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On the Use of the Linear Interaction Energy Method to Predict 

Affinities of Charged Aromatic Ammines to Naturally 

Occurring Clay Minerals 

Milinda Amila Kumara Samaraweera, Ph.D.                                  

University of Connecticut, 2015 

This study presents the use of the linear interaction energy (LIE) method as a predictive tool 

to approximate the free energies of sorption of organic cations to naturally occurring clay mineral 

montmorillonite. One objective of this thesis is to explore the applicability and the accuracy of 

LIE, originated in the biochemistry field, as a predictive tool to estimate the free energies of 

sorption of organic cations to naturally occurring aluminosilicates. For this purpose, a set of 

charged aromatic amines sorbing to a prototypical homoionic clay montmorillonite (MMT) with 

calcium ions were modeled using molecular dynamics (MD) simulations. As the LIE method 

enables the inclusion of both electrostatic and van der Waals interactions of the sorbate (organic 

cation) with the negatively charged aluminosilicate (sorbent), it provided a major improvement 

over existing predictive models which underestimates the sorption free energies due to exclusion 

of electrostatic interactions. Moreover, Use of MD simulations and electronic structure 

calculations provided atomistic level insight into the orientation of different organic cations inside 

the clay and their charge distribution. This thesis also explores the transferability of the derived 

LIE parameters as a function of different interlayer ions: Ca+2 and Na+ in MMT.  
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Chapter 1 Introduction 

1.1. Background Information on Emerging Environmental Contaminants 

Due to the increase in the production and use of various novel organic substances over the last 

decade, there has also been an increase in the accumulation of these substances in the environment; 

they are referred to as “emerging contaminants”.1-3 The ecotoxicological and possible health risks 

for humans and wildlife that are associated with the occurrence of these contaminants is still under 

investigation and is largely unexplored.4-6 Emerging contaminants can be categorized into the 

following key subgroups of substances depending on their application: pharmaceutical and 

personal care products (PPCPs), hormones and steroids, quaternary ammonium compounds 

(QACs), illicit drugs and drugs of abuse, polar pesticides, and veterinary products.7 

1.1.1. Pharmaceutical and Personal Care Products 

Pharmaceutical and personal care products, such as x-ray contrasts, anti-inflammatory drugs, 

pain killers, lipid regulators, fragrances, and sun-screen agents are used to treat and prevent 

diseases and during daily urban activities.8, 9 These compounds are released into the environment 

through domestic and hospital effluents.10, 11 Unlike pesticides, which are used sporadically, 

PPCPs are regularly released into the environment.10 Hence, trace amounts of these compounds 

are detected in all compartments of the environment (air, soil, and water).10 PPCPs (Figure 1) 

usually contain a non-polar core (i.e. phenyl) with a polar functional group (i.e. amine).12 Their 

metabolites (transformation products) may be persistent and chemically stable in the environment. 

For example, the active metabolite of the blood lipid regulator clofibric acid can exist in solution  

for up to 21 years.13 Long-term exposure to these compounds and their metabolites are reported to 

cause unpredicted and adverse side effects on humans and animals alike (e.g. antibiotic 
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ciprofloxacin and its photodegraded products have shown genotoxic effects in human cell 

cultures).14 

          

Figure 1. Chemical structures of Acetaminophen (a pain killer) and Metformin (an anti-diabetic drug) on 

left and right respectively. 

 

1.1.2. Hormones and Steroids 

Steroids are biologically active compounds that share a common cyclopentan-o-

perhydrophenanthrene ring (Figure 2).15 Natural steroids (e.g. progesterones, glucocorticoids, 

androgens) and synthetic steroids (e.g. Mestranol, Sustanon) are extracted by animals and humans, 

which end up 

          

Figure 2. Chemical structure of Cyclopentan-o-perhydrophenanthrene (left) and Mestranol (right)  

 

in the environment through animal waste disposal and sewage discharge.16 Although these natural 

and synthetic steroids are excreted from human and animal bodies as inactive polar conjugates, 

they are activated in sewage effluent as reactive and free steroids.17 As a consequence, these 

compounds can interfere with the normal function of endocrine systems, thus influencing the 
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reproduction and development of marine and wild life.18-20 Plants are also affected by steroids and 

hormones in the environment. For example, alfalfa irrigated with sewage effluent showed elevated 

levels of phytoestrogens.21 

1.1.3. Quaternary Ammonium Compounds 

Quaternary ammonium compounds (QACs) are cationic surfactants that are used in products 

such as detergents, fabric softeners, and hair care products.22-24 The typical structure of a QAC 

contains at least one hydrocarbon chain linked to a positively charged nitrogen atom and other 

alkyl groups containing short-chain substituents such as benzyl and methyl groups (Figure 3). 

 

Figure 3. Typical structure of a quaternary ammonium cation. R groups may be the same or different 

Alkyl or Aryl groups. 

 

 The three most abundant QACs are dialkyldimethyl ammonium compounds, alkylmethyl 

ammonium compounds, and benzylalkyldimethyl ammonium compounds.24 Release of effluent 

and sludge from sewage treatment plants is the main source of QACs that are released into the 

environment.25, 26 An increase in the saturation of sewage sludge with QACs would adversely 

impact the anaerobic digestion process by hindering methanogenesis; this would result in an 

increase in volatile fatty acid accumulation, causing a decrease in the efficiency of activated 

sludge.27 Residual amounts of QACs that are released into the environment are also of great 

concern because they are toxic to a wide range of organisms.28 The toxicity associated with QACs 

is more acute than that of anionic surfactants.27 In microbial colonies that experience long-term 
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exposure to QACs, the amount of antibiotic-resistant bacteria increases. Furthermore, multidrug 

resistant genes have been quantified in microbial colonies.29, 30 This increase in the population and 

spread of antibiotic-resistant bacteria that contain multi-drug resistant genes will have adverse 

effects on humans and the environment.30 

1.1.4. Illicit Drugs and Drugs of Abuse 

Illicit drugs are a group of chemicals that have adverse effects on human health and negative 

effects on the wellbeing of society.31 According to a world drug report (UNODC, 2013), 150-250 

million people have used illicit substances at least once.32, 33 These drugs include those that are 

forbidden by law for citizens to make, sell, or use. They mainly belong to the following classes of 

drugs: cocaine, heroin, amphetamines, and cannabis and its metabolites (Figure 4).34, 35 Precursors 

and by-products associated with the manufacturing of these drugs are often illegally buried in soil 

or disposed of in sinks, rivers, or toilets, from which they enter the public sewage system and 

accumulate in marine ecosystems.36 In contrast to legal drugs (pharmaceuticals), these types of 

drugs contain significant amounts of impurities in addition to the active ingredient. These 

contaminants pose unknown risks to the environment.36 

                                     

Figure 4. Chemical structures of cocaine (left) and Methamphetamine (right). 
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1.1.5. Polar Pesticides 

There is an extensive amount of polar pesticides (e.g. Atrazine and Monolinuron) that are 

currently in use.37, 38 For example, in the South Florida Water Management District it has been 

estimated that close to 1,415 tons of Atrazine, 622 tons of Chlorpyrifos, and 36 tons of Endosulfan 

are used per year.39, 40 This widespread use of pesticides for agricultural and non-agricultural 

applications have resulted in an increased concentration of their residues in the aquatic 

environment and the soil (e.g. Atrazine is found in 94% of America’s drinking water).41 As a 

consequence, humans and marine organisms are constantly exposed to these chemicals.42, 43 Of 

numerous studies that have investigated the effects of increased exposure to atrazine and its 

transformational products, three have shown the number of serious health effects, such as 

endocrine disruption, reproductive effects, and breast cancer.44-46 

                  

Figure 5. Chemical structure of Atrazine (left) and Monolinuron (right) 

 

1.1.6. Veterinary Products 

Veterinary medicines (antibiotics, feed additives, and supplements) are widely used today to 

prevent and treat diseases and protect the health of animals.47 In 2010, in the United States only, 

sales of veterinary medicines totaled $6.5 billion (www.ahi.org). These compounds can enter the 

environment through many pathways, such as through improper disposal of unused and used 

medicines and their containers, from animal excrement, and during the formulation and treatment 

process.48, 49 As a result, trace amounts of veterinary medicines have been detected in ground water, 
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surface water, and in the soil, worldwide.49, 50 Researchers have found that these compounds are 

toxic to a range of organisms (e.g. fish, earthworms, and algae) and cause antibacterial resistance 

in the bacterial colonies that affects humans.51, 52 

        

Figure 6. Chemical structure of antibiotics Doxycycline (left) and Kanamycin (Right) 

 

Due to the plethora of adverse effects of emerging contaminants on the wellbeing of humans 

and animals alike, the investigation of the degradation, accumulation, and transformation (which 

are collectively known as environmental fate) of the these compounds in different environmental 

compartments is essential.53 As discussed, these contaminants are primarily derived from 

industrial, municipal, and agricultural wastewater effluents.54, 55 As a consequence, the primary 

route of exposure to these compounds for humans and animals is through water. Plant uptake of 

polluted water results in an increased concentration of these pollutants in biomass, which may 

cause indirect exposure to humans and animals through the consumption of vegetation.56 The 

concentration, mobility, and chemo-dynamics of emerging contaminants is largely determined by 

their adsorption into and desorption from soil and organic matter.57 Thus, sorption is a vital process 

that controls the fate of emerging contaminants and their exposure to plant and animal life. 
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1.2. Background Information about Soil and Clay Minerals 

Soil is a complex mixture that is made of three major phases: solid, liquid, and gas. Table 1 

illustrates the composition by volume of average soil (these data can vary depending on the soil 

type and environmental conditions).58 Minerals and organic matter are the constituents of the solid 

phase, while pores or voids between the solid materials are occupied by the liquid and gaseous 

phases.59 

Table 1. Composition by Volume of Average Soil60 

Component Composition by volume (%) 

Minerals (solid phase) 45 

Organic matter (solid phase) 5 

Soil water (liquid phase) 25 

Soil air (gaseous phase) 25 

 

The liquid phase (soil solution), which is derived from precipitation and ground-water sources, is 

a complex mixture of dissolved forms (including the pollutants discussed) and suspended forms.61 

Soil air consists of gases that are derived from gases above the soil surface and from the respiration 

of organisms in the soil. Interactions between pollutants and soil include various physical and 

chemical processes that take place in solid, gas, and liquid phases, such as retention, infiltration 

diffusion through soil solution, and alternation (chemical changes to the structure of the 

pollutants).62 Soil is nature’s water filter, reducing the concentration and bioavailability of various 

classes of pollutants, including the emerging contaminants; thus, it reduces the transportation of 

these pollutants and their exposure to animals.61 

Clay minerals are a group of hydrous aluminosilicates (size <2μm), a major constituent of the 

earth’s crust (15% by volume).63 Clays are the major adsorbent for organic and inorganic 
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adsorbates because of their high surface area and charge.64 Clays are mainly byproducts that are 

formed by the weathering of primary minerals (i.e. minerals formed during the crystallization of 

magma) inside of the earth’s crust under high temperature and pressure conditions.65 Although 

primary minerals are stable inside of the earth’s crust under high temperature and pressure 

conditions, they may undergo transformation (weathering) under ambient conditions near the 

Earth’s surface and form secondary minerals. The term phyllosilicates is often used to refer to 

these types of minerals in mineralogy.65 

The building block of phyllosilicates is the SiO4 tetrahedron (the Si atom is covalently bonded 

to four oxygen atoms);  SiO4 tetrahedra form an interlocking array (Figure 7) where each 

tetrahedron is linked to the adjacent tetrahedrons by sharing three basal oxygen atoms to form a 

continuous 2D hexagonal mesh pattern (Figure 7).66 

                              

Figure 7. Structure of a silicate tetrahedron on the left and a 2D hexagonal mesh on the right.  

 

External ions (e.g. aluminum, magnesium, and iron) usually bind to this tetrahedral sheet by 

coordinating with hydroxyl and oxygen anions to form an octahedron (coordinated by six oxygen 

atoms). The horizontal linkage of multiple octahedrons then forms an octahedral sheet. The 

combination of tetrahedral and octahedral sheets that are bound by sharing oxygen atoms form 

aluminosilicate layers that define the basic structural unit of the phyllosilicates.66 Clay minerals 



 

9 
 

are classified into three main categories according to the number and arrangement of tetrahedral 

and octahedral sheets in their primitive structural unit. These categories include: 

(1) 1:1 Clays - This type of clay contains one tetrahedral and one octahedral sheet in its unit 

cells. Clays of this type belong to the kaolin group and have a general formula of 

Al2Si2O5(OH)4. 

(2) 2:1 Clays - This type of clay contains a single octahedral sheet that is sandwiched between 

two tetrahedral sheets, forming a three-sheet mineral. 2:1 clays include smectite, mica, talc, 

and vermiculite groups.  

(3) 2:1:1 Clays – This clays exhibit a 2:1 layer structure that is similar to talc, except that it 

has an interlayer of Mg(OH)2 (brucite) that forms a 2:1:1 type of structural arrangement. 

Chlorites are a group of minerals that belong to this category. 

The composition of these clay minerals can vary, due to isomorphous substitution (replacement 

of one structural cation with another of similar ionic radii) of ions (Si+4, Mg+2) in the clay mineral 

structure.67 Si+4 (0.039 nm) may be exchanged with Al+3(0.051 nm) in the center of the tetrahedron 

without any significant structural rearrangements. Further, cations such as Al+3 and Mg+2 (0.066 

nm) may be replaced by Zn+2 (0.074 nm) and Fe+2/+3 (0.074 nm). As a result of this isomorphous 

substitution, clay minerals will have a negative net charge. For example, the substitution of one 

Mg+2 ion for an Al+3 ion in the octahedron reduces the charge by a value of one.67  

As previously stated, Kaolinites are an example of a 1:1 type of clay; they are hydrated 

aluminosilicates with a chemical composition of Al2O3:SiO2:H2O = 1:2:2. In Kaolinites there is 

little isomorphous substitution hence they are mostly electrically neutral. The two clay sheets are 

held together by strong hydrogen bonding, rather than ionic forces. Kaolinites possess surface 
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hydroxyl groups that can be deprotonated under basic pH conditions; thus, their charge is pH 

dependent.68  

Smectites, an example of a 2:1 type of clay mineral (Figure 8), have a permanent negative 

charge; this is primarily caused by the isomorphous substitution of Mg+2 with Al+3. This negative 

charge is balanced out by cations in the interlayer space (Na+, Fe+2), which are hydrated (depending 

on the relative humidity) and exchangeable. The general structure of smectite clay is illustrated in 

Figure 8:69 

 

Figure 8. Typical structure of a smectite clay 

 

Smectites have a large total surface area, close to 800 m2/g.70 Due to weak interactions between 

clay sheets, smectites undergo swelling when in contact with water. Upon dehydration, the 

expanded clay sheets will shrink. As a result of this swell-shrink capability, smectites have the 

ability to adsorb and retain inorganic cations and organic compounds. Inorganic cations can 

undergo cation exchange with organic cations. Thus, smectites are ideal host materials for 

positively charged organic cations in the environment.71-73  
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Finally, the chlorite mineral group, a 2:1:1 type of clay exists as a mixture of several clay 

species. Due to their wide range of chemical compositions, these minerals can vary significantly 

in physical and chemical properties.74  

Smectite montmorillonite was used as the representative aluminosilicate for the studies carried 

out in this thesis because of its abundancy and availability of high quality crystal structures. 

 

1.3. Environmental Risk Assessment and the Significance of the Soil Sorption 

Coefficient  
The life cycle of a pollutant after its release into the environment (fate), and the availability, 

mobility, and degradability of any pollutants or mixtures of pollutants in the environment have a 

strong effect on their toxicity and environmental risk.75 Further, knowledge of these pollutant’s 

behavior and fate, such as partitioning between physical phases (e.g. solid and liquid), 

biodegradation, and photo degradation can provide vital insight into methods for remediation of 

contaminated areas.76, 77 The process of risk assessment can be defined as: estimating the 

possibility of a certain event occurring under a given set of circumstances.78 Environmental risk 

assessment involves an analysis of data on the fate and behavior of chemicals in the environment 

(e.g. water and soil), combined with an analysis of their adverse effects on the biosphere. Risk 

assessment is a vital tool for decision making that can be used to identify existing problems and 

predict potential risks, such that necessary steps can be taken to weaken the adverse effects.79  

When a compound (any chemical species) enters the environment, it becomes distributed 

among three major compartments: water, air, and soil.80 The fraction of the compound that will 

move into each compartment (fate) is controlled by the physio-chemical characteristics (e.g. 

charge, polarity, and size) of that species.81 Since the majority of emerging contaminants are 



 

12 
 

introduced into the environment through effluents (domestic, agricultural, and industrial), studying 

the partition (sorption to soil from water) of these contaminants in water and soil compartments is 

vital. Furthermore, sorption is an important factor that determines the mobility, reactivity, and 

bioavailability of a compound in the environment.12 Several mechanisms can be used to explain 

the sorption process of a compound to soil and soil organic matter depending on the structural 

characteristics of the compound (pollutant) such as functional group content, ionic nature, polarity, 

and solubility.82 It is also possible that more than one of these mechanisms are involved in the 

sorption process, depending on the structural features of the compound.81, 83 These mechanisms 

include: 

(1) Hydrophobic partitioning: sorption due to hydrophobic partitioning of a molecule is driven 

by the coupled effects resulting from unfavorable high energy cost of cavitation in water 

and the favorable van der Waals interactions between the sorbate and the environmental 

solid. This mechanism is important for sorption of nonpolar compounds on to organic 

matter and poorly solvated mineral surfaces.81 

(2) Electrostatic interactions: sorption due to attraction between oppositely charged sorbents 

and sorbates, electrostatic interactions can be further subdivided in to: 

I. Electron donor-acceptor (EDA) interactions: these type of interactions occurs due to 

transfer of electrons between electron-rich or -poor functional groups of the sorbate 

with the complementary electron-poor or -rich domains of the environmental solid 

which results in a weak electrostatic attraction.81 Hydrogen bonding is a special case 

of EDA complexes. 

II. Ion exchange: occurs due to the electrostatic attraction between a charged sorbate and 

an oppositely charged site on an environmental solid. More precisely, this process 
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involves the exchange of electrostatically bound counter ions, which balances the 

overall surface charge of a mineral (e.g. interlayer ions in smectites) with another ion 

of the same charge (positive or negative).84 

III. Cation bridging: a process where sorption of sorbates having negatively charged 

groups (COO-) coordinating through sorbed cations of environmental solids (Ca+2, 

Mg+2).  

(3) Surface complexation: occurs as a result of ligand exchange process where a hydroxyl 

group or a water molecule bound to surface Al or Fe atoms is complexed or exchanged 

with an organic sorbate having functional groups such as NH, COOH.   

The environmental fate assessment of organic compounds requires knowledge about their sorption 

coefficients (i.e. the ability of a solid to sorb a certain compound).85 The sorption coefficient, Kd 

(L/kg), describes the distribution of a solute between the solid and aqueous phases at equilibrium:

s
d

w

C
K

C
                                                                                                                     (1.1) 

where Cs (mass/kg) is the sorbed concentration and Cw (mass/L) is the concentration of the solute 

in solution. In a recent work carried out by Mackay and Vasudevan et al., a more complete 

description of the sorption coefficient considering the sorption mechanisms of various chemical 

compounds (polar, non- polar, and charged) and considering different sorbed forms and different 

modes of interaction (e.g. cation exchange and hydrophobic interactions) has been proposed:81  

, 1 , ,s Type s CE s SC CB

d

w

C C C
K

C

 
                                                                                           (1.2) 

Where Cs,Type1 is the concentration of sorbates (polar/apolar molecules) adsorbing through van der 

Waals interactions, solvation effects and electron donor-acceptor interactions (denoted as Type 1), 

Cs,CE is the concentration of sorbate adsorbed by cation exchange, Cs,SC+CB is the concentration of 
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sorbate adsorbed by surface complexation and cation bridging, Cw is the common dissolved 

concentration of the sorbate. 

The experimental determination of Kd is labor intensive and time consuming; it is estimated 

that close to 50,000 -100,000 different chemicals are produced for commercial purposes each year 

and thousands are added.53 Therefore, alternate approaches to determining the values of Kd have 

been explored. One plausible approach is the use of predictive models. Predictive models use 

statistical methods to foretell future outcomes, based on patterns and trends observed in existing 

data.86-88 

The extent of the contribution from each term in equation 1.2 depends on the structural features 

of the sorbate (e.g. polarity, functional group content, ionic nature) and the composition of the 

soil.81 For compounds that are apolar or polar, where van der Waals and dipole-dipole types of 

interactions are dominant, first and second terms have the highest contribution to Kd  (other terms 

are negligible).81 Numerous predictive models have been developed to successfully approximate 

Kd values of these compounds based on octanol-water partition coefficient and Abrahams 

solvation models.89, 90. 

Emerging contaminants such as PPCPs and illicit drugs involve bases (amine groups) with a 

pKa above 10 and the pH of natural water falls is between 6.5 and 8.5.73 As a consequence, most 

of these compounds are protonated and exist in their cationic form.73 Moreover, compounds like 

oxytetracycline that possess both amine and carboxylic groups (with pKas around 3.27) exist as 

zwitter ions. These organic solutes are adsorbed to negatively charged substrates, such as smectites 

and natural organic matter through cation exchange, surface complexation, and cation bridging.81 

For these types of compounds, sorption through ion exchange is significant in contrast to the non-

polar and apolar compounds discussed above. Thus, empirical models (or predictive models) that 
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are currently utilized (octanol-water partition coefficient and Abrahams solvation models) to 

approximate Kd for polar and apolar compounds, will severely underestimate the value of Kd if 

used for charged compounds, since these predictive models does not correctly account electrostatic 

interactions, which is a major driving force of sorption. Thus, the determination of Kd for organic 

cations is solely based on experimental methods.81 

To overcome this problem, Mackay and Vasudevan have recently proposed the initial steps for 

developing predictive models to estimate the partition coefficient (Kd) by incorporating 

mathematical functions that reflect structural features (e.g. charge, functional group content) of the 

sorbate and key characteristics of the environmental solid (e.g. cation exchange capacity) through 

a chemical probe.81 They also demonstrated that by using a homologous series of cationic 

ammines, structural changes impart a regular increase (linear) in the free energy of sorption 

through cation exchange, due to coupled hydrophobic and electronic effects.81 However, 

experimental observations lack the capability to decouple the contributions from each mode of 

interaction (hydrophobic and electronic); thus, knowledge of these interactions is limited at a 

microscopic level. Subsequently, they were unable to derive the exact form of the equation used 

to predict Kd, as a better understanding of individual contributions from hydrophobic and 

electronic effects was required. Thus, the necessity of an alternate approach to deciphering this 

problem was indicated.81 

The free energy of a process is related to the equilibrium constant K (Kd)91 through the following 

equation: 

lnG RT K                                       (1.3) 

where R is the gas constant and T is absolute temperature. According to equation 1.3, the value of 

any equilibrium constant (Kd) can be easily calculated if the free energy associated with the process 
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can be determined (i.e. the sorption of a chemical from a solution to the interlayer of a clay). 

Computational biochemists, in the last decade, have developed numerous highly accurate methods 

for calculating the free energy in ligand binding processes. The microscopic (atomistic) nature of 

these methods allows scientists to magnify into the molecular level and decouple contributions 

from different structural moieties (e.g. electronic, polar, and apolar) to the overall binding energy, 

which was not feasible in macroscopic experimental methods. In the next chapter, a brief 

introduction to the core theoretical concepts of free energy, the statistical mechanics basis of free 

energy, and the computational tools utilized in biochemistry to obtain the free energy of binding 

are discussed. Furthermore, the applicability of such methods to computing the free energy of the 

sorption of compounds from the solution phase to the solid phase (clays) is explored. 
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Chapter 2 Theoretical Background 

2.1. Statistical Mechanical Basis of Free Energy 

Free energy is an important factor that determines the feasibility of a chemical process such as 

protein-ligand binding, and the extent of partitioning of a compound among two or more phases. 

In thermodynamics, the free energy of a system is defined as usable energy that can be converted 

to work.91 Depending on the thermodynamic state of the system, free energy can be expressed by 

either Gibbs (G) or Helmholtz (A) functions. For a system at constant temperature and pressure, 

Gibbs free energy is used, while for a system at constant temperature and volume, Helmholtz free 

energy is used.92  

Helmholtz free energy is defined as: 

A U TS                                              (2.1) 

where A is Helmholtz free energy, U is internal energy, T is the temperature, and S is the entropy. 

The Gibbs free energy is the Helmholtz free energy plus the additional pV term, where p is pressure 

and V is volume: 

G A pV                                                                                               (2.2) 

In many cases Gibbs and Helmholtz free energies are exchangeable with respect to the end result. 

Thus, the Helmholtz free energy is used for the remainder of this discussion.92 

Thermodynamic relations like equation 2.1 provide an average description of the system, but 

does not provide detailed understanding into the atomistic level insight which generates these 

observables.93 Statistical thermodynamics provides the missing link that connects observable 

thermodynamic properties and their molecular properties. In statistical mechanics, thermodynamic 

observables are described as the average property of the large number of particles that a system is 

composed of.93 In order to define a microscopic system with N number of particles, the coordinates 
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and velocities of each particle must be determined. At any given instant, a system will have a new 

set of coordinates and velocities due to collisions between particles. Thus, the properties of each 

particle will change at any given point in time. In practice, such a description of a system is not 

feasible, due to the extremely high number of possible configurations.93 However, each 

configuration can be ranked according to the probability. Thus, some configurations of the system 

will be more probable than others. For a large N, as in an actual thermodynamic system, the most 

probable number of configurations will dominate other configurations that are less probable, and 

will represent the average properties of the system.94                                                      

The Boltzmann distribution can be used to calculate the average number of particles in the 

most probable configuration. Assuming the constraints for the total energy and the number of 

particles in the system to be constant,94 the fraction of particles ni/N in configuration i with energy 

Ei  is given by: 

i

i

E

i

E

i

n e

N e










                                                                                           (2.3) 

Where
1

bk T
  , the Boltzmann constant is (kb), and absolute temperature is (T); ni will decrease 

exponentially with an increase in energy. iE

i

e
 , in the denominator, is termed the molecular 

partition function, q: 

iE

i

q e
                                                            (2.4) 

The magnitude of q provides an indication of the number of thermally accessible states of a 

molecule at a given temperature. Using equation 2.4, total energy can be expressed as a function 

of its molecular properties: 
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i i

i

E n E                                      (2.5)     

iE

i

i

N
E E e

q

                                                               (2.6) 

At a first approximation, the molecular partition function (q) is derived for a system of non-

interacting molecules; hence, E is constant. To treat systems with interacting particles, the concept 

of an ensemble is used. An ensemble is a large collection of replications of a system.91 Even though 

the energy of an individual microstate can fluctuate due to the interaction of particles, the total 

energy of the ensemble will remain constant. Therefore, the average energy (E) of each member 

will be constant.90 Equations 2.5 and 2.6 can be re-written as: 

1
i

i

E E
N

                                                                                                      (2.7) 

1
iE

i

i

E E e
Q

                                                                                                                              (2.8) 

where Ei is the energy of a single replicate of collection of N replications, and Q is the canonical 

partition function. Q is related to the molecular partition function (q) by: Q = qN for independent 

and distinguishable particles, and 
!

N
q

Q
N

 , for independent and indistinguishable particles. The 

Boltzmann distribution provides the most probable configurations of the ensemble, where ni 

number of members of the ensemble have energy Ei. 

The total energy (E) corresponds to the value of the internal energy (U) of the system relative 

to its value at T=0: U=U(0)+E. For simplicity, assume that U(0)=0, and therefore U=E. From 

thermodynamics, at constant volume V, a reversible change in the heat of the system (dqrev) is 

equal to the change in internal energy (dU) and dqrev is related to the infinitesimal change in the 

entropy of the system (dS) at temperature T: 
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revdU dq TdS                                                                                                        (2.9) 

By combining equations 2.9 and 2.8, it is possible to describe entropy in terms of the microscopic 

properties of a system: 

ln
U

S k Q
T

                                                                                           (2.10) 

Once the partition function of a system is known, all of the other properties of the system can be 

expressed as a function of Q. Thus, statistical thermodynamics provides a molecular theory of the 

equilibrium properties of macroscopic systems.95 Using equation 2.10, the equation for Helmholtz 

free energy (A), can be derived as: 

lnA kT Q                                                                                                       (2.11) 

Q is the partition function for a system with a constant number of particles, volume, and 

temperature. In reality, absolute free energy is not used; rather, free energy changes associated 

with changes in state are determined: 

1ln
2

Q
A kT

Q
                                                                                            (2.12) 

where Q1 and Q2 are the partition functions that correspond to states 1 and 2. ΔA is the change in 

free energy associated with a transition between the two states. The measure of change in free 

energy is an important quantity for predicting the spontaneity of a process. A spontaneous process 

often leads to a reduction in the free energy of a system. Thus, ΔA will have a negative value for a 

spontaneous reaction. The higher the negative value is, the more feasible the process is.91 Both 

experimental (macroscopic) and molecular modeling (based on statistical mechanics) approaches 

have been utilized extensively to obtain free energy changes, as knowledge about the free energy 

of a process is important.96, 97   
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Molecular modeling methods are used to mimic the behavior of molecular systems. This is 

achieved with the aid of computer modeling. Over the last decade, because of the increase in 

computational power, a wide range of molecular systems have been modeled.98, 99 Depending on 

the size and type of the system simulated, different methods can be applied. The two most widely 

used methods are force field and electronic structure methods. Electronic structure methods, also 

known as quantum mechanical methods, are used to model systems with high accuracy that 

account for the quantum behavior of matter. Because of the limitations of computational resources, 

only a small system can be modeled (a system with less than 100 atoms) using quantum mechanical 

methods. In contrast, force field (molecular mechanics) methods use a simple set of equations to 

define the interactions of molecules. Thus, they can be used to model systems that have thousands 

of atoms. A time evaluation of a system is achieved using integration algorithms.100  

 

2.2. Background Information about Molecular Mechanics  

In molecular mechanics (MM) models, the motion of the electrons is ignored and the atoms 

are treated as a set of interacting spheres (balls connected using springs).101 Thus, in MM models, 

the quantum nature of nuclear motion is ignored and the dynamics of atoms are described by 

classical Newtonian mechanics.102 Thus, MM methods are not suitable for modeling properties 

that are dependent on electron dynamics and that are quantum in nature, such as chemical 

reactions, excited states, and charge-transfer interactions.103 In an MM system, the term force field 

(FF) is used to name the set of equations that describes the interactions among the atoms in the 

system.101 The total energy of an MM system (EMM) is calculated as the sum of different energy 

terms: 

MM BOND ANGLE TOR VDW ELE E E E E E                                                     (2.13) 
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Figure 9. Fundamental force field energy terms 

 

where EBOND is the energy associated with the stretching of a bond, EANGLE is the energy associated 

with the bending of an angle, ETOR is the energy associated with the rotation of a bond, and EEL 

and EVDW represent electrostatic and van der Waals interaction energies between non-bonded atom 

pairs.  

 Each energy term in an FF (equation 2.13) can be expressed using a simple equation that is a 

function of the atomic coordinates (equation 2.14). In most of the FFs that exist today (e.g. OPLS, 

AMBER, DRIEDING), stretching and bending energies are modeled using simple harmonic 

functions; torsional energies are modeled using periodic functions that capture the periodic nature 

of torsional energies; and Columbic and Van der Waals interactions (non-bonded interactions) are 

modeled using Coulomb and Lennard-Jones potentials, respectively.104-106 An example functional 

form of a force field is given below: 
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    (2.14) 

where kb is bond force constant, (b-b0) is the distance from equilibrium that an atom has moved, kθ 

is the angle force constant, (θ-θ0) is the angle from the equilibrium between three bonded atoms, 
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kα is the dihedral force constant, n is the multiplicity of the function, and δ is the phase shift. In 

non-bonded interactions ij represents two atoms, σij and ε are van der Waals constants, r is the 

distance between two atoms, q represents the charge, and D is the effective dielectric function for 

the medium. 

 One of the most important steps in FF development after figuring out an appropriate functional 

form is the determination of FF parameters (e.g. equilibrium bond lengths and force constants).107 

Typically, these parameters are fitted to reproduce reference data from experimental or electronic 

structure calculations. MM simulations assume that molecules are composed of structural units 

that are similar in different molecules. Using this assumption, FF parameters (force constants and 

Leannard-Jones parameters) can be developed for small molecules that can also be used in large 

molecules (polymers, proteins). Thus, for example, C-H bond parameters that are derived for 

methane (CH4) molecules can be used to model a C-H bond of a decane (C10H22) molecule. The 

study described in this thesis utilized OPLS-AA, CLAYFF, and SPC FFs. A brief introduction to 

these FFs is provided in sections 2.2.1 and 2.2.2.  

2.2.1. Background Information about OPLS-AA and CLAYFF Force Fields 

 The optimized potentials for a liquid simulation (OPLS) force field was developed by 

Jorgensen et al.108 The OPLS force field can be divided into two classes: the OPLS-AA (all-atom) 

and OPLS-UA (united-atom). OPLS-UA is primarily used for engineering applications, since it is 

computationally cheaper than the all-atom version. The OPLS-AA force field is parameterized for 

small organic molecules and is intended to simulate biomolecules.108 The OPLS-AA force field 

has been parameterized to simulate a broad range of functional groups and molecules such as 

alcohols, thiols, sulfides, ketones, amides, ammines, hydrocarbons, pyrrole, and diazoles.108 In 

OPLS-AA, bond stretching and angle bending parameters are modeled using harmonic potentials, 

the torsional motion is modeled using a Fourier series that is truncated after the third term, van der 
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Waals interactions are modeled using a Lennard-Jones 12-6 potential, and electrostatic interactions 

are modeled using point charges. The LJ and coulomb potentials are used to describe inter and 

intra  molecular interactions (atoms which are three or more bonds apart are scaled by a factor of 

0.5).108 In OPLS-AA, bond stretching and angle bending parameters were taken from the 

AMBER94 and CHARMM force fields, while torsion potentials were obtained by fitting to ab 

initio calculations (MP2).108 The parameterization of LJ parameters and partial charges was 

conducted to reproduce the saturated liquid density and enthalpy of vaporization.108 In later 

versions of the force field, partial charges were fitted to the ab initio electrostatic potential with 

the CHELPG method.109 

The terms used in the OPLS-AA force field are: 
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      (2.15) 

where kb and kθ are the force constants, r is the bond distance, θ is the angle, ∅ is the torsion angle, 

A and B are Lennard-Jones parameters, q is partial charge, 𝜀0 is permittivity in a vacuum, and i 

and j indicate any two atoms. The subscript 0 symbolizes the equilibrium value. fij is a ‘fudge 

factor’, where fij = 0.5 for atoms that are four bonds away and fij =1.0 for all other non-bonded 

interactions. 

 CLAYFF is a force field developed by Cygan et al. to model mineral systems and their 

interfaces with aqueous solutions.110 In the CLAYFF force field, metal-oxygen interactions are 

treated as non-bonded (using Lennard-Jones potential with electrostatics). Non-bonded parameters 

are optimized on the basis of known mineral structures, and partial charges are derived from 
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quantum mechanical simulations using model oxide, hydroxide, and oxyhydroxide structures. The 

flexible simple point charge (SPC) water model is used to model water and hydroxyl groups.110 

  CLAYFF has been successfully applied to model silicate, aluminate, and other metal oxide and 

hydroxide systems.111-114 The functional form of the CLAYFF force field is:  
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               (2.16) 

where kb and kθ are the force constants, r is the bond distance, θ is the angle, R and D are Lennard-

Jones parameters, q is partial charge, 𝜀0 is permittivity in a vacuum, and i and j indicate any two 

atoms. The subscript 0 symbolizes the equilibrium value. 

2.2.2. Common Water Models 

 In computational chemistry, classical water models are used for accurate simulation of the 

liquid state of water.115 Due to its abundance and extraordinary chemical properties, the effects of 

water are important for the processes involved in biochemistry, organic chemistry, and 

environmental science.116, 117 Due to the presence of two lone pairs in the oxygen atom, water 

deviates from its tetrahedral structure (angle of H-O-H 109o) to a bent structure that has an H-O-

H angle of a 105o.118 Because of the high electronegativity of the O atom, there is a higher 

probability of finding the H-electrons near the O atom. Hence, water is a polar molecule. This 

asymmetric electron distribution causes H atoms to be partially positively charged. Thus, H-atoms 

can form strong electrostatic interactions with O-atoms in another water molecule (or with other 

molecules that have an electronegative atom such as nitrogen or fluorine; this is referred to as 

hydrogen bonding.119   



 

26 
 

 

   Figure 10. Structure of water 

   

 For an accurate simulation of water, a model that embodies the polarity of the water molecules 

and permits the formation hydrogen bonds is vital. Several water models have been developed in 

the last decade, ranging from simple models such as TIP3P and flexible SPC/SPC-E (three-site 

models), to more complex models such as TIP4P (four-site models) and TIP5P (five-site 

models).120, 121 Selection of the proper water model is an important step for successful simulation. 

Since the CLAYFF force field uses a well-tested flexible SPC water model, the flexible SPC force 

field was used to model water in this study.  

 

Figure 11. Illustration of simple water models 

 

 Simple point charge (SPC) is one of the most accurate three-site water models (Figure 11) and 

it was developed by Berendsen et al.122 One of the initial drawbacks of this model was that water 

was treated as rigid molecules (intramolecular degrees of freedom are frozen). To overcome this 

limitation, Voth et al. developed a flexible variation of the SPC water model that introduced 
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flexibility into the original model.123 Flexibility was achieved by introducing bond stretching and 

bending parameters to the FF. Flexible SPC accurately reproduces bulk properties of water and is 

used extensively in studies that are reported in the literature.123-125 This model uses tetrahedral 

geometry to model the H-O-H angle (H-O-H angle is set to 109.5o); the O-H distance is set to 0.1 

nm with partial charges on the oxygen, and hydrogen atoms are set to -0.82e and 0.41e.123  

 

2.3. Background Information about Molecular Dynamics Simulations 

Molecular dynamics (MD) includes deterministic methods that are used to study the dynamical 

properties of an N-body system in equilibrium; it is based on FF methods.126 During the last decade 

MD has become a vital tool, not only in theoretical chemistry, but in material science, 

environmental engineering, and biochemistry, as MD provides insight into molecular processes 

that are difficult to obtain during an experiment.127-129 MD uses classical or Newtonian mechanics, 

where the motions of atoms are described by: 

i
i

d

dt


r
v  (i =1, 2, 3, …)                                                            (2.16)                     
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F  (i =1, 2, 3, …)                                                   (2.17) 

where ri, vi, and mi are the position, velocity, and mass of an atom; Fi is the force acting on an 

atom i. The differential form of equation 2.17 (Newton’s second equation) is: 
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r

 (i =1, 2, 3, …)                                                               (2.18) 

Here U(i) is the potential energy at position r, which is obtained using a force field, as discussed 

above. Thus, the right side of the equation contains the negative of the energy gradient, which 

provides the force (F) on the particles.130  
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Using a Taylor expansion, the new positions of a set of particles after a small time step Δt can 

be obtained, given the initial positions ri and time t: 

2 3
2 3

2 3

1 1
( ) ( ) ( ) ( ) ...

2 6tt t t t t
t t t

  
  

        
r r r

r r                               (2.19) 

the above equation as can be rewritten as: 

2 31 1
( ) ( ) ( ) ( ) ...

2 6tt t t t t         t t tr r v a b                               (2.20) 

where velocity (vi) is the first derivative of the position with respect to time at time ti, acceleration 

(ai) is the second derivative of the position with respect to time at time ti, and hyper-acceleration 

(bi) is the third derivative of the position with respect to time at time ti. Using a similar approach, 

the previous position of a set of particles a small time step Δt can be obtained, given the initial 

positions ri and time t: 
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r r                       (2.21) 

Adding equations 2.20 and 2.21 provides a formula that predicts the position one time step Δt after 

the current and previous positions and the current acceleration: 

2( ) (2 ) ( ) ...t t t t      t tr r r a                            (2.22) 

This method is known as the Verlet algorithm for solving Newton’s equations numerically. 

Although previous positions are unavailable at the initial point, they can be estimated from a first-

order approximation of equation 2.20: 

0 0t t   r r v                                    (2.23) 

Acceleration is evaluated at each time step using the forces (equation 2.18), which then permits 

the propagation of the atomic positions in time, generating a trajectory.  
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The Verlet algorithm suffers from two major drawbacks: 

1) A numerical disadvantage since 2
t  (a small value) is added to 2 ( ) ( )t t t r r  (a large 

value) to obtain new positions. This might cause truncation errors due to finite precision. 

2) Velocities do not appear explicitly, which is a problem when generating ensembles with a 

constant temperature. 

To overcome these problems, a velocity verlet (VV) algorithm was introduced.131 In VV positions, 

velocities and accelerations at time t t are obtained at time t using the following method: 

2( ) ( )t tt t t   r r v                                               (2.24)

( )
( ) ( ) ( )

2t

t t
t t t t

 
     

a
v v a                                            (2.25) 

The velocity Verlet algorithm includes the following steps: 

1) Calculate: 2 21
( ) ( ) ( )

2t t tt t t t      r r v a   

2) Derive ( )t t ta  from the gradient of the potential using ( )t t r   

3) Calculate: ( )
2

(t + t)
(t + t)= (t)+ (t)+ t


 

a
v v a   

 The time step (Δt) is an important parameter that determines the accuracy of a simulation. It 

should be selected smaller than the fastest process in the system. The fastest molecular motions, 

molecular rotations, and vibrations typically occur in the frequency range of 1011-1014 s-1. Thus, a 

time step of 1 fs is usually used to carry out MD simulations. A standard MD simulates a 

microcanonical ensemble (number of particles (N), volume (V), and energy (E) are constant).131  

 As discussed in section 2.1, the thermodynamic properties of a system can be derived if the 

partition function Q is known. Since a molecular dynamics simulation generates the most probable 

configurations of the ensemble, those configurations can be used to estimate Q. In this setting, the 
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expressions for the internal energy (U) and the Helmholtz free energy (A) in equations 2.7 and 2.8, 

respectively, can be rewritten in terms of an ensemble average (denoted by < >) over N 

configurations of the system: 

1 N

iN N
i

U E E
N

                           (2.26) 
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                         (2.27) 

2.3.1 Thermostats and Barostats 

 As stated above, a generic MD simulation produces an isolated micro-canonical ensemble (a 

microcanonical ensemble defines a thermodynamic system that has a constant number of particles 

(N), volume (V), and energy (E): NVE ensemble). Unfortunately, in most experiments, 

temperature and pressure are important control variables, as the temperature, pressure, and volume 

of a system is maintained at specific values. Therefore, the integration algorithm (e.g. velocity 

Verlet) used in an MD simulation must be modified to include the influence of external 

temperature and pressure. This can be achieved by introducing thermostats and barostats. Only 

after such a modification to the integration algorithm, can the canonical (with a constant number 

of particles (N), volume (V), and temperature (T)) or the isothermal-isobaric (with a constant 

number of particles (N), pressure (P), and temperature (T)) ensembles be generated. 

 In the canonical ensemble, temperature (T), volume (V), and number of particles (N) are fixed 

and energy is allowed to fluctuate (NVT). A straightforward approach to controlling the 

temperature is scaling the velocities of the particles (velocity scaling method). In velocity scaling, 

the velocities are multiplied by a factor of  𝜆 = √𝑇0/𝑇(𝑡), where T(t) is the temperature at time t, 

calculated from kinetic energy, and T0 is the desired temperature. Unfortunately, this approach 
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does not permit fluctuations in kinetic energy, which cause an oscillation in the system’s total 

energy.  

 A more accurate approach is the use of the Berensden thermostat.132 In this method, the 

temperature is maintained by coupling the system with an external heat bath that has a fixed 

temperature T0.
132

 At each iteration of the integration algorithm, velocities are scaled such that the 

rate of change of temperature is proportional to the change in temperature: 

0

( ) 1
( ( ))

dT t
T T t

dt 
                 (2.28) 

𝜏 is a coupling parameter that is used to set the tightness of the system with the external heat bath. 

The change in temperature of each iteration is given as: 

0[ ( )]
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                  (2.29) 

The scaling factor for the velocities is given as: 

2
01 [ ( )]
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                           (2.30) 

The Berendsen thermostat is usually used to relax the system to a target temperature. However, 

it does not produce a correct canonical ensemble.133 To produce a correct canonical ensemble, 

methods like Nose-Hooover, Anderson type thermostats are applied.134, 135 The isothermal-isobaric 

ensemble is a thermodynamic system that has a constant number of particles (N), constant pressure 

(P), and constant temperature (T) (known as an NPT ensemble). The Berendsen barostat produces 

an NPT ensemble by weakly coupling the system with an external bath, utilizing the principle of 

least local perturbations.132 Similar to the Berensden thermostat, an additional term is added to the 

integration algorithm that causes a pressure change: 
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32 
 

The term 𝜏𝑝 is the coupling constant, p is pressure at time t, and p0 is the target pressure. Scaling 

of the particle coordinates and the volume is applied simultaneously to minimize local 

disturbances. An additional term is added to the integration algorithm: 

 x v ax                 (2.32) 

where x and x   are coordinates before and after the pressure coupling, and v is the velocity of the 

particle. 

The volume changes concomitantly: 

3V V                (2.33) 

where: 

0( )3 pp p                    (2.34) 

and where β is the compressibility. 

The modified equation of motion is: 

0( )

3 p

p p



 x v x                (2.35) 

which represents a concomitant scaling of coordinates. 

Other barostats that are commonly used include Anderson, Parinello-Rahaman, and Nose-Hoover 

barostats.134, 136 

2.3.2. Periodic Boundary Conditions 

Although MD simulations are conducted to provide information about physical systems 

(several moles of different molecules), only a small portion of the sample (thousands of molecules) 

is simulated in practice, due to computational limitations. As a consequence, the ratio of surface 

molecules to that of the total number of molecules in the model will be higher than the actual 

system that is modelled.127 Periodic boundary conditions (PBC) are used in MD simulations to 

simulate the bulk phase (e.g. water and crystal) and to minimize surface effects.127 In the PBC 
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method, the MD box where solvent and solute molecules are located (user defined) is replicated 

in all directions in space (Figure 12), (i.e. the central box is enclosed by 26 duplicate boxes, which 

are again enclosed by 98 boxes, and so forth). If a solute or solvent molecule leaves the central 

box through the left wall, its image will enter the box through the right wall from the neighboring 

box.127  

The utilization of PBC has a major disadvantage due to the exponential increase in the 

computational cost. Without PBC, to calculate the forces and energy on an atom (i) in the 

simulation box, the sum of its interactions with all of the atoms in the simulation box is only 

required (several hundreds). In contrast, when PBC is introduced, the sum of all of the interactions 

of the atom (i) with the rest of the atoms in the simulation box, and all of the atoms in the images 

is required (infinite);107 this is impossible in practice. To overcome this problem, an approximation 

known as minimum image convention (MIC) is utilized.134 MIC is applied to potential functions 

that are short ranged (van der Waals interactions) in nature. In MIC, an atom (i) in the simulation 

box will only interact with atoms in the periodic images that lie within the simulation box. To 

facilitate this, a cut-off distance (rcut) is introduced to truncate the short range potentials. For any 

atom (i), the interactions with all other atoms (j) are within a cut-off distance and all other 

interactions are ignored. rcut is defined such that it is less than half of the box dimension. If rcut 

violates this rule, any atom might interact with more than one periodic image of another atom, 

which is incorrect.137 Introduction of the cut-off distance aids in reducing the number of interaction 

terms, thus lowering the computational cost. Truncation of a potential might lead to errors in the 

calculation of the potential energy; this error can be reduced by choosing an rcut that is as large as 

possible.138 
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Figure 12. Illustration of PBC in 2D  

 

This treatment is valid for potential energy functions that decay more rapidly than r-3 in three 

dimensions, such as the van der Waals function, which decays at a rate of r-6.138 For columbic 

interactions such truncation methods cannot be used (they decay in a rate of r-1).139 Hence, in PBC, 

Ewald summation is used to account for the electrostatic interactions.140 

2.3.3 Ewald Summation 

 Ewald summation was introduced in 1921 as a method for computing long-range electrostatic 

interactions between particles and all of their replicate images.140 The basic idea behind this 

method is to partition the interactions into a short-range and long-range contribution. The short-

range contribution is computed by directly obtaining particle-particle interactions. In contrast, the 

long-range contribution assumes a Gaussian distribution of charge, which can be efficiently 

computed in the Fourier space.140 In the Ewald method, point charges are screened by a Gaussian 

charge distribution of the opposite sign, making short-range electrostatic interactions. This added 

charge is then neutralized by adding a Gaussian charge distribution with the same sign as the point 

charge (Figure 13). 
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Figure 13. Schematic representation of the Ewald summation. 

 

The short-range contribution is calculated using the following equation:

0
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                                      (2.36) 

where erfc(x) is the error function, rij is the distance between the particles, qi and qj are the charges 

on atoms i and j respectively, α is a constant damping factor, ε0 is the permittivity of the vacuum, 

and εr is the relative dielectric constant. The real space part of Ewald summation and van der Waals 

interactions can be calculated simultaneously using the same cut-off radius, although most of the 

popular MD codes allow users to define cut-off values separately from van der Waals and Ewald 

sum methods.141 

The self-energy of the added Gaussian charges is equal to: 
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The Fourier part of the energy has the following form: 
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                       (2.38) 

where V is the volume of the system and the vectors k are linear combinations of the reciprocal 

basis vectors of the system. 

2.3.4 Error Analysis in Molecular Dynamics Simulations 

 Since MD simulations are of finite length, calculated thermodynamic properties (averaged) 

always involve statistical uncertainty. This uncertainty can be reported in terms of a standard 

deviation of the average value, and will be inversely proportional to the square root of the number 

of sampling points.107 It is important that these points are not correlated; thus, nearby points in 

simulations are not used. Therefore, to estimate statistical uncertainty, the production time of an 

MD simulation is divided into blocks, such that the equivalent points in two blocks are not 

correlated.107 To recognize an appropriate block size, the variance of the averages that are 

calculated over the blocks must be calculated. When the variance of increasingly larger sizes of 

blocks reaches a plateau, averages become independent of the block size and the minimum block 

size of the independent sampling points are determined.107 

 Alternatively, to determine the block size, direct evaluation of the autocorrelation function for 

a desired variable can be implemented. The autocorrelation function will be zero for the interval 

of points, which corresponds to the relaxation interval of such a variable.142 The advantage of this 

method is that if the relaxation time of a certain process is known, the required simulation time 

can also be estimated in advance. 

Initial geometries of molecular models that are used in MD simulations are usually obtained 

through x-ray structures or by minimized geometries using quantum mechanical (QM) methods. 
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QM calculations are also used to obtain the partial charges and other parameters (equation 2.14) 

that will be used in a force field. In section 2.4, a brief introduction to QM calculations, the 

derivation of atomic partial charges, and the density functional theory is given. 

 

2.4. Background Information about Quantum Mechanical Simulations  

 In quantum mechanical (QM) simulations the energy of a system is described as a function of 

nuclear and electronic coordinates.143 The main difference between MM and QM simulations is 

that, in QM models electrons are explicitly accounted for. This allows QM simulations to be used 

to model properties that are dependent on electron distribution and dynamics (such as charge 

transfer interactions and chemical reactions).143 Matter possesses wave and particle properties, due 

to its small mass and high velocity of electrons; thus, the wave nature must be taken into account 

to correctly describe its properties. As such, wave functions (𝜑) are introduced to describe its static 

and dynamic behavior. Wavefunctions are solutions to the Schrödinger equation: 

H E    (time independent)                                  (2.39) 

where �̂� is the Hamiltonian operator, 𝜑 is the wave function, and E is the energy. The square 

modulus of the wave function multiplied by the infinitesimal volume factor gives the probability 

of finding an electron in that volume.143 This is an observable property that is directly related to 

the electron density, as observed using x-ray diffraction methods. The Schrödinger equation cannot 

be solved precisely for systems involving more than one electron. Thus, approximations are made 

to simplify the problem at hand. One of the most important approximations made is the Born-

Oppenheimer approximation, which states that nuclear kinetic energy is negligible compared to 

electron kinetic energy that allows us to solve electron and nuclei wave functions separately.144 
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The Hartree-Fock density functional theory and the Moller plesset perturbation theory are two 

popular wave-based approaches that are used today to solve the Schrödinger equation.107 

2.4.1 Density Functional Theory 

 Over the last decade, density functional theory (DFT) has been the method of choice for 

studying condensed matter systems such as proteins, organic molecules, semi-conductors, clay, 

and minerals.145-147 The popularity of DFT is due to its ability to accurately predict and describe 

material properties for a relatively low computational cost (compared to the Hartree-Fock and 

Moller plesset theories). DFT describes a many-body interacting system through its particle 

density, not through a many-body wave function (as in Hartree-Fock).148 This causes a significant 

reduction in the degrees of freedom to be simulated, from 3N to three spatial coordinates through 

particle density. 

 The foundation of DFT is Hohenberg and Khon theorems, which states that the ground state 

electron energy (E) is a unique functional of the electron density (ρ).148 Given the wave function 

(𝜑), electron density can be defined for an N-body system as: 

2

2 2( ) ( , ,..., ...N Nx N x x x dx dx                        (2.40) 

where ρ(x) is the probability of finding an electron at position x. 

If the exact functional form is known, the ground state energy can be readily obtained by a 

minimization procedure of the electron density. However, HK theorem only states the existence 

of such a function, without providing the full details of its actual form.148 

 A study by Kohn and Sham was the first to approximate the functional form of interacting 

electrons by an energy functional of non-interacting electrons with a correction term that is known 

as the exchange-correlation functional [ ]XCE   .149 The Kohn-Sham DFT is formally written as: 

1
[ ] [ ] ( ) ( ) ( ) ( ) [ ]

2KS i K i ext XCE E V x x dx x y dxdy E                               (2.41) 
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where the first term computes the electron kinetic energy of non-interacting electrons, the second 

term computes the electron-nuclei interaction, and the third term computes the electron-electron 

interaction. 𝐸𝑋𝐶[𝜌] is an universal functional of the electron density that is known as the exchange-

correlational functional. To obtain the ground state properties of a system, equation 2.41 should 

be optimized over all possible electron orbitals 𝜑𝑖 under the following constraint: 

( )N X dX                            (2.42) 

where N is the total number of electrons in the system (e.g. in an H2 molecule, N is equal to 2) 

 One of the most important steps in conducting a DFT calculation is the proper selection of the 

exchange-correlation functional. There are numerous approximations of the exchange 

correlational functional, such as local density approximation (LDA), generalized gradient 

approximation (GGA), meta-GGA, and hybrids of LDA and GGA. Unfortunately, none of these 

functionals appear to work well for all chemical systems. A functional should be carefully selected, 

such that it will provide optimal results for the chemical system of interest. Among the plethora of 

functionals, B3LYP has been benchmarked and extensively used  to obtain accurate ground state 

geometries of simple organic molecules.150  

2.4.2 Quantum Mechanical Derivation of Partial Atomic Charges 

 The use of high-quality partial charges for atoms when conducting an MD simulation is an 

important factor that determines the accuracy of the results obtained from it.151 As atomic charges 

are not observables and there is no specific criterion to validate the accuracy of partial charges that 

are derived through various methods (e.g. Mulliken and Lowdin population analysis), accuracy is 

often determined by their ability to reproduce experimental multipole moments.152 

 The most widely used method for calculating atomic charges is to calculate the electrostatic 

potential (ESP) that is generated using QM methods on a grid surrounding the molecule and 
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reproducing this potential by fitting charges to chosen sites on a molecule.153 Several charge 

derivation methods, such as Merz-Kollman (MK), restrained electrostatic potential (RESP), and 

charges from electrostatic potentials using a grid (CHELPG), are based on this core concept.151, 154 

 The RESP method, developed by Kollman et al., is considered the most accurate method 

among the aforementioned ESP fitting schemes.154 RESP charges are less dependent on 

conformation and are transferable between functional groups. RESP also eliminates the poor fitting 

of charges on buried atoms in a molecule.154 In the RESP method, the first step is the charge fitting 

process, with QM ESP Vi evaluated for each point (i) in a set of points that are fixed in solvent-

accessible regions around the molecule. These points are selected such that they lie outside of the 

van der Waals radius of the molecule. Subsequently, the least squares fitting procedure is then 

used to fit the charge (qi) to each atomic center (j) of the molecule, with a restraining function, 𝜒𝑟𝑠𝑟𝑡2  .  

The calculated ESP 𝑉�̂� is given by the equation: 

j

i

i ij

q
V

r
                                       (2.43) 

And the least squares function 𝜒2 can be written as: 

2 2 2
esp rsrt                              (2.44) 

where 2 2( )esp i i

i

v v    and 2 2
0( )rsrt j

j

a q q   , a is a scale factor, 0q is the target charge of the 

restraint, and 𝑎 is the restraint. 

The minimum of the equation 2.44 can be defined as: 

2 22 ( ) ( )( )
0esp rsrt

j j jq q q

   
  

  
                          (2.45) 

By solving the equation 2.45 using a matrix, partial charges can be obtained. 
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 The next section of this chapter focuses on the application of the molecular modeling methods 

in the specific case of the calculation of free energy of ligand binding in biological systems. 

 

2.5. Introduction to Protein Systems and the Importance of Protein-Ligand 

Interactions 

 Proteins (Figure 14) are large, three-dimensional biomolecules that are composed of one or 

more long chains of amino acid residues. Proteins do most of the work within living organisms, 

such as DNA replication, catalyzing enzymatic reactions, responding to stimuli, and transporting 

molecules.155 Proteins primarily differ from each other by the sequence of amino acids in their 

polypeptide chains. There are twenty different amino acids in nature, and each has different 

chemical properties.155 As a result, different combinations of amino acids will elicit proteins with 

different three-dimensional structures and chemical properties. Thus, the structure-function 

relationship of a protein must be known to understand the processes and mechanisms associated 

with those processes.156 

 Ligands are species that form complexes with proteins, mainly through noncovalent molecular 

interactions. A ligand can be another protein, organic molecule, or membrane.157 One of the first 

models used to describe the behavior of ligands interacting with proteins was the lock and key 

model, which states that there is a complimentary relationship between the shape of a ligand and 

that of the active site of a protein; hence, the analogy of the lock and key.158 In proteins, a multitude 

of functions are mediated by the interaction of the protein with certain ligands. The result of such 

an interaction is the formation of a protein-ligand complex. The affinity of a specific ligand to a 

protein is measured by the overall change in the free energy of the interactions that occur upon 

binding. A high negative value of free energy indicates a high affinity. One of the greatest 
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achievements of the twentieth century was the development of methods that allow scientists to 

discover small organic molecules (ligands) that are used to treat people who suffer from various 

diseases.159  Measuring the affinity of a ligand to a protein is an important step in the early stages 

of drug discovery and in elucidating gene functions.159 Discovering a small molecule that binds 

tightly to a specific protein can be a time consuming and costly challenge if done experimentally.160 

 

Figure 14. Illustration of a three dimensional structure of the protein Aldose Reductase  

 

To overcome the aforementioned adversities, computational chemists have developed a 

multitude of approaches that are robust and accurate. These approaches are based on molecular 

mechanics methods, such as thermodynamic integration, free energy perturbation, potential of 

mean force, empirical scoring functions, and the linear interaction energy method.160  

 

2.6. Rigorous Free Energy Calculation Methods 

2.6.1 Free Energy Perturbation Method 

 The free energy perturbation method (FEP) was initially developed by Zwanzig et al. to 

calculate the thermodynamic properties of systems with argon and nitrogen using MD 
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simulations.161 It was later used to calculate the binding free energy of ligands to protein active 

sites. The derivation of the FEP method is outlined below: 

To calculate the energy difference between two systems X and Y, which are described by two 

different energy functions Ex and Ey, the difference in free energy is: 

( ) ( ) ln X

Y

Q
A X A Y kT

Q
                                        (2.46) 

where A(X) and A(Y) are free energy values and Qx and Qy are the partition functions of states X 

and Y. 

Equation 2.46 can be transcribed as an ensemble average: 

( )/( ) ( ) ln X YE E kT

X
A X A Y kT e

                                   (2.47) 

where the subscript X specifies that the average is over an ensemble of configurations that are 

generated using MD methods and are representative of the preliminary state X. We can write down 

a similar expression, where the configurations are averaged over the ensemble that corresponds to 

the final state (Y). As long as the energy difference (EX-EY) is comparable to kT, equation 2.47 can 

yield a good approximation of the free energy. If X and Y do not overlap in phase space, the phase 

space of Y will not be adequately sampled when simulating X. In this case, the energy difference 

between X and Y will be larger than kT and the free energy changes will be not accurate. In such 

cases, the intermediate states between X and Y are introduced and described in terms of a coupling 

parameter λ. The simplest approach involves a linear interpolation: 

(1 )X YE E E                              (2.48) 

and equation 2.47 becomes: 

( / )( ) ( ) ln E kT
A X A Y kT e 




                                     (2.49) 
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 The intermediate steps involved in the transformation between X and Y by variable λ may not 

correspond to a physical transformation. However, this does not matter since free energy is a state 

function and does not depend on the path of the transformation, as long as it is reversible.107 It is 

vital that there is adequate overlap between successive λ states. In general, a transformation that 

involves high energy barriers will require smaller increases of λ to guarantee the reversibility of 

the process. 

 For larger systems such as proteins, because of the poor overlap between the thermodynamic 

phase space densities, the sampling problem becomes increasingly severe and results in 

complications with the assessment of the reliability of the calculated free energy values. Therefore, 

excessive sampling is often necessary, which requires extensive computer power and time.162 

2.6.2 Thermodynamics Integration Method 

 In the thermodynamics integration (TI) method, free energy is written as a function of a 

coupling parameter λ, with values between 0 and 1: 

( ) ln ( )A kT Q                             (2.50) 

Differentiation of this equation with respect to λ yields: 

A kT Q E

Q

  
  

                          (2.51) 

Replacing the right side of the equation with an ensemble average and integrating over λ, the 

following equation is obtained: 

1

0

( )
(1) (0)

E
A A d



  


                           (2.52) 

Desired free energy change is obtained from the left side of the equation, and the right side may 

be approximated by a discrete sum: 



 

45 
 

( )
i

i N

E
A

  


                                                                      (2.53) 

 The main difference between equations 2.49 and 2.53 is that in free energy perturbation (FEP), 

the ensemble average is determined over finite differences in energy functions, while in TI the 

average is determined over a differentiated energy function. For this reason, unless the 

transformation involves little change, TI is the method of choice for bimolecular systems.  

2.6.3 Thermodynamic Cycles 

 Since free energy is a state function and it is independent of the path used to reach a specific 

state (as long as the intermediate states are at equilibrium), thermodynamic cycles are used to 

dramatically reduce time in molecular simulations.91, 163 In a typical case where one wants to 

determine the relative binding affinity between two compounds A and B, a thermodynamic cycle 

can be devised as shown in Figure 15: 

 

Figure 15. Thermodynamics cycle for the calculation of the relative binding energy of two compounds, A 

and B 

 

In the thermodynamic cycle shown in Figure 15 above, ΔΔGsolvation and ΔΔGbinding denote the 

differences in free energy of solvation and binding respectively, between A and B. ΔGbinding 
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represents the binding free energy. An equation for the relationship shown above in the 

thermodynamic cycle is derived as: 

( ) ( )binding binding binding solvationG A G B G G                           (2.54) 

 If FEP/TI is used to evaluate the relative binding affinity of A to that of B, MD or Monte Carlo 

(MC) simulations must be conducted to obtain the free energy of a mutation from A to B in a 

solution and in protein (through sampling of the configuration space).164, 165 This is difficult 

because the process involves changes in the molecular charge distribution and the creation or 

obliteration of atoms.165 To gain converged free energy values, extensive sampling is required, 

which is often time consuming and computationally expensive. 

2.6.4. Potential of Mean Force 

 The potential of mean force166 (PMF) is used to evaluate changes in the free energy of a system 

(using MD methods), as a function of a specific reaction coordinate (distance between two residues 

of a protein, distance between two proteins, etc).167 Since calculations involving PMF are 

physically achievable, the point with the highest energy on the potential energy surface 

corresponds to the transition state. Therefore, PMF is also used to derive kinetic parameters such 

as rate constants. In PMF simulations, umbrella sampling is often used to enforce adequate 

sampling of the configurational space as it proceeds.  

 

2.7. Approximate Free Energy Methods 

2.7.1. Empirical Scoring Functions 

 Computational approaches such as FEP and TI that are used to calculate ligand binding 

energies require excessive sampling that demands computational power and time. Modern drug 

developers screen libraries with thousands of molecules; hence, the use of FEP and TI methods 

are not possible. Thus, the need for rapid search algorithms to predict the affinities of small/large 
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organic molecules that may bind to target receptor molecules of interest is a vital step in drug 

discovery processes. If the three-dimensional structure of an active site is available, a process 

called docking is used to generate a variety of conformations, orientations, and positions in a user 

defined active site of the receptor.168 To determine the conformation of the most energetically 

favorable pose, it is necessary to evaluate and assign a score to each pose based on the 

complementary to the target in terms of shape and favorable molecular interactions.169 In summary, 

in order to rank the binding affinities of a homologous set of organic molecules to a ligand, the 

most favorable pose for each molecule must first be ranked. Then the energy of this pose for 

different molecules is compared by ranking each molecule based on its affinity to the receptor site. 

To score each pose, empirical scoring functions (ESF) are used. Many scoring functions fall into 

two main classes: knowledge-based scoring functions and schemes based on physical interaction 

terms. 

 Knowledge-based scoring functions assign a score to a particular ligand pose based on a large 

database of crystal structures of protein-ligand complexes.170 The method acquires frequencies of 

interatomic contact and distances of functional groups in a given protein-ligand complex, and 

compares them with the data base. If these molecular interactions are found to be lower in 

frequency than the data base, it assigns a lower score and vice versa. 

 Scoring functions based on physical interaction terms that are based on the assumption that the 

change in free energy upon binding can be expressed as a sum of individual interaction terms171: 

BIND INT SOLV CONF MOTIONG G G G G                            (2.55) 

where ∆𝐺𝐼𝑁𝑇 represents specific ligand-receptor interactions, ∆𝐺𝑆𝑂𝐿𝑉 is the interaction of the 

ligand with the solvent, ∆𝐺𝐶𝑂𝑁𝐹 is the conformational changes in the protein and the ligand, and ∆𝐺𝑀𝑂𝑇𝐼𝑂𝑁 is the motion of the protein and the ligand during the complex formation. These values 
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are not calculated by considering an ensemble average, but by considering a single structure and 

additivity. In biochemical processes this is not strictly valid. Despite these limitations, scoring 

functions are widely used to calculate the relative binding affinities of putative ligands. 171  

2.7.2. Linear Interaction Energy Method 

 The linear interaction energy (LIE) method that was developed by Åqvist et al. hypothesizes 

that the free energy of binding can be expressed as a linear combination of weighted energy 

estimates of the interactions between a ligand and the rest of the system.172 In this method, the 

binding energy can be written as the sum of the ensemble averaged difference of Lennard-Jones 

(VLJ) and Coulomb (Vel) interactions between the ligand and its surroundings in the bound (ligand-

protein complex) and free (ligand in solvent) state as: 

LJ el
G V V                             (2.56) 

 Parameters α and β are obtained empirically using a fitting procedure. As the LIE method only 

involves sampling in the bound and free state of the ligand, it is computationally inexpensive 

compared to methods such as TI and FEP. 

 

2.8. Objectives and Significance of this Study   

 As discussed above, there is a void in the approximation of Kd values of cationic compounds 

that are sorbed through cation exchange to environmentally relevant solids. As a solution, Kd 

models that account for the structural features of organic solutes combined with key features of 

the environmental solids have been hypothesized. Due to the hardship of decoupling the different 

modes of interactions that are involved of the compounds with the environmental solid, mainly 

through hydrophobic and electrostatic interactions, it was difficult to determine an exact form of 
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an equation for Kd that includes a precise contribution from each of these interactions using 

experimental methods.  

 The primary objective of this thesis is to translate molecular modeling tools used in 

biochemistry to predict the free energy of the sorption of charged organic cations to 

environmentally relevant solids. It was proposed that the LIE method would be best suited for this 

purpose among the methods discussed in sections 2.6 and 2.7, given its inexpensive computational 

cost (compared to FEP/TI) and its reduced constraints of shape complementarity for mineral 

sorption (compared to docking and scoring methods). For this purpose, experimental Kd values of 

a homologous series of ammines sorbing to pure phase clay Ca-montmorillonite (a smectite clay 

having Ca+2 interlayer ions) was used. To the best of the author’s knowledge, such an investigation 

has not been conducted before. 

Another objective of this thesis is to analyze LIE parameters as a function of different interlayer 

ions in montmorillonite; this was evaluated using Ca and Na ions. Experimentally, it has been 

shown, that there is a very small difference in Kd values between these two ions, however such 

difference is consistent for a large number of compounds. Thus, it is important to determine 

whether or not LIE will capture these deviations. Finally, the LIE method will be applied to model 

organic cations’ sorption to a surface of montmorillonite clay; this is done to model the system 

without considering the d-space between two montmorillonite sheets, thus simplifying the problem 

at hand. 
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3. Linear Interaction Energy Method 

3.1. Background  

 The LIE method is a semi-empirical method developed by Åqvist et al. for calculating the free 

energies of binding from MD simulations to assist in drug design processes.172, 173 At the time this 

method was developed, scientists employing FEP and TI methods could only propose timid 

binding candidates that had size-shape complementary and favorable electrostatic properties.174 

Thus, absolute binding constants were obtained using costly and time consuming experimental 

methods. Furthermore, computational approaches have only been used to rank smaller drug 

candidates (due to convergence issues and the need for extensive sampling).175 Since larger 

molecules were probed as drug candidates, the need for more efficient methods of determining 

binding free energy were required.176 

 

3.2. Derivation of the LIE Equation 

 The LIE method is based on the linear approximation of electrostatic forces, which states that 

polar solutions will yield quadratic free energy functions in response to changes in electric fields. 

This assumption is also the basis for the Marcus theory of electron transfer.177 For a system with 

two states, A and B, that is given by two potential energy functions, VA and VB, quadratic free 

energy functions of equal curvature can be illustrated as demonstrated in Figure 16. 
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Figure 16. Illustration of free energy curves for a system that obeys the linear response approximation. 

 

ΔGAB is the associated change in free energy, ΔgA(x) and ΔgB(x) are free energy functions, and λ 

is the reorganization energy.  

An assumption can be made that the two states, A and B, only involve purely electrostatic variables 

and the difference between VA and VB are strictly electrostatic. Using the FEP equation, free energy 

change between two states, A and B, can be written as: 

( )1 ln B AV V

A
G e

                                            (3.1) 

Expansion of the exponent and logarithm yields: 

1 2 2ln 1 ( ) ( / 2)( ) ...B A B A AG V V V V                                                 (3.2)

1 2 2ln[1 ( ) ( / 2) ( ) ...]B A A B A AG V V V V                                            (3.3) 
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The above equation can be arranged as: 
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                                       (3.5) 

where B AV V V     

In the same manner, Gibbs free energy can be obtained by averaging the potential energy surface 

BV  : 

2
2 3( ) ( ) ...

2 6B B B B BG V V V V V
                         

   
                  (3.6) 

By adding equation 3.5 and 3.6 the following equation is obtained: 

 2 21
{ } { ( ) ( ) } ...

2 4A B A A B BG V V V V V V


                                  (3.7)        

 Since an assumption that the two free energy functions, ΔgA(x) and ΔgB(x), have equal force 

constants (equal curvature) was made, mean square fluctuations in the energy gaps on the two 

surfaces will be equal. Thus, the terms that are second order and higher in equations 3.6 and 3.7 

will be cancelled upon addition and free energy change can be written as: 

1
( )

2AB A BG V V                                                        (3.8) 

where B AV V V     

If the hydration of a single ion is considered, equation 3.8 can be written as: 

1
2

el el

sol i sG V                                                                                                                                (3.9)  

where, electrostatic contribution to the solvation energy is  equal to half of the associated ion-

solvent interaction energy (𝑉𝑖−𝑠𝑒𝑙 ). For the protein-inhibitor binding problem, where two states of 
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the ligand are in solution (A) and bound to protein (B), the binding free energy can be 

approximated to the following equation: 

 
1
2

el el

bind i sG V                                                                                                                          (3.10) 

where Δ refers to the difference in interaction energy of ligand in solution and protein. 

 To test the validity of equation 3.10, Åqvist et al. conducted FEP/MD simulations to calculate 

the free energy of charging ( el

solG  ) Na+ and Ca+2 ions in solution. He obtained values of 0.49 and 

0.52 respectively for terms connecting el

solG  to ensemble averaged ion-solvent electrostatic terms 

( el

i sV   ) .172 In a separate study by Jorgensen et al., the charging of a methanol molecule in water 

with the OPLS FF yielded a ratio of el

solG : el

i sV    of 0.43. Thus, both of the results showed 

similar results to the LIE predicted value of ½. Since equation 3.10 was derived with the 

electrostatic interactions alone, incorporation of the contribution of non-polar interactions and 

hydrophobic effects on the free energy of binding ( vdW

bindG ) was necessary. An analytical treatment 

was not feasible, due to the heterogeneity of the protein active sites.172 It was observed that, 

experimental free energy of solvation for hydrocarbon compounds such as n-alkanes 

approximately depend on the chain length, as178: 

SolG kn l                              (3.11) 

where n is the number of carbon atoms in the chain and k and l are constants. 

This equation yielded accurate hydration energies for hydrocarbons in non-polar solutions and in 

polar solutions such as water. Åqvist et al. conducted a set of MD simulations for n-alkanes that 

were solvated in water and in a non-polar solvent. He observed that the mean solute-solvent 

interaction was roughly linear with the number of carbon chains.172 Thus, he deduced that vdW

bindG can be approximated using a similar approach to equation 3.11: 
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vdW vdW

sol i sG V                                           (3.12) 

where α and γ can be fitted to reproduce experimental ∆𝐺𝑠𝑜𝑙𝑣𝑑𝑊 

Hence, the LIE equation can be summarized by including ∆𝐺𝑠𝑜𝑙𝑒𝑙  and and ∆𝐺𝑠𝑜𝑙𝑣𝑑𝑊  as: 

1
2

el vdW

bind i s i sG V V                                       (3.13) 

where α and γ are determined by empirical fitting.  

 In the original paper, the accuracy of the LIE method was tested using a system of 

endothiapepsin binding to five different inhibitors, where experimental binding constants were 

known.172 The LIE parameters were calibrated using the following two approaches:  

Approach 1: Fixing β to ½ and optimizing α in such a way that root mean square (rms) deviation 

between experimental binding energies and LIE predicted values were minimized (γ was not 

considered). 

Approach 2: Optimizing α and γ using experimental binding energies while keeping β fixed at ½, 

to minimize the rms values.  

 Since there was no significant improvement of the fitting after the addition of an extra 

parameter γ, it was discarded. Thus, approach 1 was used and the final value of α that was obtained 

was 0.161. The predicted free energy values were closely related to the experimental values, as the 

mean unsigned error was 0.39 Kcal mol-1.172 Thus, the final LIE equation was: 

1
0.161

2
el vdw

bind i s i sG V V                                       (3.14) 

The LIE parameters 0.161 and 1/2 were successfully used to predict the free energy of the binding 

of sugar to a periplasmic glucose receptor and of several inhibitors to HIV-1 protease.179-181 
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3.3. A Review of Modifications Made to the Original LIE Method  

 Although the value of β was calculated as ½ in accordance with the linear response theory, 

Hansson et al. found that when charging neutral dipolar solutes (e.g alcohols and ammines) in 

water, the solvent did not respond linearly to the electrostatic field exerted by the solute (β was not 

equal to ½ ) .182 The calculated value of β varied between 0.33 and 0.43.182 They reasoned that the 

nonlinear response was because of water-solute hydrogen bonding, since same set of solutes in 

aprotic solvents displayed β values closer to ½.182 It was also observed that in solutes that formed 

extensive amounts of hydrogen bonding (compounds with amine and hydroxyl groups), the ratio 

of ∆𝐺𝑠𝑜𝑙𝑒𝑙 ∶ < ∆𝑉𝑖−𝑠𝑒𝑙 > significantly deviated from ½.182 Thus, Hansson et al. proposed a novel 

treatment for the electrostatic contribution in the LIE method, where the difference in ligand-

surrounding electrostatic interaction energies was scaled by a factor of β rather than a factor of 

½:182 

el el

sol i sG V                                                                                                                  (3.15) 

 A study by Almlof et al., showed that β was solute specific and must be optimized to increase 

the accuracy of the LIE predicted free energy values (Table 2).183 

Table 2. The optimal parameters of β obtained using different classes of compounds182 

Compound class β 

Alcohols 0.37 

10, 20 ammines 0.39 

Carboxylic acids 0.40 

Cations 0.52 
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 In the original LIE method (equation 2.22), α was parameterized using a set of five 

endothiapepsin inhibitors, yielding a value of 0.16 when β was fixed to ½. Subsequent 

modification of the parameter β by Hansson et al. yielded an optimum value of α = 0.18. Since the 

parameter α depends on the characteristics of the binding site since different proteins have different 

inhomogeneous environments, α has different values depending on the protein-ligand pair. 

Thus, a modified version of the LIE equation was introduced: 

el vdW

bind i s i sG V V                                               (3.16) 

where α and β were both optimized as in quantitative structure activity relationship (QSAR) 

methods to reduce the rms deviation of calculated binding free energies to that of experimental 

values.183 

 Although the parameter γ was not included in equations 3.14 and 3.16 due to the lack of 

increase in the quality of the fitting in the original LIE equation, subsequent investigations that 

used LIE to calculate ligand binding free energy required a nonzero γ to reproduce absolute binding 

free energy, leading to the LIE equation184, 185: 

el vdW

bind i s i sG V V                                              (3.17) 

 A study by Jorgensen et al. indicated that the LIE method (equation 3.14) was not capable of 

reproducing the free energy of the hydration (free energy difference between the two states: a 

molecule in solution phase and in vacuum) of molecules such as methane and ethane, due to the 

positive value of the free energy.184 Since α and β were positive and the interaction energies 

calculated for these molecules were negative, the positive free energy of hydration was 

unobtainable. They outlined the need for a term that accounts for the price of solute cavity 

formation. Thus, the expansion of the LIE equation to consider a cavitation term that is 

proportional to the solvent-accessible surface area (SASA) was proposed: 
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el vdw

bind i s i sG V V SASA                                                      (3.18) 

where < 𝛥𝑆𝐴𝑆𝐴 > is the ensemble averaged change in a SASA in solution and in protein. 

Jorgensen et al. found improvement in the predicted free energy values compared to the 

experimental values (lower rms relative to experimental values) from equation 3.18 over the 

original LIE equation (equation 3.14). 
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Chapter 4. Atomistic Prediction of Sorption Free Energies of 

Cationic Aromatic Ammines on Montmorillonite: A Linear 

Interaction Energy Method 

4.1. Background 

Due to the increase in the use of polar organic compounds, such as pharmaceuticals, hormones, 

toxins, antibiotics, antidepressants, and beta-blockers, and their adverse health effects in humans 

and freshwater organisms, accurate models are necessary to improve the risk assessment of such 

trace contaminants by determining their bioavailability.2, 15, 31, 53 These compounds exist as 

positively charged ions, due to protonation of the amine groups at environmentally relevant pH 

(>7) conditions. Thus, they can easily interact with clays and soil organic matter, due to the 

occurrence of negatively charged surface sites.73 Because of the lack of experimentally derived 

soil sorption affinities, risk assessment can be based on predictive sorption models.81  

The affinity of a compound for a solid phase such as clay and soil organic matter can be 

influenced by its structural features (e.g. charge, substituted groups, and aromaticity).81  The 

transport and fate of these compounds in soil involve complex mechanisms that can be influenced 

by leaching, volatilization, adsorption/desorption, ion-exchange, and biological and chemical 

degradation.57 Sorption is an important factor that determines the ensuing bioavailability, 

reactivity, and mobility in the environment of that compound.50 Although a large number of 

publications divulge qualitative trends with respect to structural criteria, influencing polar and 

organic compound sorption through cation exchange and surface complexation81, there have been 

limited attempts to develop predictive models that use these changes in specific electrostatic and 

covalent interactions, as The European Union Technical Guidance Document (EU-TGD) in 2006 

specifies that there is no sorption model for cationic ammines.186 



 

59 
 

Empirical models for the sorption of non-heterocyclic cationic ammines has been proposed, 

considering molar volume and amine charge area73; these models lack the ability to correctly 

include structural features that are derived from small sets of organic compounds that have similar 

sub-structural features, such as additional aromatic rings, -COOH, and –OH. Since the sorption of 

cationic ammines is a coupled effect of electrostatic and hydrophobic interactions, there is a need 

to explicitly account for electronic and hydrophobic interactions.81 

The study described in this thesis is based on the assumption that the cation exchange (the 

process of the exchange of ions of the same charge between an insoluble solid and a solution in 

contact) is the driving force behind the sorption of organo-cations to environmental solids as 

aluminosilicates. Cation exchange is mediated by a single key functional group (the cationic 

amine) on the sorbate structure and driven by its interaction with the negatively charged surface 

sites of the sorbent (e.g., aluminosilicate); this negative charge is largely insensitive to changes in 

the environmentally-relevant pH values.85 Aluminosilicates such as pyrophillites, micas, and 

montmorillonites are abundant in soil, and characterized by a layer-like structure, and are the 

preferred host materials for incorporating these compounds.60 Montmorillonite (MMT) is a layered 

aluminosilicate, where the central sheet is composed of octahedrally coordinated Al atoms, and 

the adjacent sheets are composed of tetrahedrally coordinated Si atoms. These sheets are made up 

of 2:1 or tetrahedral-octahedral-tetrahedral (TOT) layers. These layers are negatively charged due 

to the substitution of divalent metals (e.g., Mg+2, Fe+2) with the octahedrally coordinated Al atoms, 

or the substitution of Si atoms with Al atoms. The negative charges of the MMT layers are balanced 

by interlayer cations (e.g. Ca+2), which are usually hydrated to allow the expansion or contraction 

of the interlayer spacing, depending on the relative humidity.187 Since these interlayer cations are 
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exchangeable, clays are ideal host materials in soils for positively charged organo/inorganic ions 

through ion exchange.54  

On the other hand, in computational biochemistry and biology there has been a great expansion 

in the development and utilization of highly sophisticated computational tools, in order to 

understand the role of structural effects that influence the binding of organic ligands to proteins.174, 

183 This thesis proposes that these computational tools could be translated and used in the 

environmental science area to understand and predict the trends, and the influence of structural 

criteria on organic compound sorption to clays and soil organic matter. 

In computational biochemistry, a wide variety of computational tools have been used to 

calculate free energy (ΔG) from computationally expensive methods (needs extensive sampling), 

such as FEP, TI to high speed docking, and scoring functions.107 Neither approach is suitable in its 

application to compute ΔG for environmental sorption. The former method is not sufficient 

because the computational cost prevents routine screening of compound libraries, and the later 

method is not sufficient because of the lack of analogous docking confirmation for sorbates with 

environmental solids. On the other hand, LIE, a method that has been underutilized in 

biochemistry, is best suited for the issue at hand.172 The LIE method is more affordable than 

FEP/TI and is suited for the sorption to environmental solids that lack size-shape complementarity 

as protein-ligand interactions. This method involves conducting two MD simulations, one with a 

ligand in solution and one bound to the protein to sample electrostatic (el) and van der Waals (vdW) 

forces. The form of the LIE equation we utilized was: 

LIE vdW elG E E                                      (4.1) 

where < > denotes MD averages of the electrostatic (el) and van der Waals (vdW) interactions of 

the solute with its surrounding environment. Δ denotes the change in these averages when 
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transferring the solute from the solution to the interlayer of the clay. The coefficients α and β are 

scaling factors, while δ is a constant.    

In the study described in this thesis, the LIE method is applied to calculate the free energy of 

the sorption of organic cations to environmentally relevant solids. Additionally, the influences 

from electrostatic and van der Waals interactions to the free energy of sorption were decoupled. 

For this purpose, Ca-montmorillonite (Ca-MMT) was chosen as a representative pure phase 

sorbent to evaluate the applicability of the LIE method using a set of homologous organic cations 

(Figure 17). 

 

Figure 17. Chemical structures of compounds 1-15 
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4.2. Computational Details 

The atomistic models of Ca-MMT were created using the previously reported unit cell of a 

Texas type MMT, with an unit cell formula of (Ca) 0.33(Si7.75Al0.25) (Al3.5Mg0.5)O20- (OH)4.nH2O, 

with isomorphic octahedral Al+3/Mg+2 and tetrahedral (obeying the Lowenstien’s rule for 

isomorphic substitution) Si+4/Al+3 substitutions.188, 189 The unit cell was replicated four times in 

the x and y directions and two times in the z direction (442), creating a supercell with 32 unit 

cells. The ensuing super cell had two montmorillonite slabs (TOT) with an overall charge of -

24.00e (-0.75e per unit cell). Density functional theory (DFT) was used to obtain the optimized 

geometries of organic cations that were used in this study (Figure 17). DFT optimizations were 

conducted using a b3lyp/6-31G* level of theory in the gas phase using the software Gaussian 

09.190, 191 

To model the solute (organic cation) in solution, a single solute ion was placed in a 60 Å  60 

Å 60 Å3 box and water molecules were added such that the density of the box reached 1.0 g/cm3. 

Solute molecules in Ca-MMT were modeled using the constructed supercell. A single solute 

molecule was placed in the interlayer spacing and water molecules were subsequently added to 

form a double layer hydrate; water molecules that sterically clashed with the organic cation were 

removed. 

To model the Ca-MMT, parameters from the CLAYFF force field was used, which has been 

used previously to model interactions between organic molecules with montmorillonite clays.110 

Organic cations were modeled using the OPLS-AA force, which has been widely used to model 

condensed phase simulations.104 Water molecules were modeled using the SPC water model, due 

to its simplicity.123 Partial charges for the organic cations were derived using the RESP method 

with the DFT b3lyp/6-31g(d) level of theory in the gas phase, in agreement with the philosophy of 

the OPLS-AA force field.154 
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All of the molecular dynamics (MD) simulations were performed using the MD code 

DL_POLY CLASSIC192 version 1.8, and the Nose-Hoover isothermal-isobaric (NPT) ensemble 

with a coupling constant of 0.5 ps, a temperature of 298 K, and a pressure of 1 atm.193  A time step 

of 1fs was used for the simulations. Electrostatic interactions were computed using the Ewald 

summation method, which accounts for long-range electrostatic interactions.140 Fuchs correction 

was applied to the Ewald summation to account for the positive overall charge in solution and 

clay.194 The model with solute in water was equilibrated for 100 ps, followed by a production time 

of 300 ps. The clay/solute system was equilibrated for 1000ps followed by a production time of 

300ps. The length of the production was determined by the converged values in the average 

interaction energies or using similar production times as those used in previous studies found in 

literature. Statistical errors associated with different interaction energies from MD simulations (∆<> values in equation 4.1) were computed using the block average method. More precisely, the 

total production time in solution and clay was divided into 50ps blocks, and averages were 

computed in each block. Error was reported using the standard deviation of the obtained average 

values, propagated as: 

2 2
error stdev stdevclay solution                                               (4.2) 

where error    is the error associated with different interaction energies, 2
stdevclay   is the 

standard deviation obtained by the block average method in clay, and 2
stdevsolution    is the 

standard deviation obtained by the block average method in solution.  

One problem that could not be resolved using experimental methods was the decoupling of the 

underlying forces that drive the sorption process. Using the LIE method, this was achieved by 

decoupling the ∆𝐺𝐿𝐼𝐸 with the following equation: 

LIE vdW elG G G                                            (4.3) 
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Where ( )vdW vdw vdW AnilineG E E         and ( )el el el AnilineG E E         

Aniline was used as the reference compound. 

 

4.3. LIE Fitting 

After obtaining different interaction energies from MD simulations (∆<>), a multivariable 

linear regression was applied to determine the coefficients α, β, and δ (equation 4.1) that were 

fitted to experimental free energy values ΔGEXP.81 All of the coefficients were allowed to optimize 

freely. Experimental binding energies were calculated as a ratio of equilibrium concentrations, 

using equation 4.4, with the gas constant (R) and temperature (T): 

0

ln d
EXP

K
G RT

K

 
    

 
                                    (4.4) 

where a reference state is assumed and represented by a molecule with a sorption constant K0 of 1 

L/Kg, and T was set to 298 K. Experimental Kd values were obtained from the linear portion of the 

sorption isotherms under definite experimental conditions (i.e. ionic strength, pH).  

A leave-one-out (LOO) cross validation scheme was utilized to determine the averaged α, β, 

and δ values (equation 4.1) and to calculate the associated statistical error. To illustrate, LOO was 

implemented ten times, leaving one molecule out of the training set each time [1-10 (Table 3)]. 

Using the generated values of α, β, and δ of ten different data sets, averages were computed. The 

statistical uncertainty of the derived LIE coefficients was computed using bootstrapping statistics 

(due to the small sample size), with the statistical software IBM SPSS. Additional testing was 

conducted using a test set: calculating LIEG  for compounds that were not included in the training 

set [11-15 (Table 3)].  
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4.4. Results and Discussion 

The applicability of the LIE method was examined by evaluating the sorption affinities of 15 

organic solutes that bind to clay Ca-MMT (structures of the relevant organic solutes are provided 

in Figure 17). The training set that was used to compute LIE parameters (compounds 1-10) was 

selected arbitrarily from a set of 15 compounds. The remaining compounds (11-15) were used as 

the test set. It was observed that by exchanging compounds from the test set to the training set and 

vice versa, the quality of the fitting deteriorated or improved insignificantly. Calculated differences 

in the solute-surrounding interaction energies (∆<>) of the solutes are shown in Table 3 and are 

based on averages of finite temperature MD simulations. The results for the LIE fitting are as 

follows: α = 0.594 ± 0.323, β = 0.130 ± 0.035, and δ = 2.9 ± 1.8 kcal/mol with a coefficient of 

determination (r2) of 0.83. Calculated LIE free energy values (∆𝐺𝐿𝐼𝐸) compared well with the 

experimental values, with a mean unsigned error (MUE) of 0.3 kcal/mol. Plots of correlation 

between the experimental values for ∆𝐺𝐸𝑋𝑃 and ∆𝐺𝐿𝐼𝐸 are shown in Figure 18. The robustness of 

the LIE method was demonstrated by the accurate prediction of free energy of compounds that 

were not included in the training set (test set) with high accuracy ( MUE = 0.4 kcal/mol, or within 

a factor 2 in Kd value).  

Analysis of the MD trajectory provided detailed atomistic level insight into the orientation of 

all aromatic ammines. It was observed that all of the ammines oriented such that the benzene ring 

was parallel or near parallel to the clay sheets (Figures 20.1 and 20.2). Such an orientation 

maximizes electrostatic (amine group) and hydrophobic interactions (benzene ring) with the MMT 

surface. A similar coplanar arrangement of aromatic molecules with the silicate sheet under low 

external concentration has been observed in numerous experimental studies.195-197 This further 

validates the accuracy of the atomistic models that were used for the MD simulations. 
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Figure 18. Comparison of fits of the LIE model (Equation 3.1) for the training set of ten compounds and 

the test set of five compounds on Ca-MMT. Best fit LIE parameters are as follows: α = 0.594 ± 0.323, β 

= 0.130 ± 0.035, and δ = 2.9 ± 1.8 kcal/mol. 

 

Figure 19. Typical structure of the hydrated interlayer with the organic cation is shown. (Red = oxygen, 

green = carbon, plum = calcium, orange = silicon, blue = nitrogen, yellow = aluminum, white/gray = 

hydrogen. Magnesium atoms are not seen in this view but are present). 
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Figure 20.1. Superposition of all aromatic ammines in their most common conformation. 

 

Figure 20.2. Oxytetracycline in its most common configuration. 

 

Equation 4.3 was used to decouple the contribution of hydrophobic and electrostatic interactions 

to the ∆𝐺𝐿𝐼𝐸. The purpose of this was to investigate and understand the structure-affinity 

relationships and trends within aromatic amine sub-groups (Table 3). 

In the compound series 1-4 and 5-7 (derivatives of aniline and p-toluidine, from here on referred 

to as group A), subsequent decoupling of ∆𝐺𝐿𝐼𝐸 as an expansion of ∆∆𝐺𝑒𝑙 and  ∆∆𝐺𝑣𝑑𝑊 led to the 

following observations: there was an equivalent contribution to the ∆𝐺𝐿𝐼𝐸 from ∆∆𝐺𝑒𝑙 and ∆∆𝐺𝑣𝑑𝑊, and there was a systematic increase in free energy as a function of the increment of 

methyl groups (primary, secondary, and tertiary ammines). To better understand the origin of the 

systematic increase of the ∆∆𝐺𝑒𝑙, QM calculations were used to analyze the charge distribution of 
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compounds in group A. After analyzing the molecular electrostatic potential (MEP), a defocusing 

of charge over the nitrogen’s coordination sphere was evident (Figure 21); this increased the extent 

of interaction (higher surface area) with the negatively charged clay surface. In a previous study 

by Vasudevan et al. and Droge et al., the observed trend of primary, secondary, and tertiary 

ammines was interpreted as a result of focusing the charge73, 197 on the amine N and H molecules. 

They did not account for the charge distributions on the methyl groups. 

 

Figure 21. Illustration of molecular electrostatic potential (MEP) mapped onto the total electron density.  

 

Conversely, the work presented in this chapter demonstrates that the spread of charge over the N, 

H, and methyl groups permits enhanced interaction with the negatively charged clay surface, 

resulting in higher sorption.198 This analysis is consistent with previous observations of aromatic 

heterocyclic ammines which concluded that enhanced affinity was due to the positive charge 

delocalization to the ring, which enabled a molecular orientation that maximized the electrostatic 

attraction.199 In class A, ∆∆𝐺𝑣𝑑𝑊 also increased with the addition of methyl substituents; this was 

expected, as the addition of methyl groups increases the number of hydrophobic sites. 
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Table 3. Calculated Free Energies via the LIE Method and Comparison with Experimental Values for the 
Training (1-10) and Test (11-15)a 

Compound Δ<EvdW> Δ<EEl> bΔGLIE ΔGEXP ΔΔGvdW ΔΔGel 

 

1     

2 

 

aniline 

N-methylaniline 

 

-4.07 ± 0.40 

-5.18 ± 1.05 

 

-13.89 ± 0.36 

-16.17 ± 0.82 

 

-1.32 

-2.28 

 

-1.84 

-2.30 

 

0 

-0.66 

 

0 

-0.29 

3 N,N-methylaniline -6.06 ± 0.46 -17.28 ± 1.78 -2.95 -3.00 -1.18 -0.44 

4 Phenyltrimethylammonium -6.09 ± 0.34 -22.36 ± 0.97 -3.63 -3.82 -1.20 -1.10 

5 p-toluidine -5.14 ± 0.36 -11.07 ± 2.08 -1.59 -1.72 -0.63  0.37 

6 N-methyl-p-toluidine -5.47 ± 0.32 -16.84 ± 1.98 -2.54 -2.57 -0.83 -0.38 

7 

8 

 

9 

10 

 

11 

12 

13 

14 

15 

N,N-dimethyl-ammonium 
c2-(dimethylamino)-5-

methylbenzenesulfonate 

(charge of 0) 
c4-(aminomethyl) benzoic acid 

(charge  of 0) 

Benzylamine 

2,4-dicholorobenzylamine 

2,4-dimethylbenzylamine 

p-phenylenediamine 

1-napthylmethylbenzylamine 
cOxytetracycline (charge of 0) 

-5.55 ± 0.32 

-5.80 ± 0.22 

 

-9.26 ± 0.79 

 

-5.38 ± 0.86  

-7.07 ± 0.93 

-7.12 ± 0.42 

-5.47 ± 0.72 

-7.44 ± 0.51 

-16.10 ± 1.34  

-25.00 ± 0.28 

-6.82 ± 1.10 

 

17.29 ± 2.25 

 

-14.15 ± 2.80 

-11.48 ± 1.44 

-11.57 ± 3.36 

-14.64 ± 1.28 

-18.85 ± 1.07 

23.36 ± 3.23 

-3.65 

-1.43 

 

-0.35 

 

-2.13 

-2.79 

-2.83 

-2.25 

-3.97 

-3.62 

-3.54 

-0.41 

 

-0.96 

 

-2.12 

-2.24 

-2.28 

-2.60 

-3.72 

-3.96 

-0.88 

-1.03 

 

-3.08 

 

-0.78 

-1.78 

-1.81 

-0.83 

-2.00 

-7.14 

-1.44 

0.92 

 

4.06 

 

-0.03 

0.32 

0.31 

-0.09 

-0.64 

4.85 

        

 aExperimental and calculated LIE binding free energies (Kcal/mol) are shown. Compound structures are 

shown in figure 17. bTraining set mean unsigned error (MUE)=0.3 kcal/mol, and test set MUE = 0.4 

kcal/mol. cIndicates a zwitterion. 

 

The LIE model was also accurate at predicting the free energy of the sorption of zwitterionic 

compounds (8, 9, and 15 are referred to as group B) with both, positively and negatively charged 

groups; consequently, they have an overall neutral charge. Due to unfavorable electrostatic 

interactions (electrostatic repulsion of the negatively charged groups from the clay surface), van 

der Waals interactions were the main driving force of sorption. Electrostatic repulsion of 
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zwitterionic compounds can be qualitatively explained by examining the MEP of group B 

molecules. In compound 8, positively (amine) and negatively charged (sulfonate) groups are in 

close proximity (~4 Å), leading to screening of the negative charge on the sulfonate group. 

Conversely, in compounds 9 and 15, positively and negatively charged groups are further separated 

(~ 8 Å). This leads to the favorable electrostatic interactions of compound 8 with the clay surface, 

compared to the interactions of compounds 9 and 15.  

 

Figure 22. Illustration of the MEP of zwitterionic compounds 9, 8, and 15 

 

4.5. Summary and Conclusions 

The study presented here investigated the applicability of the well-known LIE method in 

combination with MD simulations to predict the sorption free energy of organic cations and 

zwitterions to naturally occurring clay Ca-MMT. This study was motivated by the inability of 

experimental methods to decouple the solute specific contribution to the sorption free energy when 

developing predictive models, and in contrast, the success of the LIE method in mapping 

biochemistry problems. The standard form and parameterization of the LIE method accurately 

reproduced the binding free energies of the majority of the compounds used in the compound-
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library. The LIE model reproduced trends within and between homologous compound classes. LIE 

facilitates the application of corrective increments and decouples the contribution of polar and 

non-polar to sorption free energy. Calculations demonstrate that, although MD simulations can be 

computationally expensive (solution phase), the LIE method offers a convenient method for 

gaining accurate predictions of solute-clay binding free energies. Since the experimental sorption 

coefficients were obtained under a specific set of experimental conditions (e.g. ionic composition 

and sorption in the linear range of the isotherm), re-parameterization of the LIE coefficients may 

be required for different experimental conditions. Given these points, the LIE based methods to 

estimate sorption free energy have the potential to become powerful tools that can be used in the 

environmental risk assessment of polar organic compounds. 
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Chapter 5. Calculation of the Binding Affinities of Charged 

Ammines to Montmorillonite with Different Exchangeable Cations 

(Ca+2 and Na+): A Linear Interaction Energy Method 

5.1. Background 

As a result of increase in use of various novel organic compounds (emerging contaminants) 

that are used in day to day human activities, there is also an increase in the concentration of these 

compounds in the environmental.25, 75 Majority of these contaminants exist in the aqua sphere as 

positively charge cations due to the presence of basic amine groups (protonation of the amine 

group at environmentally relevant pH values ).73 Environmental risk assessment of these 

compounds is essential as they have been found to be toxic to human and animals alike.1, 54 

Determination of the availability of these contaminants in different environmental compartments 

(fate) is an important step in risk assessment models.85  

In the previous chapter, a well-known method used in computational biochemistry to 

approximate free energies of ligands binding to receptor sites (proteins), known as the LIE method 

was applied to approximate free energies of sorption of a set of organic compounds (charged and 

neutral) to a representative homoionic smectite Ca-montmorillonite.198 A mean average error of 

0.3 kcal mol-1 with a r2 value of 0.84 was obtained, demonstrating the accuracy and applicability 

of the method in approximating free energies of sorption. In the LIE method, free energies were 

computed as an expansion (weighted) of ensemble averaged changes of the interaction energies of 

the solutes with its environment (in solution and clay) which captured variety of structural effects 

that control the sorption process such as: defocusing of amine charge, effects of negatively charge 

groups, functional group proximity, etc. Ultimately, the LIE method was concluded to be a robust 

method for the estimation of organic cation adsorption free energies. 
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As clays such as montmorillonites, kaolinites carry negative charges, various cations that exist 

in the soil (e.g. sodium, calcium) are attracted to the clay particles. These cations are held to the 

clay surface by electrostatic interactions and termed as adsorbed cations, which are free to diffuse 

in to the liquid phase and also can get replaced (exchanged) by other cations that exist in the liquid 

phase.200, 201 The ease of cation exchange often follows the lyotropic series as:  

 

Figure 23. The Lyotropic Series 

 

Ions which are strongly held to the negatively charged surfaces (i.e. H+, Al+3) will have high 

valence to hydrated radius ratio while ions which are weakly held such as K+ and Na+ will have 

lower ratio.  

Table 4. Hydrated Radius of Selected Metals that Occupy Interlayer Space.202 

Ion Radius (Å) 

K+ 5.3 

Na+ 7.9 

Ca+2 9.6 

Mg+2 10.8 

 

Because of this, different cations may have different abilities to exchange the adsorbed cations. As 

calcium and sodium are the most common of these exchange ions in natural environments, 

implementation of the LIE method to compute sorption free energies of clays having 

aforementioned cations is important for the development of the the LIE method as a predictive tool 

and to understand the trends that are observed which could be helpful to apply the method to much 

complex systems. 
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Figure 24. Chemical Structures of Compounds Studied 1-17 

 

In this chapter, the LIE method was extended to investigate the accuracy of the predicted 

sorption free energies and transferability of the LIE coefficients (equation 4.1) within MMTs 

having similar composition only varied by different interlayer ions (calcium and sodium).To 

decouple the underlying forces that drives the sorption process, ∆𝐺𝐿𝐼𝐸 was decomposed as:

LIE vdW elG G G                                            (5.1) 

Where ( )vdW vdw vdw AmmoniumG E E         and ( )vdW el el AmmoniumG E E         

. Ammonium was used as the reference compound. 

 

5.2. Computational Details 

Ground state geometries of organic compounds were obtained by optimizing there structures 

at b3lyp/6-31G(d) level of theory in the gas phase using the Gaussian package.190 A cubic box with 

an initial box length of 60 Å with periodic boundary conditions was used to simulate organic 

cations/zwitterions in solution. To model the compounds having a +1 overall charge, a single 
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organic cation was placed in the cubic box along with one Na+ and two Cl- ions to neutralize the 

overall charge. To model the zwitterions having a zero overall charge, a single zwitterion was 

placed in the cubic box along with a Na+ and a Cl- ion. Subsequently, water molecules were added 

so the density of the simulation box was 1.00 g cm-3. 

Previously reported structure of a MMT with a unit cell formula, 

(Si7.75Al0.25)(Al3.5Mg0.5)O20(OH)4.xH2O was used to construct the atomistic models.188 A super cell 

having 32 unit cells was constructed by translating the unit cell four times in the x and y directions 

and two times in the z direction (4  4  2). The resulting super cell had two montmorillonite 

slabs, each having a charge of -12.00e (-0.75e per unit cell).  

Ca Montmorillonite: Atomistic models for MMT with Ca+2 ions (Ca-MMT) was constructed by 

using the aforementioned super-cell, by placing a single solute molecule (organic compound) in 

the interlayer space and by adding Ca+2 and Na+ ions to neutralize the overall charge (-24e). In 

detail, eleven Ca+2 ions and a single Na+ ion were added to clay models having compounds 1-8, 

11-15, eleven Ca+2 ions and two Na+ to clay models having compounds 10 and 16, and twelve Ca+2 

ions to the clay model having compound 9. Afterwards, water molecules were added to form a 

double-layer hydrate (sterically clashing molecules were removed).  

Na Montmorillonite: Atomistic models for  MMT with Na+ ions (Na-MMT) was constructed by 

using the clay models from the previous step and by replacing Ca+2 ions by Na+ ions to neutralize 

the overall charge. In detail, 23 Na+ ions were added to clay models having compounds 1-5 11-13, 

15,17 and 24 Na+ ions were added to clay models having compounds 9, 10 and 16. Subsequently, 

water molecules were added to form a double-layer hydrate (sterically clashing molecules were 

removed). 
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Figure 25. Typical Structures of the Hydrated Interlayer (viewed along xz plane) With the Organic 

Cation is Shown. (Red = oxygen, green = carbon, purple = calcium, orange = silicon, light blue = 

nitrogen, yellow = aluminum, white/gray = hydrogen, sodium = dark blue, plum = calcium, Magnesium 

atoms are not seen in this view but are present). 

 

To model the Ca and Na MMT, parameters from the CLAYFF force field110 were utilized, 

which has been previously utilized to model interactions between organic molecules with 

montmorillonite clays. Organic cations/zwitterions were modeled using the OPLS-AA force 

field104 which has been widely utilized to model in the condensed phase simulations. Water 

molecules were modeled using the SPC water model123 considering its simplicity. Partial charges 

for the organic cations/zwitterions were derived using RESP method154 using DFT b3lyp/6-31g(d) 

level of theory in the gas phase, in agreement with the philosophy of the OPLS-AA force field. 

All the molecular dynamics (MD) simulations were performed using the MD code DL_POLY 

CLASSIC version 1.8192, using the Nose-Hoover135 isothermal-isobaric (NPT) ensemble with a 

coupling constant of 0.5 ps, with the temperature of 298 K and the pressure of 1 atm.  A time step 

of 1 fs was used for the simulations. Electrostatic interactions were computed using the Ewald 
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summation method which takes into account long range electrostatic interactions.140 The model 

having solute in water was equilibrated for 200 ps followed by a production time of 200 ps. The 

clay/solute system was equilibrated for 1500ps followed by a production time of 500ps with 

periodic boundary conditions. The length of the production was determined by converged values 

in the average interaction energies and or by using similar production times used by earlier studies 

found in literature.  

The data collection phase of the simulation was split into blocks of 50ps, for the solute-clay 

(Ca/Na MMT) and solute-water calculations. The average electrostatic and van der Waals 

interaction energies of the solute with its environment (water and clay) were calculated for each 

block. The overall means and standard errors were calculated from these blocks. Error assessment 

of the computed free energies was carried out in a similar way by splitting the production time of 

simulation into equal blocks (in solution splitting 200 ps into two blocks of 100ps and in clay 

splitting 500 ps into blocks two blocks of 250ps); the means and standard errors were computed 

from these blocks. 

 

5.3. LIE fitting 

After obtaining different interaction energies from MD simulations (∆<>), multivariable 

linear regression was applied to determine coefficients α, β and δ (equation .1) fitted to 

experimental free energy values ΔGEXP for MMT having different interlayer ions (Ca+2 and Na+). 

Experimental Kd values in Ca and Na MMT were obtained from the linear portion of the sorption 

isotherms and under definite experimental conditions (i.e. ionic strength, pH).  

Linear regression was conducted 11 times using Ca-MMT data, leaving one molecule out of 

the training set [1-11 (Table 6)] each time (LOO method). Further testing was achieved by 
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calculating the ∆𝐺𝐿𝐼𝐸  of several compounds which were not in the training set [12-16 (Table 6)]. 

All LIE coefficients were allowed to optimize freely. 

LIE parameters derived using Ca-MMT was then used in Na-MMT with an additional 

optimization of the 𝛿 parameter (fixing α and β) 10 times, leaving one molecule out of the training 

set [1-5,11-13,15-16 (Table 7)] each time. Optimization was carried in such a way that mean 

squared error (MSE) between experimental free energy and the LIE predicted free energy was 

minimized (equation 4.1). Further testing was achieved by calculating the ∆𝐺𝐿𝐼𝐸  of several 

compounds which were not in the training set [10 and 17 (Table 7)].   

2

1

1
( )

N

EXP LIE

i

MSE G G
n 

                     (5.2) 

Where n is the number of predictions, EXPG   is the experimental free energy calculated using 

equation 3.2 and LIEG  is the LIE predicted free energy using equation 5.1. 

 

5.4. Results and Discussion  

Our first task is to vindicate the level of accuracy and range of applicability of the LIE model 

for predicting sorption coefficients of positively charged and zwitterionc organic compounds. The 

statistical results for all the LIE models are summarized in Table 5. It was found that the if LIE 

coefficients derived for Ca-MMT model were directly used in LIE model for Na-MMT, a MSE of 

0.4 kcalmol-1 was observed; thus, separate optimization of the fitting parameter δ for the Na-MMT 

model keeping parameters α and β fixed was carried out. In the case of Na-MMT the optimal value 

for δ was 0.844 kcal mol-1. The lowering of the parameter δ leads to a decrease in the MSE of Na-

MMT to 0.08 kcalmol-1.Thus, it was conclude that LIE coefficients (α and β) are transferable 

within MMT models with identical chemical composition having different counter ions with an 
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additional optimization of the coefficient δ. A lower value of δ for Na-MMT model may in fact be 

a result of changes in electrostatic environments around the organic cation in the interlayer space 

due to presence of different charge compensating ions Ca+2 and Na+. Since small changes in the 

charge distribution around the organic cation will lead to large changes in the interaction energies 

due to strong electrostatic forces involved. Table 6 and 7 list the calculated difference in energy 

components, sorption free energies by the LIE (equation 5.1) method together with the respective 

experimental data for Ca and Na MMT. Plots of correlation between the experimental ∆𝐺𝐸𝑋𝑃 and ∆𝐺𝐿𝐼𝐸 are shown in Figure 26. Comparison of the observed and LIE predicted free energy values 

in table 6 and 7 for Ca and Na MMT clearly demonstrates that the LIE is very accurate in predicting 

sorption free energies. Further, R2 value for Ca-MMT model (Table 6) was 0.818 with a mean 

squared error (MSE) of 0.17 kcalmol-1 and for Na-MMT model (Table 7) R2 value was 0.893 with 

a MSE of 0.08 kcalmol-1 for the training and test sets. In view of the highly successful performance 

of the LIE model in predicting the sorption free energies of  

Table 5. Optimized LIE Coefficients for Ca-MMT and Na-MMT 

 
 

 

 

 

System α β δ / kcal mol-1 

    

Ca-MMT 0.464 ± 0.056 0.180 ± 0.031 1.627 ± 0.548 

Na-MMT 0.464 ± 0.056 0.180 ± 0.031 0.844 ± 0.030 
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Figure 26. Free energy of sorption estimated by the LIE method (ΔGLIE) versus the experimentally 

determined free energy of sorption (ΔGExperimental) for Ca-MMT (left) and Na-MMT (right) 

 

Kow coefficients are commonly accepted as accurate approximates of the soil sorption coefficients 

for apolar/polar organic compounds through correct approximation of Koc (Equation 1.2).95 In the 

case of charged organic compounds, the driving force for the sorption process is subjugated by 

electrostatic interactions with the negatively charged clay surfaces with lesser contributions from 

hydrophobic and van der Waals interactions. Models based on Kow correctly takes into account 

hydrophobic and polar contributions through van der Waals interactions (thus Koc) and does not 

correctly approximates the electrostatic interactions (thus Kce in equation 1.2), thus underestimates 

the value of Kd. Further, models based on octantol/water partition coefficients does not take in to 

account specific features of environmental solids such as cation exchange capacity, surface areas, 

etc., which are important factors that determines the extent of sorption through cation exchange.81 

In poly parameter linear free energy relationships (PPLFER) even though we take into account 

key structural features of the sorbate to estimate the free energy changes, the method does not take 

into account the key features of the sorbent such as availability of exchange sites, surface area, etc. 

215 As stated these which are important aspects that determine the extent of sorption through cation 
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exchange. Thus, we concluded that the accuracy of the LIE method is because of its ability to 

incorporate both: key structural features of the sorbate  

Table 6. Calculated Free Energies for the Ca-MMT via the LIE method and Their Comparison with 

Experimental Values for the Training (1-11) and Test (12-17) Sets. 

Compound Δ<EvdW> Δ<EEl> bΔGLIE aΔGEXP ΔΔGvdW ΔΔGel 

 

1       

2 

 

Ammonium 

Aniline 

 

-0.10 ± 0.68 

-3.21 ± 0.73 

 

-18.45 ± 2.20 

-11.93 ± 1.60 

 

-1.74 ± 0.19       

-2.01 ± 0.17 

 

-1.61 

-1.84 

 

0.00 

-1.44 

 

0.00 

1.17 

3 N-methylaniline -3.38 ± 0.67 -13.22 ± 1.98 -2.32 ± 0.16 -2.30 -1.52 0.94 

4 N,N-dimethylaniline -3.79 ± 0.73  -15.61 ± 1.27 -2.94 ± 0.12 -2.99 -1.71 0.51 

5 phenyltrimethylammonium -4.69 ± 0.22 -16.65 ± 1.34 -3.55 ± 0.18 -3.54 -2.13 0.32 

6 p-toluidine -3.19 ± 1.04 -12.41 ± 2.14 -2.09 ± 0.37 -1.72 -1.43 1.09 

7 N-methyl-p-toluidine -2.90 ± 0.43  -14.28 ± 1.80  -2.29 ± 0.23 -2.57 -1.30 0.75 

8 

9 

10 

 

11  

12 

13 

14 

15 

16   

N,N-dimethyl-p-toluidin 

DMTS (charge 0) 

4-(aminomethyl) benzoic acid 

(charge 0) 

Benzylamine 

2,4-dicholorobenzylamine 

2,4-dimethylbenzylamine 

p-phenylenediamine 

1-napthylmethylbenzylamine 

Oxytetracycline (charge 0) 

-3.59 ± 0.60 

-1.94 ± 0.55 

-1.02 ± 1.11 

 

-2.61 ± 0.58 

-5.54 ± 0.40 

-3.94 ± 0.66 

-6.31 ± 0.47 

-4.68 ± 0.72 

-16.35 ± 1.19 

-16.01 ± 1.86 

-9.97 ± 2.21 

-7.79 ± 4.04 

 

-15.85 ± 2.06 

-8.52 ± 1.28 

-12.06 ± 1.90 

-9.91 ± 1.78 

12.64 ± 3.33 

12.57 ± 3.00 

 

-2.92 ± 0.39 

-1.07 ± 0.05 

-0.25 ± 0.41 

 

-2.44 ± 0.16 

-2.48 ± 0.24 

-2.37 ± 0.30 

-3.08 ± 0.09 

-2.82 ± 0.40 

-3.70 ± 0.56 

-3.54 

-0.41 

-0.96 

 

-2.12 

-2.28 

-2.23 

-2.77 

-3.72 

-3.96 

 

-1.62 

-0.85 

-0.43 

 

-1.16 

-2.52 

-1.78 

-2.88 

-2.12 

-7.54 

0.44 

1.53 

1.92 

 

0.47 

1.79 

1.15 

1.54 

1.05 

5.58 

 

aExperimental and calculated LIE binding free energies (Kcal/mol) are shown. Compound structures are 

shown in figure 24. bTraining set mean squared error (MSE)=0.15 kcal/mol, and test set MSE = 0.21 

kcal/mol. cIndicates a zwitterion. 
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Table 7. Calculated Free Energies for the Na-MMT via the LIE method after optimization of δ 

from Ca-MMT keeping α and β fixed, for the Training (1-5, 11-13, 15-16) and Test (10 and 17) 

Sets. 

Compound Δ<EvdW> Δ<EEl> bΔGLIE aΔGEXP ΔΔGvdW ΔΔGel 

 

1 

2 

 

Ammonium 

Aniline 

 

-1.68 ± 0.68 

-2.18 ± 0.88 

 

-10.62 ± 2.20 

-10.94 ± 2.92 

 

-1.85 ± 0.15 

-2.14 ± 0.11 

 

-1.94 

-2.01 

 

0.00 

-0.23 

 

0.00 

-0.06 

3 N-methylaniline -2.78 ± 1.01 -11.39 ± 3.61 -2.49 ± 0.76 -2.41 -0.51 -0.14 

4 N,N-dimethylaniline -3.44 ± 0.66 -11.63 ± 1.05 -2.85 ± 0.07 -3.06 -0.82 -0.18 

5 phenyltrimethylammonium -4.27 ± 0.35 -13.03 ± 1.33 -3.48 ± 0.18 -3.78 -1.20 -0.43 

11 

12 

13 

15 

16 

10 

17 

Benzylamine 

2,4-dicholorobenzylamine 

2,4-dimethylbenzylamine 

1-Napthylbenzylamine 

cOxytetracycline (charge 0) 

c4-Aminobenzoicacid (charge 0)  

Metoprolol 

-2.55 ± 0.66 

-5.77 ± 0.71 

-4.37 ± 0.85 

-4.98 ± 1.11 

-13.15 ± 0.91 

-6.95 ± 0.56 

-11.63 ± 0.63 

-10.56 ± 2.70 

-6.63 ± 2.27 

-8.31 ± 1.52 

-12.35 ± 1.87 

8.56 ± 4.07 

2.38 ± 4.80 

2.16 ± 3.23 

-2.24 ± 0.11 

-3.02 ± 0.23 

-2.68 ± 0.29 

-3.69 ± 0.41 

-3.72 ± 0.86 

-1.95 ± 0.54 

-4.16 ± 0.50 

-2.45 

-2.51 

-2.52 

-3.80 

-3.64 

-1.37 

-3.93 

-0.40 

-1.90 

-1.25 

-1.53 

-5.32 

-2.44 

-4.62 

0.01 

0.72 

-0.42 

-0.31 

3.45 

2.34 

2.30 

aExperimental and calculated LIE binding free energies (Kcal/mol) are shown. Compound structures are 

shown in figure 24. bTraining set mean squared error (MSE)=0.05 kcal/mol, and test set MSE = 0.19 

kcal/mol. cIndicates a zwitterion. 

 

organic cations, second task was to examine why its predictive ability is far superior to other 

empirical models that exists such as methods based on octanol/water partition coefficients (KOW) 

and polyparameter Linear Free Energy relationships (PPLFER).89, 203 (organic cation) and sorbent 

(soil or clay) and other thermodynamic factors such as entropy to the free energy implicitly through 

changes in electrostatic and van der Waals interaction energies, weighed according to the LIE 

coefficients which have been derived by fitting to reproduce known sorption free energy values. 
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Based on the production MD trajectories sampling a NPT ensemble, the orientations of 

different organic molecules in solution and in Ca/Na MMT were analyzed. In solution it was 

observed that zwitterions 4-Aminobenzoicacid (10) and Oxytetracycline (16) formed a salt-bridge 

with the Na+ ion. For this reason, during the intercalation process, there will be a high possibility 

that the bound Na+ ion will be dragged into the interlayer of the clay. Bearing this in mind, in Ca-

MMT model, a single Ca+2 ion was replaced with two Na+ ions in clay model for 4-

Aminobenzoicacid (10) and Oxytetracycline (16). It was observed that the aromatic ammines tend 

to orient in such a way that the phenyl ring was parallel or near parallel to the MMT sheets. As 

stated in the previous chapter such an orientation allows maximum electrostatic and van der Waals 

interactions with the clay surface and agrees with experimental studies which stated that under low 

surface concentrations aromatic compounds orient in such a way that the phenyl ring was parallel 

or near parallel to the plane of the clay surface. 195, 196  

Analysis of the energy components resulting from the decomposition of ΔGLIE to ΔΔGel and 

ΔΔGvdW using equation 4.1 was carried out next. In both Ca and Na LIE models, homologous 

cationic compounds from 1-5 (derivatives of aniline), from here in referred as group A, there was 

a monotonic increase in the ΔΔGel and ΔΔGvdW. From a structural point of view there was an 

increase in the number of methyl substituents at charged N atom (monotonically increases from 1 

to 5). This increase can be expounded as a consequence of spread of positive charge over the 

substituted methyl groups and increase in hydrophobicity thus an enhanced interaction with the 

clay surface.198  

 In compounds 11-13 and 15 (derivative of benzyl amine), from here in referred as group B, 

values of ΔΔGvdW exhibited an increase (irregular) relative to benzylamine (11). This can be 

expected as in compounds 12 and 13 addition of choloro and methyl groups and in compound 15 
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addition of a phenyl group will increase the hydrophobicity of the molecules. Thus, enhanced 

hydrophobic interactions with the clay surface. The effects of the aforementioned structural 

changes did not manifested a regular increase or decrease in ΔΔGel, as in class A, since, 

substitutions were further away from the positively charged amine group compared to substituted 

ammines. 

Compounds 10, 11 and 16, from here in referred as group C, are zwitter ions which have a 

positive and a negative charge groups thus, are electrically neutral. In class C, zwitterions showed 

an unfavorable electrostatic interaction with the clay surface compared to classes A and B. The 

main driving force for zwitter ionic compounds was the van der Waals interactions with the clay 

surface in both models (Ca-MMT and Na-MMT). 

It was observed experimentally that the free energies of sorption of organic cations sorbing to 

MMT having Na+ as charge compensating ions were lower than that of MMT having Ca+2. This 

was expected: as clarified by the lyatropic series: Na+ has a lower charge to hydrated radius ratio 

than that of Ca+2, thus, Ca+2 will be strongly bound to the negatively charged clay surface compared 

to Na+. Hence, it will be easier to remove a Na+ ion from MMT surface than a Ca+2 resulting a 

higher affinity of organic cations towards MMT with Na+ ions. To further verify this assertion, 

ensemble averaged distance of the averaged z-coordinate (clay sheets orient in the xy plane) of the 

interlayer ions from the mid-point of the interlayer was calculated for both MMT models (Ca-

MMT and Na-MMT). From the results it was evident that Ca+2 ions oriented further away from 

the mid-point of the interlayer (closer to the clay surface) relative to Na+ ions. Thus agreeing with 

the philosophy behind the lyotropic series (Figure 23). 
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Table 8. Distances from the center of the MMT slab to the averaged center of the counter ions (Ca+2 and 
Na+) 

Compound 

Distance from the 
center of the 

interlayer       
(Ca- MMT)* 

Distance from 
the center of 
the interlayer 
(Na-MMT)* 

Ammonium (1) 
1.65 ± 0.17 1.19 ±0.11 

Aniline  (2) 
1.41 ± 0.02 1.09 ±0.04 

N-Methylaniline  (3) 
1.37 ± 0.02 1.29 ±0.14 

N, N- Methylaniline (4) 
1.39 ± 0.03 1.08 ±0.07 

Phenyltrimethylammonium (5) 
1.43 ± 0.02 1.11 ±0.04 

Benzylamine (11) 
1.40 ± 0.01 1.22 ±0.13 

2,4-dimethylbenzylamine (12) 
1.42 ± 0.02 1.38 ±0.06 

2,4-Dichlorobenzylamine (13) 
1.34 ± 0.02 1.39 ±0.04 

1-Napthylmethylbenzylamine (15) 
1.44 ± 0.02 1.54 ±0.06 

4-Aminomethyl Benzoic Acid (10) 
1.38 ±0.01 1.42 ±0.07 

Oxytetracycline (16) 
1.16 ±0.04 0.75 ± 0.12 

*All distances are in angstroms. 

 

5.5. Summary and Conclusion 

In the work summarized in this chapter, investigations were carried to determine the accuracy 

of the LIE method in predicting free energies of sorption considering MMT having identical 

chemical composition varied only by the interlayer cations (calcium and sodium). From the results 

of the calculations, it was evident that the LIE method was promising in predicting experimental 

sorption free energies with an accuracy of ±.50 kcal mol-1 that of experimental free energies. It was 

apparent that LIE parameters derived from Ca-MMT was transferable with an additional 

optimization of the parameter δ, stemming from the constant change in experimental free energy  

from ΔGCA to ΔGNA. Thus, we conclude that δ coefficient is counterion-dependent while 
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parameters α and β are transferable independent of the counter ion to predict sorption affinities at 

a given set of experimental conditions.    
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Chapter 6. Atomistic Prediction of Sorption Free Energies of 

Charged Ammines on to an External Montmorillonite Surface: A 

Linear Interaction Energy Method 

6.1. Background 

Due to upsurge in release of polar organic contaminants into the environment as a result of 

anthropogenic activities and there adverse effects on human, animal and plant lives, environmental 

risk assessment of aforementioned compounds is of utmost importance.53 Determination of the 

sorption coefficients (Kd) of these compounds is an important step in formulating environmental 

risk assessment models.202 Work carried out in this thesis so far, focused on the application of the 

LIE method as a predictive tool to evaluate sorption affinities of charged ammines to the 

prototypical aluminosilicate montmorillonite having different exchangeable ions: calcium and 

sodium. Results obtained from chapters four and five highlighted that the LIE method was 

promising with respect to the ability of predicting free energies of sorption irrespective of the 

interlayer ion present. It was also concluded that LIE coefficients are transferable with an 

additional optimization of the fitting parameter δ.  

In the work summarized in chapters four and five, interaction energies of the organic cations 

with the MMT surface was calculated utilizing a model consisting of a single organic cation placed 

in the interlayer space between two clay slabs. The distance between two clay slabs (or the d-

spacing) of the simulated clay models was set in such a way, that when appropriate number (with 

respect to mass of clay) of water molecules were added, a double layer hydrated structure was 

formed. Thus, to this point, we have only explored the adsorption of organic cations by the 

intercalation process (in a confined environment). Adsorption could also take place on the external 

surfaces of smectite clays at the mineral-solution interface (in an non-confined environment).204 
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To develop a through picture of molecular scale behaviors of various organic cations in such a 

non-confined environment and how they interact with the clay surface will require extensive 

spectroscopic studies if carried out experimentally.205 Computational techniques permits an 

alternate approach of obtaining a detailed picture of interfacial structures or thermodynamic 

modelling to predict adsorption equilibria.206  

This chapter presents a computational MD study of adsorption of a set of organic cations 

(Figure 24) to an external surface of homoionic MMT having sodium and calcium as counter ions. 

The ultimate goal of the study was to investigate whether such a model will reproduce 

experimental sorption free energies which strictly occurs due to sorption of organic cations in the 

interlayer (>90%) of MMT.  

 

6.2. Computational Details 

MMT with a unit cell formula of, (Si7.75Al0.25)(Al3.5Mg0.5)O20(OH)4.xH2O was used to build 

the atomistic models. A super cell having 32 unit cells was constructed by translating the unit cell 

eight times in the x direction, four times in y direction and one time in the z direction (8  4  1). 

The resulting super cell had a single MMT slab, having a charge of -24.00e (-0.75e per unit cell). 

Molecular structures of organic solutes (Figure 24) were taken from our previous work (chapter 5) 

optimized using DFT at 6-31G(d) level of theory using Gaussian 09 package.190 Dimension of the 

z-axis was set to 37 Å, to make sure that the adjacent slabs of montmorillonite were completely 

separated, and thus the simulation would occur on the external surface of the montmorillonite slab. 

The center of mass of the MMT slab was placed in the center of the z-axis of the simulation box 

in such a way that the surface of the slab was parallel with the xy plane of the simulation box 

(Figure 27). 
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.  

Figure 27. 2d view of the supercell (viewed along the xz plane) used for the simulations with the periodic 

boundaries highlighted by black lines (Red = oxygen, orange = silicon, yellow = aluminum, white/gray = 

hydrogen. Magnesium atoms are not seen in this view but are present). 

 

Ca Montmorillonite: Atomistic models for MMT slab with Ca+2 ions (Ca-MMT-surf) was 

constructed by using the aforementioned super-cell, by placing a single solute molecule (organic 

compound) in the interlayer space and by adding Ca+2 and Na+ ions to neutralize the overall charge 

(-24e). In detail, eleven Ca+2 ions and a single Na+ ion were added to clay models having 

compounds 1-8, 11-15, eleven Ca+2 ions and two Na+ to clay models having compounds 10 and 

16, and twelve Ca+2 ions to the clay model having compound 9. Afterwards, water molecules were 

added to form a double-layer hydrate (sterically clashing molecules were removed). 

Na Montmorillonite: Atomistic models for  MMT slab with Na+ ions (Na-MMT-surf) was 

constructed by using the clay models from the previous step and by replacing Ca+2 ions by Na+ 

ions to neutralize the overall charge. In detail, 23 Na+ ions were added to clay models having 

compounds 1-5 11-13, 15, 17 and 24 Na+ ions were added to clay models having compounds 9, 10 
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and 16. Subsequently, water molecules were added to form a double-layer hydrate (sterically 

clashing molecules were removed). 

 

Figure 28. Snapshots representing structures of the slab model viewed along the xz plane. (Red = oxygen, 

green = carbon, purple = calcium, orange = silicon, light blue = nitrogen, yellow = aluminum, white/gray 

= hydrogen, sodium = dark blue, plum = calcium, Magnesium atoms are not seen in this view but are 

present). 

 

Afterwards, water molecules were added to each model in such a way that the density of the box 

(excluding the volume occupied by the MMT slab) was 1.00 g cm-3. Water molecules that sterically 

clashed with the organic molecules were removed. Force field parameters for MMT were taken 

from the CLAYFF parameter set.110 Parameters for the water molecules were taken from flexible 

SPC water model. Organic cations were modeled using the OPLS-AA force field.104 Partial 

charges for the organic solutes derived using the RESP method in previous work (chapter 5) were 

used.154 

 MD code DL_POLY CLASSIC version 1.8 was used to carry out the simulations.192 Periodic 

boundary conditions were employed to the simulation box in all (x, y and z) directions. Long range 
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electrostatics were treated with the Ewald summation method.140 MD simulations were carried out 

in the NPT (isothermal isobaric) ensemble. The Nose-Hoover barostat was used with a relaxation 

time of 0.5 ps at a temperature T=300 K and pressure p=1.0 atm. Velocity-Verlet algorithm with 

a time step of 1 fs was used to propagate the system and to produce the atomistic trajectories. Prior 

to the addition of the inorganic cations (i.e. Na+ and Ca+2) and water molecules, 0 K optimization 

was carried out to obtain the most stable configuration of the organic solutes on the clay surface. 

The clay/solute system was equilibrated for 1500ps followed by a production time of 500ps with 

periodic boundary conditions. The length of the production was determined by converged values 

in the average interaction energies and or by using similar production times used by earlier studies. 

During the production time solute-clay interaction energies (electrostatic and van der Waals) was 

recorded. 

The data collection phase of the simulation was split into blocks of 50ps, for the solute-clay 

(Ca/Na MMT-surf) and solute-water calculations. The average electrostatic and van der Waals 

interaction energies of the solute with its environment (water and clay) were calculated for each 

block. The overall means and standard errors were calculated from these blocks. Error assessment 

of the computed free energies was carried out in a similar way by splitting the production time of 

simulation into equal blocks (in solution splitting 200 ps into two blocks of 100ps and in clay 

splitting 500 ps into blocks two blocks of 250ps); the means and standard errors were computed 

from these blocks. 

 

6.3. LIE fitting 

Interaction energies of the organic solutes in solution phase computed in the previous work 

(chapter 5) were used for this study. After obtaining ensemble averaged interaction energies of 

solute-clay from MD simulations, differences (∆<>) were computed. Multivariable linear 
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regression was applied to determine coefficients α, β and δ (equation 3.1) fitted to experimental 

free energy values ΔGEXP for MMT having different interlayer ions (Ca+2 and Na+). 

Linear regression was conducted 11 times using Ca-MMT-surf data, leaving one molecule out 

of the training set [1-8, 11, 14, 15 (Table 9)] each time (LOO method). Further testing was achieved 

by calculating the ∆𝐺𝐿𝐼𝐸  of several compounds which were not in the training set [9, 10, 12, 13, 16 

(Table 9)]. All LIE coefficients were allowed to optimize freely. LIE parameters derived using Ca-

MMT was then used in Na-MMT-surf with an additional optimization of the 𝛿 parameter (fixing 

α and β) 10 times, leaving one molecule out of the training set [1-5,11-13,15-16 (Table 10)] each 

time. Optimization was carried in such a way that mean squared error (MSE) between experimental 

free energy and the LIE predicted free energy was minimized. Further testing was achieved by 

calculating the ∆𝐺𝐿𝐼𝐸  of several compounds which were not in the training set [10 and 17 (Table 

10)].   

 

6.4. Results and Discussion 

Results obtained from the LIE equations derived in chapters five and six exhibited an 

exceptional agreement with experimental free energy values across training and test sets. 

Furthermore, LIE parameters were transferable with an additional optimization of δ. However, 

when LIE method is applied based on interaction energies obtained from the slab models, such an 

agreement was not observed (Tables 8 and 9). The calculations yielded a modest overall mean 

unsigned error of 0.64 kcal mol-1 with a R2 value of 0.5677 for Ca-MMT-surf and a MUE of 1.84 

kcalmol-1 and a R2 value of 0.6376 for Na-MMT-surf. Compound 4-aminobenzoic was recognized 

as an outlier in Ca-MMT-surf and Na-MMT-surf; thus removed from the data set. After doing so 
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a MUE of 0.29 kcal mol-1 was observed with a R2 value of 0.6736. The statistical results for all the 

LIE models are summarized in Table 11.  

Possible underlying causes for the poor correlation of free energies of sorption obtained using 

the LIE method (using the slab models) to that of experimental free energy values obtained from 

adsorption isotherms was investigated. By comparing the trajectories of the organic cation in the 

interlayer model (organic cation between two slabs of clay) to that of surface model (organic cation 

interacting with the surface of a single slab of clay), it was observed that in the surface model for 

compounds having a phenyl group (i.e. anilines and benzylamines), the plane of the phenyl ring 

was no longer oriented parallelly (or near parallelly) to that of the plane of the clay surface (Figure 

29) but it switched between parallel and perpendicular orientations throughout the duration of the 

trajectory of the production phase of the MD simulations. In our previous work, which was carried 

out using the interlayer model, we observed that (by analyzing the trajectories and the ensemble 

averaged orientations of the organic cations) the phenyl ring oriented parallelly or near parallelly 

to the clay surface thus assenting the experimental observations which specified that at lower 

surface concentrations of aromatic compounds (e.g. anilinium, nitrobenzene, methylene blue) the 

phenyl ring was (spectroscopically determined) oriented in such a way that it was parallel (or near 

parallel) to the plane of the silicate surface.195, 196 Furthermore, a perpendicular orientation of the 

phenyl ring was observed (experimentally) only at high surface concentrations of the solute.195, 196 

In the interlayer model, since the organic cations were placed in a confined environment, spurious 

orientations which were observed in the surface mode (unconfined environment) was restricted. 

Thus, generating an accurate ensemble of configurations of the organic cations on the clay surface 

which were in agreement with the experimental results. Zwitterion 4-ABA (10) showed repulsive 

interactions as it drifted away to the solution phase from the clay surface. 
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Table 9. Calculated Free Energies for the Ca-MMT via the LIE method and Their Comparison with 

Experimental Values for the Training (1-8,11,14,15) and Test (9,10,12,13,16) Sets. 

Compound Δ<EvdW> Δ<EEl> bΔGLIE aΔGEXP 

 

1 

2 

 

Ammonium 

Aniline 

 

-0.28 ± 1.03 

-1.72 ± 0.91 

 

-7.07 ± 2.90 

-2.72 ± 2.64 

 

-1.44 ± 0.30 

-1.97 ± 0.18 

 

-1.61 

-1.84 

3 N-methylaniline -2.56 ± 0.54 -1.52 ± 1.08 -2.48 ± 0.19 -2.30 

4 N,N-dimethylaniline -2.96 ± 0.37 -3.77 ± 1.23 -3.13 ± 0.17 -2.99 

5 phenyltrimethylammonium -2.92 ± 0.57 -4.45 ± 1.31 -3.20 ± 0.20 -3.54 

6 p-toluidine -2.43 ± 0.82 -3.18 ± 2.11 -2.62 ± 0.49 -1.72 

7 N-methyl-p-toluidine -2.34 ± 0.85 -2.99 ± 1.25 -2.51 ± 0.43 -2.57 

8 

9 

10 

11 

12 

13 

14 

15 

16 

N,N-dimethyl-ammonium 

cDMTS (charge 0) 

c, d4-(aminomethyl) benzoic acid (charge 0) 

Benzylamine 

2,4-dicholorobenzylamine 

2,4-dimethylbenzylamine 

p-phenylenediamine 

1-napthylmethylbenzylamine 

cOxytetracycline (charge 0) 

-3.24 ± 0.57 

-1.33 ± 1.12 

0.92 ± 1.22 

-1.94 ± 0.73 

-3.37 ± 0.70 

-2.88 ± 1.01 

-2.05 ± 0.45 

-2.90 ± 0.78 

-6.89 ± 0.90 

-2.89 ± 2.31 

-1.27 ± 3.57 

6.14 ± 2.11 

-3.13 ± 1.95 

-2.05 ± 1.76 

-1.80 ± 0.84 

-1.70 ± 1.80 

-3.47 ± 2.20 

10.39 ± 2.96 

-3.23 ± 0.24 

-1.45 ± 0.11 

1.45 ± 0.68 

-2.21 ± 0.96 

-3.21 ± 0.07 

-2.78 ± 0.20 

-2.10 ± 0.12 

-3.04 ± 0.30 

-4.26 ± 1.01 

-3.54 

-0.41 

-0.96 

-2.12 

-2.28 

-2.23 

-2.77 

-3.72 

-3.96 

 

aExperimental and calculated LIE binding free energies (kcal/mol) are shown. Compound structures are shown in 

figure 24. bTraining set mean squared error (MSE)=0.19 kcal/mol, and test set MSE = 0.58 kcal/mol excluding the 

outliers. cIndicates a zwitterion. dindicates an outlier. 
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Table 10. Calculated Free Energies for the Na-MMT via the LIE method after optimization of δ from Ca-

MMT keeping α and β fixed, for the Training (1-5, 11-13, 15-16) and Test (10 and 17) Sets. 

 

 

 

aExperimental and calculated LIE binding free energies (kcal/mol) are shown. Compound structures are shown in 

figure 24. bTraining set mean squared error (MSE)=0.69 kcal/mol, and test set MSE = 2.46 kcal/mol. cIndicates a 

zwitterion. dindicates an outlier. 

 

In the surface model, since the organic cations were placed in an unconfined environment, 

facilitating the free rotation of the organic cations around the center of mass of the molecule, thus 

generating an ensemble of configurations which were different to that of actual orientations 

(experimental) of the organic solutes having low surface concentration. Hence interaction energies 

computed from the surface model will be incorrect, propagating the errors to the LIE method. 

 

Compound Δ<EvdW> Δ<EEl> bΔGLIE aΔGEXP 

 

1 

2 

 

Ammonium 

Aniline 

 

-0.15 ± 0.75 

-2.15 ± 0.67 

 

-6.22 ± 1.95 

-1.17 ± 2.36 

 

-1.00 ± 0.30 

-1.89 ± 0.16 

 

-1.94 

-2.01 

3 N-methylaniline -2.50 ± 0.56 -2.27 ± 1.58 -2.33 ± 0.19 -2.41 

4 N,N-dimethylaniline -3.03 ± 0.54 -2.47 ± 1.28 -2.79 ± 0.17 -3.06 

5 phenyltrimethylammonium -3.04 ± 0.70 -3.69 ± 1.40 -2.97 ± 0.24 -3.78 

11 Benzylamine -2.03 ± 0.77  -1.96 ± 1.45 -1.90 ± 0.07 -2.45 

12  2,4-dicholorobenzylamine -4.97 ± 0.59 -2.17 ± 1.31 -4.31 ± 0.08 -2.51 

13 2,4-dimethylbenzylamine -2.47 ± 0.45  -6.79 ± 1.14  -2.96 ± 0.17 -2.52 

15 1-Napthylbenzylamine -3.65 ± 0.50 -2.39 ± 1.83 -3.28 ± 0.09 -3.80 

16 cOxytetracycaline (charge 0) -8.85 ± 0.63 16.28 ± 2.96 -4.78 ± 0.36 -3.64 

10 c,d4-Aminobenzoic acid (charge 0) 1.71 ± 1.08 5.39 ± 2.55 2.19 ± 0.40 -1.37 

17 Metoprolol -6.19 ± 1.06 -3.54 ± 3.72 -5.50 ± 1.50 -3.93 
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Table 11. Optimized LIE Coefficients for Ca-MMT-surf and Na-MMT-surf 

 
 

 

 

 

 

Figure 29. Equilibrium snapshots representing parallel and perpendicular orientations of organic 

compounds relative to the MMT surface in Ca-MMT-surf (top row) and Na-MMT-surf (bottom row). 

 

6.5. Summary and Conclusions 

The adsorption of organic cations on to a montmorillonite surface was simulated using MD 

simulations. Using the interaction energies generated from the production phase, LIE method was 

applied to calculate sorption free energies using a similar protocol used in chapters four and five. 

A modest agreement between experimental and LIE predicted free energy values was obtained. 

By analyzing the trajectories from the simulations, it was concluded that, such a poor agreement 

was obtained due to configurations sampled during the MD simulations due to non-confined 

environment that existed on the mineral-solution interfaces. It was apparent that the phenyl ring of 

the aromatic ammines no longer oriented parallelly but switched between perpendicular and 

parallel orientations which was conflicting with the experimental observations which stated that 

System α β δ / kcal mol-1 

    

Ca-MMT 0.809 ± 0.095 0.145 ± 0.058 -0.189 ± 0.341 

Na-MMT 0.809 ± 0.095 0.145 ± 0.058  0.021 ± 0.030 
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under low surface concentration of the aromatic compounds the aromatic ring held parallel to the 

clay surface. 
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7. Concluding Remarks 

Work presented in this thesis demonstrates the ability of the LIE method to predict the sorption 

free energies of different organic cations to homoionic smectite montmorillonite. In chapter four, 

we applied the LIE method for the prediction of organic cations sorption affinities to a 

representative clay mineral: Ca-montmorillonite. Molecular dynamics (MD) simulations were 

utilized to sample interactions energies of the organic cations with their environment (in solution 

and clay) and linear regression models were used to derive LIE coefficients (α, β and δ) fitting to 

reproduce experimental free energies of sorption using a training set having 10 compounds. It was 

found that the method was capable of predicting accurate free energies matching well with the 

experimental results; with a mean average error of 0.3 kcal mol-1 and a correlation coefficient of 

0.84. LIE predicted free energy values were within 0.50 kcal mol-1 of experimental sorption free 

energies. From the average trajectories of each aromatic amine studied, it was observed that these 

compounds oriented in the interlayer in such a way that the phenyl ring always oriented parallelly 

or near parallelly to the clay surface. Such an orientation has been well documented in previous 

experimental work carried out validating the simulation models used. The direct inclusion of 

interaction energies to expand the free energies in the LIE equation enabled to capture variety of 

structural effects that mediated the sorption including defocusing of the positive charge on N-

substituted ammines as a function of increased methyl groups which enhanced sorption through 

equal contributions from electrostatic and van der Waals interaction energies. Electrostatic 

interaction energies of zwitterionic compounds unveiled repulsive interactions with the clay 

surface thus lowering the free energies of sorption due to presence of negatively charged functional 

groups. The major driving force of sorption for zwitterionic compounds was the van der Waals 

interactions with the clay surface. 
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In chapter five, we investigated the accuracy and the transferability of LIE method and its 

parameters in predicting sorption affinities of an extended set of organic cations sorbing to 

homoionic smectite montmorillonite having calcium and sodium as charge compensating ions 

separately. Work carried out in this chapter differ from the previous chapter (chapter four) as the 

bound (in clay) and unbound (in solution) states were modeled to have a neutral charge. LIE was 

capable of predicting the sorption affinities with high accuracy with a mean square error of 0.17 

kcal mol-1 for Ca-MMT and 0.08 kcal mol-1 for Na-MMT. It was concluded that LIE parameters 

derived with Ca-MMT data were transferable with an additional optimization of the parameter δ. 

In chapter six, we modeled the sorption of organic cations to the mineral-solution interface by 

means of a model consisting a slab of montmorillonite in bulk solution. LIE method was applied 

to replicate the experimental free energies of sorption having different charge compensating ions: 

calcium and sodium. In contrast to results obtained from clay models used in chapters five and six, 

where organic cation was placed in between two slabs of clay (intercalated), we obtained moderate 

accuracy with 0.29 kcal mol-1 for the model with calcium ions and 0.94 kcal mol-1 for the model 

with sodium ions. It was concluded that such poor agreement was perceived due to sampling of 

configurations which were unrealistic at low surface concentrations which promoted by 

unconfined nature of the slab model. 

In summary, we reason that LIE method can be used as a robust and accurate tool to predict 

sorption affinities of charged organic compounds sorbing through cation exchange with high 

accuracy. This is a major improvement over existing predictive models which underestimates 

binding affinities due to exclusion of electrostatic interactions. However to increase the 

computational efficiency, use of implicit solvation models must be considered in solution phase. 
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A bigger compound library having diverse functional groups should be employed to further 

evaluate the robustness of the LIE method. 
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