.1)

j(x) is the shear stress acting on the interface between an elastic coverplate and an

elastic half-space, when the half-space is loaded parallel to the plate at infinity. Of

special interest is the stress intensity factor at x = 1 represented by F( 1). In [2] values

of F( 1) were obtained by three-point extrapolation for X = 10/3, 1/3, and n = 20, 40,

60. In Table 1 these values are given together with the similar values obtained by use

of (3.4). The difference is not great, a fact that follows from the smoothness of F(x).

That greater differences must be expected for less smooth functions is clearly seen from

the weights in (3.4), which are given in Table 2 for n = 20. In particular, when inferences

are made from the values of F (1) concerning the convergence of the method of quad-

rature, the formulas presented here must be used.

TABLE 1
The strength of the stress singularity, F( 1).

F(l) X = 10/3 X = 1/3

 n [1] (3.4) [1] (3.4) 

20 0.4061 0.4076 0.8323 0.8325
40 0.4104 0.4108 0.8331 0.8332
60 0.4115 0.4117 0.8340 0.8341
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TABLE 2

Weights for the calculation of F(l) for a = 0 = — 1/2 and n = 20 (3.4).

i UtnMl +x.-)/2)1/J i U2„M 1+z,)/2)"2

1 25.4517 11 0.9244

2 -8.4490 12 -0.7883

3 5.0273 13 0.6682
4 -3.5457 14 -0.5600

5 2.7106 15 0.4610
6 -2.1692 16 -0.3689

7 1.7856 17 0.2820
8 -1.4966 18 -0.1989
9 1.2685 19 0.1184

10 -1.0818 20 -0.0393
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