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1. Introduction. In this article we are concerned with the solvability of the periodic 
boundary value problem associated to some nonautonomous scalar nonlinear second 
order differential equations of Duffing type. As a possible model for our investigation we 
consider, for instance, equation 

(1.0 x" + g(x) = p(0, 

where 9: IR ~ N is continuous and p: [0, T] ~ IR is Lebesgue integrable. Solutions of 
(1.1) are intended in the generalized (i.e. Caratheodory) sense and are called T-periodic 
provided they are defined on [0, T] and satisfy the boundary condition 

(1.2) x ( T ) -  x(O) = x ' ( T ) -  x'(O) = 0 

(T > 0 is a fixed positive constant). 
The study of the periodic problem for equation (1.1) (or for some of its generalizations) 

represents a central subject in the qualitative theory of ordinary differential equations and 
it has been widely developed by the introduction of powerful tools from nonlinear 
functional analysis. See e.g. [22, 11, 9, 8, 16] and the references therein, for a source of 
various different techniques which can be used for this purpose. 

A classical method to deal with problem (1.1)-(1.2) consists into the search of fixed 
points of the translation operator (Poincar~-Andronov map) ~ : (x o, Yo) ~ (x (T; Xo, Yo), 
y (T; xo, Yo)) associated to the equivalent planar system 

(1.3) x '  = y, y ' =  - -g(x)  + p(t),  

where, in order to make all the subsequent discussion meaningful, we suppose that the 
function p is continuous and that the solution (x (.; Xo, Yo), Y ('; xo, Yo)) of (1.3) satisfying 
the initial condition x (0) -- xo, y (0) = Yo is unique and defined on [0, T]. In this setting, 
a useful approach, considered in [1, 10, 12] and extensively exploited in [13, 11], can be 
described as follows. At the beginning, a Jordan curve J is constructed, such that the 
origin and all the critical points of the vector field v : (x, y) ~-~ (y, - 9 (x) + p (0)) lie in the 
"interior" of J and the index of~, relatively to ~ ,  is nonzero. As a second step, it is crucial 
to prove that all the points of J are of nonrecurrence (or T-irreversibility, according to 
[11]) for (1.3), that is, for any (x o, Yo) ~ J ,  we have (x(t; xo, Yo), Y(~; Xo, Yo)) + (Xo, Yo), for 
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each t ~ ]0, T]. This condition allows to perform an admissible homotopy,  along the 
trajectories of (1.3), between r - IR2 (IR2 = identity in ~ z )  and v. Hence, the index of 
qJ - I ~ ,  relatively to J ,  is nonzero and the existence of fixed points of tp is ensured by 
a basic property of the Brouwer degree (Kronecker's existence theorem). 

At the early sixties, Z, Opial [18, 20] introduced the use of estimates for the time-map 
in order to verify the property of"nonrecurrence" described above. In these papers, using 
a careful comparison with the solutions of the autonomous system 

(1.4) x ' =  y, y ' =  - -g(x) ,  

he found lower estimates for any possible time t o = t o (x o, Yo) > 0 such that (x (t o; x o, Yo), 
y (to; Xo, Yo)) = (Xo, Yo). Then the result was accomplished by suitable conditions ensur- 
ing that to > T, for (xg + yo z) sufficiently large. 

In order to state the main theorem obtained by Opial in [18] through the above 
argument, we need the following notations. Set 

(1.5) G (x) = i a (s) ds 
0 

and consider 

ds 

whenever it is defined. We note that a sufficient condition for z 9 (x) to be defined on 
neighborhoods of _+ oo is 

(gt) lim g(x).  sign(x) = + ~ .  

Indeed, in this case, every orbit (x (t), y (t)) of (1.4) lying sufficiently far from the origin is 
closed and its minimal period is ~ (x* )  + %(x,), where x* and x ,  are respectively the 
maximum and the minimum value of x (t) along the orbit. 

Define moreover 

(1.7) z -+ (9) :=  limsup % (x), 
x ~ _+co 

(1.8) ~ _* (9) : = iiminf zg (x). 

A slightly improved version of Opial's result is the following. 

Theorem A ([18]). Assume (gl) and 

(g2) ~- (9) + ~+ (g) > T. 

Then (1.1)-(1,2) has at least one solution, Jbr every continuous function p. 

Sufficient conditions for (g2) are obtained in [19] (see also [22]). In particular, if either 

limsup 9 (x)/x = k + 
x-~ _+ oo 
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o r  

then 

lim 2 G ( x ) / x  2 = k+,  

_. (g) > ~/,/G-_+ �9 

In this case, (gz) holds provided that I / , ~ +  + 1/w/~-_ > (T/n). One can in this way 
re-obtain some results in [2, 8]. 

Another case in which Theorem A can be applied deals with the so-called "one-sided 
growth restrictions" (see [23, 21, 24, 15]), that is, the problem of the solvability of 
(1.1)-(1.2) using conditions concerning the behaviour of the nonlinearity only for x > 0 
(the case x __< 0 is completely symmetric and will not be examined here). In this situation, 
since we have no way to control v_ (g), we need to require 

(1.9) r+ (9) > T, 

for the validity of (g2)- Then, by the estimates in [19], one gets the solvability of (1.I)-(1.2) 
provided that either 

limsup g (x)/x = k+ < ( n / r )  2 
X "s" +Ct~ 

o r  

lira 2 G ( x ) / x  2 = k+ < (n/T)  2 
X ~ + C O  

holds. (See also [22, p. 208].) 
In some recent papers [6, 4] dealing with (1.1)-(1.2), the existence of solutions has been 

proved under more general one-sided growth restrictions like 

(1.1o) 

in [6], o r  

(1.1t)  

liminf g (x)/x = O, xg ' (x) /g  (x) __< M < + oo for x >__ d > 0 

liminf 2 G (x)/x 2 < (n/T)  2 
x ' ~  + o 0  

in [4]. The main arguments in the proofs of the above results combine some estimates for 
the time-map of system (1.3) with a continuation lemma based on the use of topological 
degree in function spaces. Some examples can be easily produced in order to show that 
conditions (1.10) or (1.11) do not imply (1.9). 

In this article, we find an improvement of OpiaFs theorem providing a general result 
which unifies and extends [6, 4]. In particular, we are able to prove the following 

Theorem B. Assume (gl) and either 

(g2a) r_ (g) + ~ + (g) > T, 
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or  

(g2b) Z - (g) + ~+ (g) > T. 

Then (1.1)-(1.2) has at least one solution, for every integrable function p. 

The paper is organized as follows. In Section 2 we state our main existence resuIt which 
is essentially an adaptation of Theorem B to a more general class of equations. The proof 
is then carried out in Section 3, making use of a continuation lemma based on topological 
degree arguments. In Section 4 we prove estimates for the time-map and show how our 
result includes the above mentioned theorems. Finally, in Section 5 we outline some 
possible applications to different types of boundary value problems. 

This research started when the authors were visiting the Institute of Mathematics of 
Louvain-la-Neuve. The authors are very grateful for the kind hospitality. 

2. Statement of the general result. In this section we consider the problem of the 
existence of periodic solutions with given period T > 0 of a second order differential 
equation of the form 

(2.1) x" + f ( t ,  x) = p (t). 

Here f :  [0, T] x IR -~ R is supposed to satisfy the Caratheodory conditions, i.e. f (., x) is 
measurable for all x ~ N,, f ( t , . )  is continuous for almost every t ~ [0, T], and for each 
r > 0 there exists a Lcbesgue integrable function h r : [0, T] ~ 1t such that I f  (t, x)! < h, (t) 
for almost every t 6 [0, T] and all Ix] < r. The function p: [0, T] --, IR is only supposed to 
be Lebesgue integrable. 

A T-periodic solution of (2.1) is meant to be a differentiable function x: [0, T] --+ IR 
whose derivative is absolutely continuous, satisfying (2.1) for almost every t ~ [0, T] and 
such that 

(2.2) x (0) - x (T) = x '  (0) - x '  (T) = O. 

It is well-known that such a solution can be extended to a classical T-periodic solution 
of (2.1) on the whole real line when f (t, x) and p (t) are continuous and T-periodic in the 
variable t. 

Let us denote by p the mean value of p (t), i.e. 

] T 

= f p(s) ds, 
6 

and assume the following condition: 
(H) there exists d > 0, Pl, P2 e R and a continuous function ~b : IR ~ IR satisfying the 

properties 

(hi) lira ~b (x) sign (x) = + oe ; 

(h2) P2 --< f (t, x) < q~ (x) for a.e. t ~ [0, T] and all x > d ; 
(h3) qS(x) < f ( r ,  x) < Pl for a.e. t e [0, r l  and all x < - d. 
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Let q~ denote a primitive of ~b. We can introduce the function 

ds 
(2.3) r(x) = ( x ) -  

which, by assumption (H) above, is defined when I xl is sufficiently large. As mentioned 
in the introduction, r (x) is the t ime-map associated to the au tonomous  planar system 
x'  = y, y '  = - q~ (x). Finally, set 

r -+ = limsup r (x), 
X ~  ---1- oo 

"c +_ = liminf -r (x). 
X ---~ _+GO 

With the above assumptions, we have: 

Theorem 1. Equation (2.1) has a T-periodic solution f Pl < fi < P2 and, either 
r_ +~+ > T, o r r -  + %  > T. 

Clearly, the assumptions in Theorem I are satisfied if Pl < i0 =< P2 and, either z + > T, 
or z -  > T. This situation will be examined in more detail in the applications. Theorem 1 
improves a result by Opial [18] where it was assumed that r_ + r+ > T; indeed, a 
straightforward consequence of Theorem I is Theorem B stated in the introduction, 
where f (t, x) = ~b (x) = 9 (x). The proof  of Theorem i is carried out in Section 3. Explicit 
conditions under which the assumptions of Theorem I hold true will be given in Sec- 
tion 4. 

3. The proof. Without  loss of generality (using (hi)) we can assume that ~b (x) 4 = t5 for 
Ix[ > d. Then we can use the following continuation lemma, whose proof, given for f 
continuous in [17, 6], can easily be adapted to the Cara theodory  case. 

Lemma  1. Assume there exist u ,  < - d and u* > d such that: 
(h4) considered for 2 ~ ]0, 1[ the equation 

(3.1~) x" + 2 (2 f ( t ,  x) + (1 - )~) q5 (x)) = 2p(t) ,  

either for any T-periodic solution x~ of  (3.1a) one has 

(3.2) max xx =# u* 

or for any such solution one has 

(3.3) rain x~ + u , .  

Then equation (2.1) has a T-periodic solution. 
Moreover the T-periodic solutions x;~ of  (3.14) have the following property: for every 

R >_ d, there exists a constant M > 0 (depending only on R) such that, whenever 
max x~ < R (or minx;. > - R), then [x~(t)[ < M for every t ~ [0, T]. (See also [15].) 

In order to apply Lemma l, for any pair (u, ,  u*), with u ,  < - d, u* > d, we need to 
evaluate the t ime-map of the solutions of (3.1D having max imum value u* and of those 
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having minimum value u , .  To this aim, it is better to write (3.1~) as an equivalent second 
order system. Defining the continuous T-periodic function 

t 

~( t )  = S (p(s)  - ~)ds ,  
0 

equation (3.ix) is equivalent to system 

(3.4z) x' = y + 2if(t) 

(3.5~) y '  = - 2 (2 f  (t, x) + (1 - 2) ~b (x) - /3 ) .  

Set L = 2 T II-Pll ~ and let T(x) be an auxiliary function defined outside a sufficiently 
large interval ] - r, r[ as follows: 

T(x) = .~ /2~ iL(x /2  [IP]I~ + ~ ) -  *(s) + ]/Sl(x - ~ ) - *  ds for x > r, 
d 

- d  

T(x) = ~ f (x/~ IIPIIo~ +, , /~(x)-~(s)+lN(x-s)) -*  ds forx-<_ - r .  
x + L  

The function T(x) permits us to evaluate the t ime-map in the following way, 

L e m m a 2 .  Let x z be a T-periodic solution of (3.1z), for 26]0 ,1 [ ,  such that 
max xx = u* > r and rain xx = u,  < - r. Then, if r is sufficiently large, 

T(u*) + T(u, )  < T. 

P r o o f  o f  L e m m a  2. Let (xa, yz) be the corresponding solution of system 
(3.4~)-(3.5~). Integrating (3.5x) over [0, T] and exploiting (h2)  , (h3)  , the assumption on/~ 
and the remark at the beginning of this section, we get: 

3t '~ [0, T] : ]x~(t')[ _-_6 d. 

Moreover,  it follows from (3.5z) that y~.(t) is decreasing when xx(t) >= d, and increasing 
when x~ (t) < - d .  Assume 

r > d + 2 T  I]/~]]oo = d + L. 

Extending our functions by T-periodicity if necessary, there will be a x < tl = t2 < a2 
such that 

x~(eh)=d,  x~( t l )=u*  ( i = 1 , 2 )  
and 

d < xa(t ) < u *  (tG]~xl,tl[~Jltz, o~zD. 

Let us now concentrate on the interval [~1, tI]. Integration of (3.4~.) gives 

r 

u* - d = S (yz(s) + 2P(s))ds < W[ya(al) + []PI[~] 

and so 
Yz(al) > T - l (  r - d ) -  IIPl[oo > lil~lloo �9 
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On the other hand, evaluating (3.4a) in t l, we get l yx(tl) I < ]1 ell oo. Hence, there exists 
/71 e ]cq, tl] such that y~ (/?l) = I] P [1 ~- Integrat ion of (3.44) over [/71, tl] yields 

t l  

u* - x~(fl~) = ~ (y~(s) + 2P(s ) )ds  < 2r t lPI loo 
fll 

i.e. 

(3.6) xa(/?l) > u* -- L > d. 

From system (3.4x)-(3.5a), for all t e [e l , /?l],  we obtain 

+ 1 _ IIFIIj2] d [ ~ ( x a ( t ) ) - P X a ( t )  ~(Ya(t) 

= (4~ (xa) - / ~ ) x ~  + (Ya - IlPlloo)ya 

_>-- (yx - l l P l l J  [~ (x~) - p - 2 (2 f ( t ,  x~) + (1 - ).) ~b (x~) - /5)]  > 0. 

Hence 

1 
�9 (x~(t)) - pxx ( t )  + x ( y z ( t )  - JlPllo~) z ~ ~(x~(/?l)) - px).(fl  l) 

Z 

=< r  - p u * ,  

by (3.6) and the fact that  ~b (x) >/3  for x >= d. Using again (3.4~.), we get 

xi  (t) 
(3.7) 1 > 

2 II/~t1| + ~/2[~(u*)  - q~(x~(t)) + Ipl(u* - xx(t))] ' 

Integrating over [el, ill] and taking into account (3.6) we obtain 

x(~) ds 1 
> r(u*).  

fll - e l  = Ia 2 [lff[]oo + , , /2  [~(u*)  - ~ ( s )  + ]fir(u* - s)] = ~ 

A similar procedure (see [6]) can be used to establish that there exists flz e It2, a2[ such 
1 T(u*). Therefore we have that  Ya(/?z) = -I tP!l~o,  and then ~2 - / ? 2  > 

o~ 2 -- o: 1 >--__ T(u*) .  

In a symmetric way one can prove that  the time needed for x~ (t) to reach its minimum 
u.  starting from the level - d and to come back has to be at leas't T(u. ) .  The result then 
immediately follows. []  

Next we need a result, showing how the auxiliary function T(x )  is a good estimate for 
T(x) when Ixl is large. 

Lemma 3. lim [T(x) -- z(x)] = 0. 
X'-* •  

P r o o f  o f  L e m m a  3. Observe that, by definition, we have z ( x ) >  T(x )  for [xl 
large. Let ~ be a small fixed positive number.  We want to prove that for Ix[ large enough 
one has T ( x ) -  r ( x ) > - e .  Let us consider the case x ~ + oo, the other one being 
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treated similarly. By assumption (h~), it is possible to find d' => d with the following 
properties: 

(3.8) ~ (d') > �9 (s) (o <= s < d'), 

(3 .9 )  4,(s)>4T[fil/e (s > d'), 

For x > d' + L, we have 

z (x) = ,d~ i ds 
o ~ _ ~ (~) 

By (3.8), 

+ 5 + 5 ' .  
d' x - L J  

d' dS ds <= ~//2 ! ~ <-g/4 
vi i  o ,/~(~) - ~ (~) - �9 (d') 

when x > M~, for a sufficiently large M~ = M~ (5). Moreover 

, /~ ~ ds 
~J_~ , ~ -  ~(~) 

<- V/~ i ds < 5/4 
~-Lx/L  rain ~b 

[x - L ,  x] 

when x > M2, for a sufficiently large M 2 = M z (5). By (3.9) we have 

x / ~ i  L ds 

_<,/5 d, 
+ ~ / 4 T  ~ (q~(r + tPl)dr ds 

<= , /5  + UT/  d,i (r + IOI)d. 

+ ~ -  (q5 (~) + [/~[)d~ ds 
x -L  

e ~L rain (qS+lfil) ds 

__<-V ~ (1 + ~ e  )3/2 :~-L {[q~ ( X ) d  ~' -- q~(S) + 'ff'(X-- S)]I/2 + X/2 "P"o~} -1 ds 

< 1 + T(x)<_ I + g (x )<T(x )+5/2 ,  
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the above being true for x > M3,  for a sufficiently large M 3 = M 3 (g)(~ small) since 
T(x) < T (by Lemma 2). Hence for x > M : =  max {M1, M z, M3}, we have 

T(x) <__ z(x) < T(x) + e, 

and the result is proved. [ ]  

P r o o f o f T h e o r e m 1. Let us consider the case z_ + z + > T, the other one being 
similarly treated. Let e > 0 be such that 

(3.10) r_ + z + > T + 3 e .  

Consider a sequence x* + + oo such that z (x*) --, z+, We want to show that, for a 
sufficiently large n, for any T-periodic solution x a of (3.1a) one has max x~. + x*. In this 
way, (3.2) is satisfied with u* = x* and the first part of Lemma I can be applied. Suppose 
by contradiction that there exists a sequence (xa.) of T-periodic solutions of (3.1~.) such 
that max x~,. = x,*. For  n large enough we have, by Lemma 3, 

(3.11) g(x*)  > z(x*)  -- e. 

On the other hand, setting x , ,  = min x;.., by the second part of Lemma I there will exist 
a subsequence - still denoted xa. - for which x , ,  ~ - oo. Again by Lemma 3 we have 

(3.12) T ( x , , )  > z(x, , )  -- e. 

Finally, by Lemma 2, (3.11) and (3.12), one has 

T >= T ( x , , )  + T(x*)  > z ( x , , )  + v(x*,) - 2~, 

which, for n large, is in contradiction with (3.10). Lemma 1 then concludes the 
proof. []  

4. Some estimates for the time-maps. We consider a continuous map ~b : R -~ R satis- 
fying 

(h 0 lim ~b(x) sign(x) = + ~ .  

Denoting by �9 a primitive of ~b, we define z (x) as in (2.3) and, correspondingly, 

z+_ = liminfz(x),  z -+ = limsup z(x) .  

As mentioned in the introduction, Opial [19] found many useful estimates for z+ and 
z-% This section can be considered as a complement of [19]: we obtain some new estimates 
which can be combined with the ones in [19] and Theorem l in order to obtain existence 
results for our problem. 

The proofs of the following results will be carried out only for the estimates of z+ and 
z +, as the ones for z_ and z -  are completely similar. 

Define, for every t / >  0 and x e R,  the set A~, as follows: 

/1~ = {s  e [0, x]  : 0~(x)  - r (s) < 1 = ~/'1 (X2 - -  $2)},  f o r  x > 0 ,  

A ] = { s e [ x , O ] : ~ ( x ) - ~ ( s ) < l - r l ( x 2 - s 2 ) }  for x < 0 .  2 ~ 

We denote by I A~I the Lebesgue measure of A"~. 
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Proposition 1. Assume 

l imsup (]A"~[/lxl) > L +- (resp. liminf (lA~]/lxl) > L+). 

2 2 
Then ~• > - ~  arcsin L • (resp. z• >: ~ arcsin L+). 

P r o o f. F o r  x > 0 sufficiently large, we have 

i ds ds 2 ~ ds 

 (si 
Now, since s ~ (x 2 - sZ) - 1/2 is an  increasing funct ion,  we have (see [3]) 

2 [A~I ds 2 !  arcsin(IA l/=) 
Final ly,  

z § > ~,-,~" arcsin t ~§ (IA~l/x) > ~ arcsin L , 

+ > - - ~  arcsin l iminf  (IA~l/x > - ~  arcsin L +.  [ ]  
I. ~'~ +~ J 4'7 

Corollary 1. Assume that for certain positive constants 0+, O- one has 

l imsup (q5 (x)/x) < 0 +_. 
X--* +_o0 

Then ~+ > n / ~ +  

1 t/~2 _ ~ (~ )  is increasing P r o o f. Take tl = Q + + e, with ~ > 0. Since the funct ion 7 
i r I and  u n b o u n d e d  for ~ positive an d  large, one has that  IA~[ = x for x posit ive and  large, 

and  so l iminf  (IA~l/x) -- 1. By P ropos i t i on  1, z+ > n/,v/~, and  the result  follows by let t ing 
J r  + 0 9  

e tend towards  zero. [ ]  

Corollary 2. Assume that for certain positive constants Q +, Q_ one has 

l iminf  (2 �9 (x)/x 2) << o~ +_. 

Then z • > rc/x~+ - . 

P r o o f .  A s a b o v e ,  take~l = 0+ + ~ , w i t h ~ > 0 .  S ince l im sup  {gt/r 2 _ ~(~)} = + o% 

there is an  increasing sequence xn ~ + oo such that  IA~I = xn, and  so l imsup (lA"~]/x) 
X ~  - ~ o 0  

= 1. By Propos i t ion  1, z + > n /x /~ ,  and  the result  follows by let t ing c tend towards  
zero. [ ]  
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R e m a r k. Opial [19] proved that when in the above the limit exists and 

lim (2 �9 (x)/x z) < Q 5 ,  
X--* •  

then one has the stronger conclusion ~ • > u/x/O_~. 

Corollary 3. Assume that for  certain positive constants 0 +, O- one has 

liminf (q~ (x)/x) < ~ +. 
x ~ -I- oO 

I f  moreover the function ~ ( ~ ) - Q •  ~ is nondecreasing for  [~] large enough, then 

P r o o f. We show that, in this case, liminf (2 qi (x)/x 2) __ liminf (q5 (x)/x) : -- Q, so that 
x - +  q- oO X ~+ q- co 

we are in the situation of Corollary 2. Indeed, let x ,  --, + oo be such that ~b (xn)/x , --, o~. 
Since we always have that 

= liminf (q~ (x)/x) < liminf (2 ~P (x)/x 2), 
x ~ q- (X3 X ---r 4- co 

it is sufficient to prove that l i m i n f ( 2 ~ ( x , ) / x 2 , ) <  O. Let r > 0 be such that the map 
n ~ o o  

x ~ q~(x) - Qx is nondecreasing for x > r. Then, for x, > r, by the mean value theorem, 

2 ~b (x,) - Qx, 2 < (2 ~b (r) - 0 r 2) + (x, - r) (2 4) (x,)  - 2 Q x , ) .  

Dividing by x, 2 we finally get liminf (2 ~b (x,)/x2,) < ~. [] 
n - * o o  

We observe that in the proof  of Proposit ion 1, the configuration of the set A~ does not 
play any role. Actually, better estimates for z • can be obtained whenever further informa- 
tion on the structure of the set A~ is available. A result in this direction is the following 
(where we consider only the estimate for ~+, being the corresponding one for ~- complete- 
ly symmetrical). 

Proposition 2. Assume there exist two positive sequences (a,) and (x,) such that 
a, ~ x , ,  x .  ~ + oo and [a,, x~] ~ A~ . Then, 

= ~ a r c c o s  1 inf(an/xn) . 

P r o o f. Arguing as in Proposit ion 1, we have 

2 ~ ds 2 ~" ds _ 2 
a r c c o S  ( a n / X n )  , 

and the result follows by considering the "limsup" and using the fact that the function 
"arccos" is decreasing. []  



256 A .  F O N D A  a n d  F. ZANOLIN ARCJ-~I, MATH, 

Corollary 4. Assume r (3) to be continuously differentiabie for ~ > 0 sufficien,:Iy large, 
and such that, for a certain positive constant Q +, 

liminf (43 (x)/x) < ~ +. 
X--~ + O0 

I f  moreover there exists M > I such that 

r  (x) <= e ~- + M {(r (x)/x) - O + } 

when x > 0 and 43 (x) - o. + x > 0 are sufficiently large, then 

~+ > ( 2 / . ~ + )  arccos {(M - I ) /M}.  

P r o o f .  Let (a,,) be such that  a .  ~ + oo and 4)(a.)/a~ -~ liminf(c)(x)/x). Fix s > t, 
X ~  -rcO 

> 0 ,  and set k = Q + + M s a ,  x . = a . ( k - ( o ~ + + s ) ) / ( k - ( O + + s s ) ) .  We want to 
show that  the interval [a., x.] is contained in A0+ +~ for sufficiently large n (such that  
(~ (a,)/a,) < 0 + + D- To this end, we prove that  

(43({)/~) < ~+ + se for all { ~ [ a . , x . ] .  

Indeed, assume by contradiction that there is r 1 ~ ] a., x,] such that (43 (41)/4 t) > ~o + + s ~. 
By construction, the line ~ joining (a,, (0 + + e) a,) to (x,,  (q + + s ~) x.)  (which has slope 
k) lies below the line y = (0+ + s t )x ,  for all x ~ [a n, x,]. Then, there is a last point 
~o ~ ]a , ,  ~-1[ such that  (x, ~b(x)) lies above ~ for all ~o--< x =< r Hence ~b'(r k, 
and Q+ + ~ < (~P(r < 0+ + se. From the hypothesis we then have ~'(~o) = 0§ 
+ M(( r  (~o)/r - ~+) < ~o§ + Mst: = k, which is a contradiction. 

Hence [a., x.] is contained in A e § +~' for sufficiently large n, and we have, by Proposi-  Xn 

t ion 2, 

2 
~+ > -  arccos {lira (%/x.)} 

2 
- - a r c c o s  { s ( M -  l ) / ( s M -  1)}. 

- x /O+  + s t  

The result now follows by letting ~ tend towards zero and s tend towards infinity~ in such 
a way that  s s ~ 0. [ ]  

5. Periodic solutions under one-sided growth restrictions. In  this section we present 
some applications of Theorem 1 in which the explicit estimates for the time maps, 
obtained in Section 4. are exploited. For  simplicity, we confine ourselves to the solvability 
of 

(5.1) 

(5.2) 

x "  + a (x) = p (t) 

x ( T )  - x (0) = x '  ( T )  - x '  (0) = O. 



Vol. 59, 1992 Time-maps and boundary value problems 257 

We assume that p e L 1 ([0, T], R)  and g: IR -~ R is a continuous function satisfying, for 
some d > 0, 

(go) (g(x) - 10)x > 0 for Ixl _-_3 d, 

1 ip(s)ds .  with p = 

Throughout  the section we confine ourselves to the use of one-sided conditions, in 
order to show how several different results can be unified by our approach.  

At first, we give a consequence of Proposi t ion 1. Accordingly, we define, for t / >  0 and 
x > 0, the set 

B~ = {s a [0, x] : G (x) --  G (s) < �89 r/(x 2 _ s 2)} ,  

where G (x) = i g (s) ds. 
0 

Theorem 2. Assume (go) and suppose that, for some t I ~ ]0, (g/T)2[, 

(5.3) limsup ([B~l/x) > sin (�89 T x / ~  ) . 
X --~ +o0 

Then problem (5.1)-(5.2) has a solution. 

P r o o f. We fix ~ > 0 such that t/': = t / +  e < (re~T) 2 and 

limsup ([B~[/x) > sin (�89 Tx//-~). 
X -~ +oO 

1 2 Define c b ( x ) = g ( x ) + e x ;  correspondingly we have ~ ( x ) =  G ( x ) + g ~ x ,  so that 
B~ = A~', with A~' defined as in Section 4. F rom Proposi t ion 1, we then have 

z + > / ~ ; a r c s i n ~  txlimsup+~ (rB~]/x) > ~ arcsin in r = T, 

and the result follows from Theorem 1. [ ]  

In order to verify (5.3), one can proceed as in the proofs of Corollaries 2 and 3. In this 
way we immediately get: 

Corollary 5 ([6]). Problem (5.1)-(5.2) has a solution if 

liminf (2 G (x)/x 2) < (~/T)2. 
x--* + ~  

Corollary 6. Assume 

(5.4) liminf (0 (x)/x) = ~ < (rc/r) 2 
X'-* +o0 

and that the map x ~ g (x) - o~ x is nondecreasing for sufficiently large positive x. Then 
problem (5.1)-(5.2) has a solution. 

Archly der Ma thema t ik  59 t 7 
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It has been shown in [5] by means o fa  counterexample that condition (5.4) alone is not 
sufficient to guarantee the existence of T-periodic solutions of (2.1). We will now give 
another sufficient condition to be added to (5.4) in order to have such an existence, which 
is an improvement of a theorem of Ding, Iannacci and Zanolin [4]. 

Corollary 7. Assume that g (4) is continuously differentiable for ~ > 0 sufficiently large, 
and there exists 4 ~ ]0, (n/T)Z[ such that 

liminf (g (x)/x) < 4. 
X +cO "~- 

Assume moreover that there exists m ~ ]1, (1 cos (�89 T ~0) ) -1 [  (where O-1 = + ~ )  such 
that 

g' (x) < o + M (g (~  ) @ 

for x > 0 and g(x) - Ox > 0 large enough. Then problem (5.1)-(5.2) has a solution. 

The proof of Corollary 7 uses the following Theorem 3 together with the estimates of 
Corollary 4. 

Theorem 3. Assume (go) and suppose that there is tl e ]O, (niT)Z[ and there are two 
positive sequences (a,) and (x,) such that a, < x, ,  x ,  --+ + oo and [a,, x,] ~ B~ . I f  

lira (a,/x,) < cos (1_ T x/~), 2 

then problem (5.1)-(5.2) has a solution. 

6. Related results for two-point BVP's. We briefly outline one of the results which can 
be obtained through conditions on the time maps in the line of the preceding sections. 
We consider the two-point boundary value problem on the interval [a, b] 

(6,1) x " + f ( t , x ) = p ( , t ) ,  x ( a ) = r l ,  x ( b ) = r 2 ,  

with r 1, r 2 ~ IR and f :  [a, b] x R --, N and p: [a, b] ~ IR satisfying the same regularity 
assumptions of Section 2. Then, we have the following. 

Theorem 4. Assume (H) holds. Then problem (6.1) has a solution provided that 
rain {~-, ~+} > b - a. 

The proof follows the lines of [7, 14], showing that there exists a set 
F = {x ~ C([a, b]): - A < x(t) < B for every t e [a, hi} such that no possible solution of 
the problem 

(6.2z) x " + ) ~ f ( t , x ) = 2 p ( t ) ,  x ( a ) = 2 r  1, x ( b ) = 2 r  2, 

with )o e ]0, 1 [, belongs to the boundary of F. The constant B (and, in a similar way, the 
contant - A) is obtained by chosing B = x* for n sufficiently large, where x* -~ + oo and 

(x*) ~ z+. Arguing as in the proof of Theorem 1, one has that no solution x~. of (6.20 
is such that max xx = x*. 
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