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NON-LTE STELLAR ATMOSPHERES COMPUTATIONS

L. H. Auer and Dimitri Mihalas*

(Received 1970 January 13)

SUMMARY

It is shown that by use of variable Eddington factors, the accuracy of difference-
equation solutions of transfer problems may be greatly improved with only
small additional computational effort. It is found that a direct iterative
calculation of the Eddington factors leads to a strongly convergent procedure.
The resulting set of equations is of wide applicability to problems involving
non-cocherent radiative transfer. The method is illustrated by application to the
classical grey problem, and to a non-L'TE stellar atmospheres computation.

I. INTRODUCTION

There now exist a wide variety of possible techniques for the solution of transfer
equations; among these the difference-equation approach is one of the most general
and most flexible. The particular class of transfer problems where the difference-
equation technique has proven to be most valuable is that where the source function
involves coupling from frequency to frequency in the radiation field, that is, in any
non-coherent transfer problem.

The primary drawback to this method is that in order to achieve accuracy in the
angular distribution of the radiation field, it is, unfortunately, necessary to include
explicitly a large number of angular quadrature points. This results in a technical
problem, in that the computation then becomes very time-consuming, since the
basic matrix operations required in the difference-equation approach scale as the
cube of the number of quadrature points. In the past, it has been necessary, in
practice, to employ low-order quadrature formulae using perhaps one or, at most,
two angle points. This obviously restricts the accuracy of the solution.

Recently, difference-equations have been employed extensively in model
atmospheres calculations. For example, in recent papers (1—4) we have developed
effective methods for calculating model stellar atmospheres subject to the constraints
of hydrostatic, radiative, and steady-state statistical equilibrium, including bound-
bound transitions. We have shown (2) that by a complete linearization of all
equations, including constraints, one obtains an extremely stable, efficient, and
strongly-convergent scheme that allows fully for the global properties of the solution,
and is capable of treating complicated non-L'TE models successfully (3), (4). An
essential part of the method is the use of difference-equations. For the reasons
mentioned above, our exploratory work has, thus far, employed the Eddington
approximation. In the present paper we wish to show that this approximation can
economically be removed, and that the difference-equation approach can be
significantly improved in a simple and elegant way.
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2. METHOD

Feautrier (5) has suggested that the transfer equation be written as a system of
second-order equations:

o 02P; .
pi? o5 =P—S8, ((=r1,..,mn) (1)
37',':
where 7, is the number of angle-quadrature points and #, is the number of
frequency-quadrature points. These equations are subject to the boundary condi-
tions

oP; o
Migr = Pyo)—-1I; (2)
at 7 = o, and
oP,
P t=It=Py (3)
T

1

at the lower boundary 7 = 7Tmax. In the above equations, the subscript 7 denotes a
specific choice of frequency and angle, and

P;= %[I(T’ i, V’i) + I(T’ = iy Vi)]- (4')

In equations (2) and (3), I;+ and I;~ are the incident intensities at the lower and
upper boundaries respectively, and in all equations the continuous variables w and v
are discretized. In general, the physical form of the source function S will imply
coupling among all 7, x n, equations.

To solve the resulting set of differential equations, one replaces them by
difference equations, and solves for P; at a discrete set of depth-points. There are a
large number of advantages to this formulation: (1) The difference equations are
extremely flexible, in that they are written in terms of local quantities (in contrast to
the integral equations). (2) The second-order form is almost ten times faster to solve
than the equivalent first-order form (because the size of the system is reduced by
factor of two). (3) The difference equations themselves are tridiagonal in form,
diagonally dominated, extremely stable, and can be solved by a simple recursive
algorithm requiring a minimum of core storage. (4) Our experience has shown that
the multi-scale problem causes no difficulty and that exponentially increasing
depth-steps may be chosen. (5) The computing time increases only linearly with the
number of depth points while the accuracy increases quadratically.

The basic disadvantage of the method is caused by the fundamental three-
dimensionality of the problem (depth, frequency, angle), which necessitates the
explicit introduction of angle-quadrature points. The computing time, consequently
scales as 7,3 for this method; in the integral equation approach, the angular integra-
tion is automatically exact, and the problem is only two-dimensional.

The model atmospheres computer code, which we have mentioned above,
depends heavily on the flexibility of the difference equation approach. Indeed, we
have found that it is literally the only practical way to compute complex non-LLTE
model atmospheres problems. Yet, faced with the fact that the physical nature of the
problem requires a large number of frequency-points (#,~ 100), and given a finite
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computer capability, we have been constrained, in order to make a survey of non-
LTE effects, to restrict ourselves to a single angle-point (u = 1/4/3), which is
equivalent to use of the Eddington approximation. That this is in fact an astute first
choice will be justified below. Nevertheless, it was clear from the beginning that it
would be highly desirable to have some method of improving the angular accuracy
of the difference-equation scheme without paying the prohibitive price of simply
increasing the number of angle-points.

In view of the above considerations, it is both fortunate and noteworthy that it is
possible to derive a set of equations that: (a) retain all of the desirable features of
equation (1), but (b) treat the angular quadratures as accurately as integral equations,
and at the same time (c) are no more difficult to solve than equation (1) is in the case
of a single angle-point.

To derive the desired system we start with the first-order moment equations

oH,
—BTi = Ji—Si (52)
and
oy = Hi (5b)
T4

In writing the above equations we have assumed that both absorption and emission
processes are isotropic (which is the usual situation in stellar atmospheres work). We
can close this system by introducing a frequency and depth-dependent variable
Eddington factor, defined by

Ki(r) = fa(r)J ). (6)
At the boundaries we may also introduce
H; = fud; (7)
With these definitions we are led to the second-order system
P(frde) _
o 2 = J;—S; (8)
with boundary conditions
Afxdi) _
oy~ HE (9)

At depth, an alternative boundary condition is to assume the asymptotic validity of
the Eddington approximation ( fx = %). Note that equation (8) is of precisely the same
form as equation (1) and correspondingly may be replaced, in exactly the same
manner, by a set of difference equations. The resulting system is no more difficult
to solve than equation (1), yet if correct values of fx and fg are used, the equations
are exact (aside from errors introduced by the depth- and frequency-discretizations).
In fact, anywhere that equations (1) may be used, equation (8) may be substituted
with a corresponding increase in accuracy and efficiency.

The main thrust of this paper is to show that the Eddington factors fx and fx
may be evaluated by a straightforward iteration scheme, even in the most complex
situations involving non-coherent scattering or non-LTE effects. It has been
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pointed out to us that Feautrier actually suggested such an approach (9), but he has
not, to our knowledge, carried out detailed calculations. The procedure is as follows:
(1) Using an estimate for fx and fx (a good initial guess is the Eddington approxima-
tion fu = %, fu = 1/4/3) solve equation (8). (2) With the values of J; so derived,
re-evaluate the (in general) frequency-dependent source-function S;. (3) Given the
source function S;, solve for the angular distribution of the radiation field frequency
by frequency with a high-order angle-quadrature. The time required for such a
solution is negligible compared to the solution of the coupled set of equations (8), and
(4) With this solution, re-evaluate the Eddington factors fx and fg directly from
their definitions in terms of the radiation field. The important point to realize here
is that even if J and K are themselves only moderately well determined, the
Eddington factors can have a much higher order of accuracy because they are ratios
of these quantities. While this in itself does not guarantee higher-order accuracy,
calculations for test problems with known exact solutions have verified that the
expected high accuracy is in fact obtained. The above procedure is then iterated.

Experience has shown that in two or three iterations fx is already determined to
roughly four decimal places. This is usually as accurate as allowed by the discretiza-
tions and is probably more accurate than the physical theory in many cases. Of
course, a solution of the same accuracy could have been obtained by using equation
(1) with an equivalent number of angle points as employed in step three above. But
such a solution would have required a factor of roughly 7,3 times as much computa-
tion and 7,2 times as much storage as the variable Eddington factor method. Before
passing on to a discussion of specific examples, we should mentioned that somewhat
similar ideas have been used in neutron transport and radiation-hydrodynamics
calculations (6), (7). However, those applications use first-order equations and an
approximate a priorvi definition of fx in terms of an interpolation formula. In contrast,
the present work uses second-order equations and actually evaluates fx consistently
with the radiation field.

3. TEST WITH A GREY ATMOSPHERE

One of the key points we must prove is that the method described above is in no
sense a A-iteration. A simple and convincing demonstration is to consider the
classical grey atmosphere problem. In this case the equations become

iz-g_%ﬁ = 0 (10)
with

d(f KJ) = faJ (11)
and 7 = o and

W) _ o2

at 7 = Tmax. Lable Ia lists the solutions obtained for ¢(7)=[(J/3H)—7] and
Table Ib lists fx, for six iterations, using 2- and 3-angle quadratures, starting from:
fk =% fo = 1/4/3, and ¢g(7)=1/4/3. We note that rapid, global convergence is
obtained. In particular, the convergence of ¢ at 7 = 10, shows that the solution is
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not a A-iteration. We see that little improvement is obtained after two iterations, and,
in fact, the remaining small changes are really only formal because the accuracy of
the solution is already as good as the discretization in depth allows (1). A more
accurate solution can, of course, be obtained by using a finer depth-discretization.
Ignoring this question, the mathematical consistency of the system is shown by the
maximum flux errors listed in the last row of Table Ia; after nine iterations the
computed and nominal fluxes agreed to at least nine places. Inspection of Table I
shows that the three-point formula clearly gives superior results, but higher-order
formulae will give improved results only up to a certain point, where errors in
depth-~discretization again dominate (1). In any case, it is important to realize that
the iterated variable-Eddington-factor equations converge to exactly the same values
as obtained from a direct solution of equation (1) using the angle-quadratures and
depth steps.

4. TEST WITH NON-GREY AND NON-LTE ATMOSPHERES

From the standpoint of stellar atmospheres computations, the importance of the
above development is that the form of equation (8) is identical to that used in our
linearization procedure, (2), and hence can be linearized in precisely the same way as
before. Unfortunately the linearization of fx and fg is extremely difficult; in fact it
is equivalent to linearizing the integral equations. The model atmospheres code (2)
has therefore been modified to use variable Eddington factors, ignoring linearization
of fx and fg which are computed iteratively. This of course is not a disadvantage
since iteration is required in any case to satisfy the constraints of radiative, hydro-
static, and statistical equilibrium. The price that must be paid in this approach is
that the solution is no longer strictly first-order consistent at each stage of the
calculation, and rigorous quadratic convergence is, therefore, sacrificed. As we shall
see below, however, one still obtains at least order-of-magnitude convergence on
each iteration, and, in fact, convergence often approaches quadratic.

Given this new method, it is natural to examine the accuracy of the Eddington
approximation employed in our previous work. To this end we have recomputed the
35 000°K model described in an earlier paper (4) now using variable Eddington
factors. Because we may now expect to obtain mathematically accurate models, it
was deemed worthwhile to upgrade our previously schematic opacity calculations.
In particular, we now include the full temperature and frequency variation of the
free-free Gaunt factors, have allowed for Gaunt factors in the He 11 cross-sections,
and have allowed six discrete levels of He 11 instead of four in order to improve the
accuracy of the computed continuum jumps.

Properties of LTE and non-LTE pure-continuum models are listed in Table II,
using Eddington factors computed with 1, 2, and 3 angle-points. The solutions were
started from the old models, assuming fx = 3, and fg = 1/4/3 in the first iteration,
and then re-computing the Eddington factors after each linearization-correction.
The one-point Eddington factors are exactly equivalent to the assumption fx=1,
and these models differ from our previously reported results only because of changes
in the opacities now used. In the 2- and 3-point models we see clearly changes
brought about by using accurate Eddington factors. As might be expected, the
effects are largest in the far ultra-violet since small temperature changes result in
large changes in source terms when Av/kT> 1. Also, as might be expected, the
Eddington factors depart most strongly from their limiting values at transparent
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wavelengths with large gradients; for example, at the long-wavelength side of the
He 11 edge, fu reaches a value of 0-805 and fx rises to 0-681.

Fig. 1 shows a comparison of the one-point and three-point LTE models with an
LTE flux-distribution interpolated from models (8) obtained using the exact
exponential-integral functions in the solution of the transfer equation ; the agreement

T T T T T T 1T T T T T 177
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o -
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Fu R B
I~ Teff =35000°K -1
/ log g=4
— |
\64: —
= -
\
\
|65 I I T L I N B AT
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F1c. 1. Comparison of Eddington-factor and integral-equation calculations for an LTE
model atmosphere with Terr = 35 000°K, log g = 4. Solid curve: solution with variable
Eddington factors evaluated with three angle-points; dotted curve: solution with one angle~
point (standard non-variable Eddington approximation); heavy dots: integral-equation
solution interpolated from reference (8).

is excellent. The interpolated values of the Balmer jump (0-084 mag) and Paschen
jump (o-o17 mag) are also in remarkably good agreement with the present computa-
tion. Considering the complete independence of the computational techniques, this
comparison provides a strong verification of the accuracy of the variable Eddington
factor approach. It would be even more interesting to compare non-L'TE models,
but unfortunately an adequate grid of non-L'TE models obtained using the exact
integral equations does not exist. Although substantial differences exist between the
absolute values of some of the properties of the one-point and three-point models
(e.g. in photoionization rates), Table III shows that when a differential comparison
is made between L'TE and non-L'TE models, even the one-point models yield good
results. In particular, the non-LTE change in the Balmer jump found earlier (of
great importance if Dp is used to estimate Ters for O-stars) is verified by the present
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TaBLE 111
Differential comparison of LTE and Non-LTE Models
Number of Angles 1 2 3
Dy—Dr* —0°353 —0-184 —o0-180
Dp—Dg* +0-061 +0-067 +o0-065
Dp—Dp* +o-010 +o0'014 +0-013
D(He 1)—D*(He 1) —1°462 —1°500 —1-480
D(He 11) — D*(He 11) +4-001 +3°512 +3-510
R1x(H)/R1x*(H) 1°300 1128 I°125
Rix(He 1)/Rix*(He 1) 4746 4°059 3991
Rix(He 11)/Rig*(He 11) 0'120 0°:073 0073

Note: Starred quantities denote L'TE values, unstarred denote non-L'TE values.

more accurate results. Thus the procedure suggested in our earlier work (3), (4) of
applying differential corrections derived from approximate LTE and non-LTE
models to the best available L'TE models is actually found to be better than adopting
absolute rates as computed from the approximate models themselves. In the future,
however, this will no longer be necessary since it is now possible to obtain very
accurate results using variable Eddington factors.

Analysis of the convergence properties of these computations shows that in
general the quadratic nature of the convergence has been sacrificed, as anticipated.
However, one still obtains a factor of 5 to 10 improvement in each iteration step;
thus instead of 5 or 6 iterations per model, one must now perform perhaps 6 to 8
iterations to attain fractional errors or, say, 1076 to 1077 in all quantities throughout
the atmosphere. Thus at an increase of about 30 per cent in the computing time one
may obtain models that would have required 27 times as much computation by use
of the direct method! This enormous saving implies that the difference-equation
solution of the transfer equation becomes competitive with integral-equation
methods both in speed and in accuracy. With the additional large benefits offered by
complete linearization, the difference-equation method appears to have substantial
advantages. Linearization of the integral equations is, to be sure, possible in prin-
ciple, but extremely complex because one must allow for the effects of non-local
changes of the optical depth scale upon the kernel functions of the integral operators.

4. CONCLUSIONS

By use of variable Eddington factors, the accuracy of difference-equation solu-
tions may be greatly improved with only small additional expense and effort. We
have shown that direct iterative evaluation of the Eddington factors is a strongly
convergent procedure. A particularly important application of this method is the
incorporation of variable Eddington factors into the linearization scheme previously
developed, which results in an accurate, stable, and strongly convergent method of
computing stellar atmospheres. This method offers very substantial advantages in
non-L'TE computations. The quadratic convergence characteristic of the complete
linearizaton method itself is partially sacrificed, but tests show that at least order-of-
magnitude improvement is still obtained from iteration to iteration. It is thus now
possible to obtain models of hitherto unachievably high quality both in physical
consistency and in mathematical accuracy, at a reasonable cost. Future work will be
directed towards producing models that apply to individual stars for which there
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exist high-quality observational data, with the goal of performing a complete non-
LTE spectroscopic analysis of these objects.
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