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ABSTRACT

In this paper, we investigate the use of the Stockwell Transform for image compression. The proposed technique
uses the Discrete Orthogonal Stockwell Transform (DOST), an orthogonal version of the Discrete Stockwell
Transform (DST). These mathematical transforms provide a multiresolution spatial-frequency representation of
a signal or image.

First, we give a brief introduction for the Stockwell transform and the DOST. Then we outline a simplistic
compression method based on setting the smallest coefficients to zero. In an experiment, we use this compression
strategy on three different transforms: the Fast Fourier transform, the Daubechies wavelet transform and the
DOST. The results show that the DOST outperforms the two other methods.
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1. INTRODUCTION

Image compression is an important step in many image-processing pipelines, allowing for smaller storage size, and
faster download. Currently, JPEG image compression is one of the most pervasive image compression standards.1

The most recent JPEG standard, called JPEG2000,2 uses wavelets. Currently, wavelets are generally regarded
as the leading technology for image compression.

Before wavelets, the Fourier transform (FT) was commonly used in image compression. The FT decomposes
the image into its component frequencies, but does so globally so that each pixel affects every Fourier coefficient.
Wavelets give a multiresolution decomposition in the spatial-scale domain. Even though the scale information
can be approximately treated as frequency information (i.e. the fine scale information corresponds to the high
frequency information and vice versa), the wavelet basis functions (e.g. the compactly supported Daubechies
wavelets) are not entirely smooth. Hence, wavelet compression can be suboptimal on smooth parts of an image.

The Stockwell transform (ST) provides a continuous and infinitely differentiable kernel function and a full
decomposition over the spatial-frequency domain. The orthonormal version of the Stockwell transform is the
Discrete Orthonormal Stockwell transform (DOST), which gives a spatial-frequency decomposition with no
redundancy. In this paper, we demonstrate the advantages of the DOST by analyzing the peak signal to noise
ratio (PSNR) in an image compression experiment. We will see that a better approximation is achieved in the
smooth areas of the image without sacrificing crisp edges.
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2. REVIEW OF THE STOCKWELL TRANSFORM AND THE DOST

The Stockwell transform, proposed in 1996,3–6 gives a full spatial-frequency decomposition of a signal. Consider
a one-dimensional function h(t). The Stockwell transform of h(t) is defined as the FT of the product between
h(t) and a Gaussian window function,
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where f is the frequency, and t and τ are both time. In this way, the ST decomposes a signal into spatial (τ)
and frequency (f) components.

By the integral properties of the Gaussian function, the relation between S(τ, f) and H(f) (the Fourier
transform of h(t)) is

∫

∞

−∞

S(τ, f)dτ = H(f). (2)

That is, the accumulation of the Stockwell decomposition over frequency yields the Fourier coefficient of the
signal, which highlights a special feature of the Stockwell transform. Hence, the original function h(t) can be
recovered by calculating the inverse Fourier transform of H(f).

Using the equivalent frequency domain definition of the Stockwell transform, the discrete Stockwell transform
(DST)3 can be written

S
[

jT,
n

NT

]

=

N−1
∑

m=0

H
[m + n

NT

]

e−2π2m2/n2

ei2πmj/N , (3)

for n �= 0, and for the n = 0 voice,
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which is analogous to the DC value of the FT. The Stockwell transform has been used widely in various fields.
For example, in geography it is used for analyzing internal atmospheric wave packets7 , atmospheric studies8 ,
characterization of seismic signals and global sea surface temperature analysis5 . It is used in electrical engineer-
ing9 , mechanical engineering 10 and digital signal processing11 . It has also been applied in the medical field for
human brain mapping12 , cardiovascular studies13 , MRI analysis14 and the physiological effects of drugs15 .

From (1), it is obvious that the Stockwell transform is an overcomplete representation. For a signal of length
N , there can be N2 Stockwell coefficients, but each one takes O(N) to compute, suggesting that computing all N2

coefficients of the ST has computational complexity of O(N3) . That makes the Stockwell transform expensive
to be applied to higher-dimensional cases. A more efficient basis is needed to pursue this spatial-frequency
decomposition.

The DOST is a pared-down version of the fully redundant ST.16 Since lower frequencies have longer periods,
it stands to reason that lower frequencies can cope with lower sampling rates. Hence, the DOST subsamples the
low frequencies. Similarly, spans of high frequencies have higher sample rates.

Explicitly, the DOST basis vectors are defined as

S(kT )[ν,β,τ ] =
1√
β

ν+β/2−1
∑

f=ν−β/2

exp

(

i2π
k

N
f

)

exp

(

−i2π
τ

β
f

)

exp (−iπτ) , (5)

for k = 0, · · · , N − 1, which can be summed analytically to

S(kT )[ν,β,τ ] = ie−iπτ e−i2α(ν−β/2−1/2) − e−i2α(ν+β/2−1/2)

2
√

β sin α
, (6)

where α = π(k/N − τ/β) is the center of the temporal window and ν indicates the center of each frequency band
voice with a bandwidth of β.



To make the family of basis vectors in (6) orthonormal, the parameters, β, ν and τ , have to be picked suitably.
Let the variable p represent the level of spatial decomposition. In Ref. 16, Dr. Stockwell defines DOST basis
functions for each level p as

• p = 0, S(kT )[ν,β,τ ] = 1,

• p = 1, S(kT )[ν,β,τ ] = exp(−i2kπ/N),

• p = 2, · · · , log2(N) − 1, pick:

ν = 2(p−1) + 2(p−2),

β = 2(p−1),

τ = 0, · · · , β − 1.

Mathematically, we can prove that these basis vectors are orthonormal,

1

N

∫ N
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S[ν′,β′,τ ′][kT ]S∗

[ν,β,τ ][kT ]dk = δν′νδβ′βδτ ′τ , (7)

where

δxy =

{

1 for x = y
0 otherwise

(8)

is the Kronecker delta.

The advantage of the DOST over the DST is that it can represent a signal of length N with N coefficients.

Figure 1. Lena and the logarithm of its DOST coefficients.

Figure 1 shows the logarithm of the DOST coefficients of one of our example images, Lena. As we can see,
the coefficients decay very quickly, which makes the DOST a powerful tool for image compression.

3. METHODS

Our goal is to introduce the ST as a candidate tool for image compression. As an initial stab at the determining
of the ST’s capabilities, we compare it to two other transforms in a rudimentary compression methodology –
simply dropping a percentage of the smallest coefficients (in modulus) and then reconstructing the images.

In our experiments, we used one of the most efficient families of wavelets, the Daubechies wavelets.17 The
Daubechies wavelets form a family of orthogonal wavelets with a small number of coefficients. Generally, the
order-K Daubechies wavelet has 2K non-zero coefficients, which makes the Daubechies wavelets efficient for
image compression.18



(a) Babara (b) Lena (c) CT

Figure 2. Original sample images.

Table 1. PSNR for compression using 80% of coefficients.

Transform Barbara Lena CT

DOST 90.27 88.87 86.69
FT 52.39 56.61 53.87

Haar 74.42 76.56 78.10
Daubechies-2 87.13 83.18 82.36
Daubechies-5 84.68 82.29 81.85
Daubechies-15 88.1665 84.59 80.22
Daubechies-38 81.9181 80.84 79.95

To compare the capabilities of the compression methods (DOST, FT, Daubechies), we conducted an exper-
iment in which we applied each of the methods to three different test images (shown in Figure 2) at different
compression rates. The test images are all 512 × 512 pixels in size.

Tables 1-3 report the PSNR of the compressed images for our experiment. In all cases, the DOST method
yields a substantially higher PSNR and better quality than the FT and Daubechies methods. In addition
(though not reported in the tables), the maximum intensity errors are roughly the same between the DOST and
the Daubechies methods.

Figure 3 compares the original Barbara and different compressed versions using DOST, FT and Daubechies-2.
As we can see, the DOST version remains sharper and keeps more detailed information (e.g. shadows behind
the door, expression on the face and texture over the pants etc.) than the wavelet version.

Figures 4 and 5 show the intensity errors for the compression methods after compressing the Barbara images
by 90% (reconstructing using only 10% of the coefficients). The distribution of the nonzero elements hints
at each method’s strengths and weaknesses. In particular, the FT method exhibits its largest errors in the
regions containing high-frequency content. The DOST method shows relatively small errors throughout. Similar
observations are made over different compression rates and different images.

4. CONCLUSION

According to our experiment, we conclude that, over the base line comparison, the DOST is a valuable tool for
image compression by giving a higher PSNR and better quality than the wavelets and the FT. The distribution
of the errors suggests that the DOST outperforms the wavelet compression in the smooth regions of the image.
We understand that the state-of-the-art compression methods that use the FT and Wavelet method are consid-
erably more complex than the simplistic compression method used in our experiments. This project is simply
a pilot study, and more investigation is needed to assess the degree to which the DOST can challenge the best
compression methods.

In the meantime, we are interested in investigating other uses of the DOST in image processing.



Table 2. PSNR for compression using 50% of coefficients.

Transform Barbara Lena CT

DOST 55.17 53.20 52.45
FT 39.80 38.25 40.76

Haar 48.35 47.41 48.34
Daubechies-2 50.21 51.24 48.10
Daubechies-5 51.00 48.06 48.95
Daubechies-15 50.68 48.68 47.68
Daubechies-38 48.70 47.34 46.90

Table 3. PSNR for compression using 10% of coefficients.

Transform Barbara Lena CT

DOST 34.31 33.40 33.25
FT 27.80 26.25 26.76

Haar 31.07 30.41 28.34
Daubechies-2 31.27 31.24 30.10
Daubechies-5 32.56 30.06 30.95
Daubechies-15 32.44 29.96 31.68
Daubechies-38 31.84 29.34 30.90
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(a) Original (b) DOST compressed

(c) FT compressed (d) Daubechies-2 compressed

Figure 3. Original and compressed versions of Barbara using 10% of coefficients.
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(a) DOST (b) FT (c) Daubechies-2 wavelet

Figure 4. Intensity errors for Barbara image using 10% of coefficients (see Table 3). The gray level is set so that -80
maps to black and 82 maps to white (corresponding to the largest errors among these three methods).

(a) DOST (b) Daubechies-2 wavelet

Figure 5. Intensity errors for Barbara image using 10% of coefficients (see Table 3). The gray level is set so that -45
maps to black and 51 maps to white (corresponding to the largest errors between the DOST and the Daubechies-2 wavelet
method).


