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Abstract

Testing for genetic effects on mean values of a quantitative trait has been a very successful strategy. However, most studies
to date have not explored genetic effects on the variance of quantitative traits as a relevant consequence of genetic
variation. In this report, we demonstrate that, under plausible scenarios of genetic interaction, the variance of a quantitative
trait is expected to differ among the three possible genotypes of a biallelic SNP. Leveraging this observation with Levene’s
test of equality of variance, we propose a novel method to prioritize SNPs for subsequent gene–gene and gene–
environment testing. This method has the advantageous characteristic that the interacting covariate need not be known or
measured for a SNP to be prioritized. Using simulations, we show that this method has increased power over exhaustive
search under certain conditions. We further investigate the utility of variance per genotype by examining data from the
Women’s Genome Health Study. Using this dataset, we identify new interactions between the LEPR SNP rs12753193 and
body mass index in the prediction of C-reactive protein levels, between the ICAM1 SNP rs1799969 and smoking in the
prediction of soluble ICAM-1 levels, and between the PNPLA3 SNP rs738409 and body mass index in the prediction of
soluble ICAM-1 levels. These results demonstrate the utility of our approach and provide novel genetic insight into the
relationship among obesity, smoking, and inflammation.
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Introduction

Most genetic association studies have so far emphasized the

effect of SNPs on mean values of a trait of interest. While this

approach has been widely successful in identifying genetic

determinants of quantitative traits, it does not make use of

differences in the variance of these traits per genotype, which may

reflect an alternative mode of genetic influence and signify

biological relevance. Several scenarios can result in the variance

of a quantitative trait being different when individuals are stratified

by SNP genotype (or any other genetic variation) in cross-sectional

designs. For examples, such difference could be ascribed to

increased variation over time among individuals of a given

genotype, increased variation in the homeostatic set-point of a trait

(without increased variation over time), or an interaction effect

with another SNP or exposure. This latter possibility is particularly

attractive since information on variance per genotype could thus

be leveraged to reduce the dimensionality of interaction analysis

by prioritizing SNPs for further interaction testing.

Several methods have been developed to address the statistical

challenge of assessing the degree and nature of interaction between

two or more genetic loci [1–4]. While these offer invaluable

insight, most do not address the main problem pertaining to

interaction testing in the context of whole genome association

studies: the multiple hypothesis testing incurred when searching

for interactions between hundreds of thousands of genetic variants.

In theory, excluding unlikely interactions on an a priori basis will

result in a lower number of false positives tests and increased

power. Current data reduction methods use evidence of co-

adaptation between loci to restrict the search space [5] or specify a

minimum marginal effect to select a subset of SNPs for interaction

testing [6–8]. This latter method is based on the assumption that

interacting SNPs will show at least a moderate effect on the trait of

interest. While this premise might be valid in most cases, it need

not be, as has been observed [2,9,10]. Furthermore, even when

restricting the search for interaction to SNPs with marginal effect

P-values lower than 0.1, as has been suggested [7], a sizeable

number of hypotheses will have to be tested. Thus there is a need

for novel methods to identify SNPs likely to be involved in gene-

gene and gene-environment interactions. Murcray et al. [11]

recently proposed a two-step approach to test for gene-environ-

ment interactions in genome-wide association studies. In the

context of dichotomous outcomes, this method first tests for gene-

environment association, followed by conventional interaction
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testing of the subset of markers with significant association in the

combined case-control sample.

In this report, we first derive expressions for the variance

according to SNP genotype under models of genetic interactions

and demonstrate that the variance of a quantitative trait will differ

between the three possible genotypes of a biallelic SNP in the

presence of genetic interactions. Building on these derivations, we

then simulate data to explore contexts where testing for inequality

of variance between genotypes could be used to prioritize SNPs for

further interaction testing. Leveraging these observations, we

propose a novel method to prioritize SNPs for gene-gene and

gene-environment interaction, ‘‘variance prioritization’’. Variance

prioritization entails two steps. In the first step, Levene’s test of

equality of variance is used to prioritize SNPs for further

interaction testing. In the second step, prioritized SNPs are tested

for interaction effects against environmental covariates or other

SNPs using linear regression. We use data from the Women’s

Genome Health Study (WGHS) on two inflammation markers, C-

reactive protein and soluble ICAM-1, to test whether (1) there is

empirical confirmation of SNPs demonstrating inequality of

variance between genotypes and (2) whether such SNPs show

evidence of either gene-environment or gene-gene interactions.

Methods

Ethics statement
All analyses were performed with approval of the institutional

review board of the Brigham and Women’s Hospital. All members of

the WGHS cohort were participants in the WHS who provided an

adequate baseline blood sample for plasma and DNA analysis and

who gave consent for blood-based analyses and long-term follow-up.

Variance of a quantitative trait by genotype in the
presence of an interaction effect

Consider a biallelic SNP G with minor allele frequency p and in

Hardy-Weinberg equilibrium. Without loss of generality and

assuming an additive genetic effect of G on a quantitative trait of

interest, G can be encoded as -2p, 1-2p, or 2-2p such that mean

genotype equals zero. Assume that there is an additive interaction

between G and a covariate C (with mean equal to zero, variance

equal to one, and uncorrelated to G) such that the quantitative

trait Y for the ith individual is represented as:

yi~b0zb1gizb2cizb3gicizei ð1Þ

Where b0, b1, b2, and b3 represent constants for the intercept, the

marginal effect of G, the marginal effect of C, and the interaction

of G and C, respectively. It is assumed the outcome is standardized

so it has unit variance conditional on G and C, that is, the error

term ei,N(0,1). The variance in Y conditional on genotype of G

can be written as:

Var(Y DG~g)~Var(b0zb1gzb2Czb3gCze)

~0z0zVar(b2C)zVar(b3gC )z2Cov(b2C,b3gC)z1

~b2
2zb2

3g2z2b2b3gz1

~(b2zb3g)2z1

ð2Þ

Where coefficients represent true rather than estimated effects.

Thus, the variance of Y will differ by genotype group (g) when

b3?0. Importantly, the variance does not depend on the marginal

effect of G on Y (i.e. b1). Furthermore, as we did not specify the

distribution form of the interacting covariate C, Equation 3 can be

generalized to different types of interaction such as dichotomous

environmental exposures, continuous environmental exposures or

the three genotype classes of a biallelic SNP. The total variance of

Y is given by:

Var(Y )~Var(b1Gzb2Czb3GCze)

~Var(b1G)zVar(b2C)zVar(b3GC)z1

z2Cov(b1G,b2C)z2Cov(b1G,b3GC)z2Cov(b2C,b3GC)

~2p(1{p)b2
1zb2

2zb2
3Var(GC)z1

~2p(1{p)b2
1zb2

2zb2
3Var(G)Var(C )z1

~2p(1{p)b2
1zb2

2z2b2
3p(1{p)z1

ð3Þ

Where the three covariance terms are zero because of the assum-

ption of G and C independence. It results from equation (3) that

the proportion of total variance attributable to the marginal effect

of the covariate (i.e. b2) can be defined as:

b2
2

2p(1{p)b2
1zb2

2z2p(1{p)b2
3z1

ð4Þ

Similarly, the proportion of total variance attributable to the SNP-

covariate interaction (i.e. b3) can be defined as:

2b2
3p(1{p)

2p(1{p)b2
1zb2

2z2p(1{p)b2
3z1

ð5Þ

Levene’s test for equality of variance
Levene’s test [12] is used to test if k samples have equal

variances and is less sensitive to deviation from normality than the

Author Summary

Finding gene–gene and gene–environment interactions is
a major challenge in genetics. In this report, we propose a
novel method to help detect these interactions. This
method works by first identifying a subset of genetic
variants more likely to be involved in genetic interactions
and then testing these variants for interaction effects.
Using this method, we were able to identify three
previously unknown genetic interactions. The first interac-
tion involves a measure of body fat and a genetic variant
of the LEPR gene in the prediction of C-reactive protein
concentration, a marker of inflammation. The second
interaction involves the same measure of body fat and a
genetic variant of the PNPLA3 gene in the prediction of
ICAM-1 levels, also a marker of inflammation. These results
are significant because both LEPR and PNPLA3 are linked to
the biological response to increased body fat, and
inflammation itself is known to be increased in obesity
and is thought to contribute to its adverse health effect.
Finally, a third interaction was identified between a genetic
variant of the ICAM1 gene and smoking in the prediction
of ICAM-1 levels. The ICAM1 gene encodes ICAM-1 itself
and smoking is known to be an important determinant of
ICAM-1 concentrations.

Using Variance per Genotype to Detect Interactions
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alternative Bartlett test [13]. Indeed, use of Bartlett test with

empirical data led to marked inflation of type I error and was not

pursued further (data not shown). The Levene test assesses the null

hypothesis that the population variances are equal:

H0: s1~s2~:::~sk

Ha: si=sj for at least one pair (i,j).

Given a variable Y with sample of size N divided into k subgroups,

where Ni is the sample size of the ith subgroup, the Levene test

statistic is defined as:

W~
(N{k)

Pk
i~1 Ni(�ZZi:{�ZZ::)

2

(k{1)
Pk

i~1

PNi
j~1 (Zij{�ZZi:)

2

Where Zij~DYij{ �YY i:D with Yij the value of Y for the jth observation

of the ith subgroup, �YYi: the mean of the ith subgroup, �ZZi: are the

group means of the Zij and �ZZ:: is the overall mean of the Zij .

The Levene test rejects the hypothesis that the variances are

equal if:

WwF(a,k{1,N{k)

Where F(a,k{1,N{k) is the upper critical value of the F distribution

with k21 and N2k degrees of freedom at a significance level of a.

Simulations of interaction effects
We used simulations to estimate the power of Levene’s test to

detect differences in variance of a quantitative trait between

individuals of differing genotypes. We first simulated the case of a

SNP (denoted SNP1) interacting with a covariate (denoted C1) in

determining the value of a quantitative trait (denoted Y; see

Figure 1). We assumed the main effect of SNP1 to be null in all

simulations because it is expected to affect neither the within

genotype variance (see Equation 2) nor the power to detect the

interaction. For simplicity, only results from the additive genetic

model (assuming an additive contribution of each minor allele; see

Equation 1) are shown but similar conclusions can be derived from

more general models of association. Under a range of models for

the main effect of C1 (on the quantitative trait), allelic frequency of

SNP1, and interaction between SNP1 and C1, we tested the power

of Levene’s test to reject the null hypothesis that the variance of Y

does not vary between subsets of individuals with differing

genotypes (of SNP1). In all simulations, the quantitative trait was

assumed to have a normally distributed error term with mean

equal to zero and variance equal to 1. The covariate was normally

distributed with mean equal to zero and variance equal to 1.

Interactions are expected to be modest at best and simulations

were therefore restricted to interaction effects explaining up to 1%

of the quantitative trait’s total variance. Each condition was

simulated 1,000 times using 15,000 individuals unless otherwise

specified. In a second set of simulations, we tested the power of

Levene’s test of equality of variance to detect SNP-SNP

interactions. These simulations are based on a model similar to

the one previously introduced, with the exception that the

normally distributed covariate (C1) is replaced by a second,

independent, SNP (denoted SNP2). To simplify simulations, both

SNPs were assigned the same allelic frequency as well as the same

main effect (i.e. SNP-Y association). Varying the strength of the

SNP1- SNP2 interaction, we simulated each condition 1,000 times

using 15,000 individuals unless otherwise specified.

Variance prioritization
Leveraging two observations that (1) the signature of a SNP-

covariate interaction may be inequality of variance between SNP

Figure 1. Model of interaction.
doi:10.1371/journal.pgen.1000981.g001

Using Variance per Genotype to Detect Interactions
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genotypes and (2) a test for inequality of variance is independent of

a subsequent direct test of interaction, we propose a novel method

to prioritize SNPs for gene-gene and gene-environment interac-

tion, termed ‘‘variance prioritization’’. This prioritization proce-

dure first applies Levene’s test of variance equality to selects SNPs

below a pre-specified threshold and then tests these ‘‘prioritized’’

SNPs for gene-environment or gene-gene interaction using

standard linear regression models (see Figure 2), with Bonferroni

correction only for the number statistical tests prioritized in the

first step. Using simulation models, we explored the power of

variance prioritization and compared it to an exhaustive search for

interaction, without prior prioritization, followed by Bonferroni

correction for multiple hypothesis testing.

Independence of variance per genotype from estimates of

interaction effects under the null of no interaction is important

because the validity of the method rests on having correct type I

error. A proof of independence between variance per genotype

and estimation of interaction effect under the null of no interaction

is presented in Text S1 and Figure S1.

WGHS participants
The study population was derived from the Women’s Genome

Health Study (WGHS) [14]. Briefly, participants in the WGHS

include American women from the Women’s Health Study (WHS)

with no prior history of cardiovascular disease, cancer, or other

major chronic illness who also provided a baseline blood sample at

the time of study enrollment from which genomic DNA was

extracted [15]. Individuals with self-reported diabetes at enroll-

ment (or with glycated hemoglobin .7%) or taking lipid lowering

medication were excluded from analysis.

All baseline blood samples underwent measurement for high-

sensitivity CRP (hsCRP) via a validated immunoturbidometric

method (Denka Seiken, Tokyo, Japan). CRP is an inflammatory

biomarker with strong prognostic value for development of

metabolic syndrome, diabetes, myocardial infarction, and stroke.

Log-transformed CRP levels were used in all analyses. Soluble

ICAM-1 is an inflammatory marker that has been associated with

several common diseases such as diabetes, heart disease, stroke

and malaria. Circulating plasma sICAM-1 concentrations were

determined using a commercial ELISA assay (R&D Systems,

Minneapolis, Minn.) The environmental factors tested for

interaction included self-reported body mass index, menopause

status, hormone replacement therapy use, smoking, age and

exercise, expressed as quintiles of total energy expenditure spent

from all recreational activities.

Genotyping
DNA samples were genotyped with the Infinium II technology

from Illumina. Either the HumanHap300 Duo-Plus chip or the

combination of the HumanHap300 Duo and I-Select chips were

used. In either case, the custom content was identical and

consisted of candidate SNPs chosen without regard to allele

frequency to increase coverage of genetic variation with impact on

biological function including metabolism, inflammation or cardio-

vascular diseases. Genotyping at 318,237 HumanHap300 Duo

SNPs and 45,571 custom content SNPs was attempted, for a total

of 363,808 SNPs. Genetic context for all annotations are derived

from human genome build 36.1 and dbSNP build 126.

SNPs with call rates ,90% were excluded from further analysis.

Likewise, all samples with percentage of missing genotypes higher

than 2% were removed. Among retained samples, SNPs were further

evaluated for deviation from Hardy-Weinberg equilibrium using an

exact method and were excluded when the P-value was lower than

1026. SNPs with minor allele frequency .1% in Caucasians were

used for analysis. 339,596 SNPs were left after quality control. All

statistical analyses were done with R, unless specified otherwise. All

analyses were performed on individuals of self-reported Caucasian

ancestry, with confirmation using a principal component analysis. A

total of 21,799 individuals were included in our final dataset.

Results

Building on the theoretical observation that the within genotype

variance of a quantitative trait will vary when a genetic interaction

Figure 2. The variance prioritization procedure.
doi:10.1371/journal.pgen.1000981.g002

Using Variance per Genotype to Detect Interactions
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is present, we explored the power of Levene’s test of equality of

variance to detect interactions. We first tested the power of

Levene’s test to detect a SNP (denoted SNP1) interacting with a

single covariate, C1 (see Figure 1). As shown in Figure 3, the power

of Levene’s test to identify a SNP as interacting with a covariate

was modest in most situations. For example, when the interaction

effect explained 0.4% of the variance of a quantitative trait, the

allelic frequency was 0.2 and the covariate was associated with the

quantitative trait with b2 = 0.3 (explaining 8.2% of the variance;

see Figure 3B), the power of Levene’s test to identify a SNP as

‘‘interacting’’ at P,0.05 was 82.5% whereas the power of linear

regression to identify the interaction at P,1.561027 was 99.6%.

In other words, even after accounting for 340,000 tests using

Bonferroni correction, testing for gene-environment interactions

with linear regression was more powerful than testing for

inequality of variance between genotypes at nominal significance.

Nevertheless, as can be observed in Figure 3, there were

situations involving small interaction effects explaining less than

0.4% of the variance for which a nominally significant Levene’s

test was more powerful than linear regression testing (after

multiple hypothesis correction). Because SNP effects on variance

per genotype is independent of the estimates of interaction effects,

variance prioritization could provide a method for decreasing the

multiple testing burden in these situations, with ensuing increased

power. To test the power of variance prioritization for small

interaction effects, we performed further simulations in which we

varied Levene’s test P-value threshold used to prioritize SNPs for

interaction testing (see Figure 4). For these simulations, we used

Figure 3. Power to detect a SNP–covariate interaction effect as function of the proportion of variance explained by the interaction.
Each condition was simulated 1,000 times with 15,000 individuals according to the model shown in Figure 1. MAF refers to the minor allele frequency
of SNP1 and b2 refers to the b coefficient of the C1-Y association. In all cases, SNP1 had no marginal effect (i.e. b1 = 0). Upper panel: Power to identify
SNP1 as an ‘‘interacting’’ SNP using Levene’s test with a P-value threshold of 0.05 (black), 0.01 (red) and 1.561027 (green; to account for 340,000 tests
using Bonferroni correction). Also shown is the power to detect the interaction itself with a linear regression interaction P-value cut-off of 1.561027

(blue). Lower panel: The variance per genotype is illustrated as a function of the fraction of the total variance of the quantitative trait explained by the
interaction. The homozygous major allele genotype is drawn in black, the heterozygous genotype in red and the homozygous minor allele genotype
in green.
doi:10.1371/journal.pgen.1000981.g003

Using Variance per Genotype to Detect Interactions

PLoS Genetics | www.plosgenetics.org 5 June 2010 | Volume 6 | Issue 6 | e1000981



Figure 4. Power of variance prioritization as function of the Levene’s test P-value prioritization threshold. Each condition was
simulated 2,000 times with 15,000 individuals. For each condition, the Levene’s test P-value threshold was varied from 0 to 1 and the power of
variance prioritization calculated after accounting for multiple testing (assuming 340,000 SNPs were initially tested), as illustrated by black lines. SNP-
covariate interactions were simulated in (A–D). In the case of SNP-covariate interactions, all prioritized SNPs were tested for interaction with the
covariate. Red lines represent the power to detect the interaction with linear regression when correcting for all 340,000 tested SNPs (P,1.561027). In

Using Variance per Genotype to Detect Interactions
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the same parameters as in Figure 3B (Figure 4A and 4B) and

Figure 3D (Figure 4C and 4D), fixing b 3 such that the interaction

explained 0.1% or 0.15% of total variance. We subsequently

interrogated the prioritized SNPs for interaction effects using

linear regression and applied a Bonferroni correction assuming

340,000 SNPs were initially tested (ex.: if Levene’s test P-value cut-

off is 0.01 then upon further interaction testing a SNP will be

deemed significant if its interaction P-value is ,0.05/

(0.016340,000)). We then compared the results of variance

prioritization with a ‘‘conventional’’ method correcting for

340,000 tests. Each condition was simulated 2,000 times. As

illustrated in Figure 4A–4D, variance prioritization was more

powerful than conventional methods to detect gene-environment

interactions, with the increase in power dependent on the Levene’s

test P-value threshold used. In almost all cases, the power was at

least equal to performing an exhaustive search for gene-

environment interactions with all 340,000 SNPs.

Similar simulations were performed for SNP-SNP interactions

(see Figure 5, and Figure 4E–4H). For simplicity, the allelic

frequency of both SNPs and their main effect on the quantitative

trait was set to be equal. To account for all possible pairwise SNP-

SNP interactions between 340,000 SNPs, the ‘‘conventional’’ P-

value threshold was set at 4.3610213. Figure 5 illustrates the

power that either SNP will have a Levene’s test P-value lower than

the pre-specified cut-off, and compares it to the power to detect

the interaction by exhaustive linear regression testing. Once again,

(A,B), the minor allele frequency was set at 0.2, the covariate-Y regression coefficient (i.e. b2) at 0.3, and b3 was chosen such that the proportion of
variance explained by the interaction was 0.1% and 0.15%, respectively. These conditions match those of Figure 3B. In (C,D), the minor allele
frequency was set at 0.1, the covariate-Y regression coefficient (i.e. b2) at 0.7, and b3 was chosen such that the proportion of variance explained by the
interaction was 0.1% and 0.15%, respectively. These conditions match those of Figure 3D. SNP–SNP interactions were simulated in (E–H). As in
Figure 5, the allelic frequency of both SNPs was set to be equal, as well as the SNP-Y regression coefficient (i.e. b1 and b2). For SNP–SNP interactions,
all prioritized SNPs were tested against all SNPs (not limited to prioritized ones). Red lines represent the power to detect the interaction with linear
regression when correcting for all pairwise interactions between 340,000 SNPs (P,4.3610213). In (E,F), the minor allele frequency was set at 0.1, the
SNP-Y regression coefficient at 0.4, and b3 was chosen such that the proportion of variance explained by the interaction was 0.2% and 0.25%,
respectively. These conditions match those of Figure 5A. In (G,H), the minor allele frequency was set at 0.2, the SNP-Y regression coefficient at 0.1, and
b3 was chosen such that the proportion of variance explained by the interaction was 0.2% and 0.25%, respectively. These conditions match those of
Figure 5B.
doi:10.1371/journal.pgen.1000981.g004

Figure 5. Power to detect a SNP–SNP interaction effect as function of the proportion of variance explained by the interaction. Each
condition was simulated 1,000 times with 15,000 individuals. For simplicity, both SNPs were assigned the same allelic frequency (MAF) as well as the
same SNP-Y b coefficient (i.e. b1 = b2). Upper panel: Power to identify either SNP1 or SNP2 as an ‘‘interacting’’ SNP using Levene’s test with a P-value
threshold of 0.05 (black), 0.01 (red) and 1.561027 (green; to account for 340,000 tests using Bonferroni correction). Also shown is the power to detect
the interaction itself with a linear regression interaction P-value cut-off of 4.3610213 (blue; chosen to account for all possible pairwise interactions
between 340,000 SNPs). Lower panel: The variance per genotype is illustrated as a function of the fraction of the total variance of the quantitative
trait explained by the interaction. The homozygous major allele genotype is drawn in black, the heterozygous genotype in red and the homozygous
minor allele genotype in green.
doi:10.1371/journal.pgen.1000981.g005

Using Variance per Genotype to Detect Interactions
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the power to detect either SNP with a nominally significant

Levene’s test was higher than the power to identify the SNP-SNP

interaction using exhaustive linear regression testing when the

interaction effect was weak, providing the basis for prioritization of

SNPs with Levene’s test. Results of variance prioritization are

shown in Figure 4E and 4F and Figure 4G and 4H, matching the

conditions of Figure 5A and 5B, respectively, and fixing B3 such

that 0.2% or 0.25% of the variance was explained by the

interaction. In these simulations, all SNPs with Levene’s test P-

value lower than the specified threshold were prioritized and tested

for interaction against all other SNPs, prioritized or not (with

appropriate correction for multiple hypothesis testing). This

approach was shown (by simulations) to be more powerful than

testing for pairwise interactions between Levene’s test prioritized

SNPs only, which was underpowered as compared to an

exhaustive search (data not shown). As illustrated in Figure 4E,

the power of variance prioritization was superior to exhaustive

search under specific conditions. For example, when a Levene’s P-

value lower than 0.1 was chosen as the prioritization threshold, the

power of variance prioritization was 9.05% as compared to 7.30%

when testing all possible pairwise interactions between 340,000

SNPs. However, variance prioritization was associated with

decreased power in certain conditions, as illustrated in Figure 4G

and 4H.

To empirically test whether some SNPs exhibit inequality of

variance between genotypes and whether these effects might be

due to interactions, we applied Levene’s test of equality of variance

to ongoing genome scans of two inflammatory markers, C-reactive

protein (CRP) and soluble ICAM-1 (sICAM-1). Only SNPs with

genome-wide significant Levene’s P-value were selected for

subsequent study in order to ensure they represent true positives.

From the analysis of our sample of 21,799 women, 23 SNPs had a

Levene’s test P-value lower than 1.561027 for CRP (all clustering

near the LEPR gene on chromosome 1). Because the LEPR SNPs

are in linkage disequilibrium, only rs12753193 will be further

considered since it had the most significant Levene’s test P-value.

Two SNPs, the PNPLA3 SNP rs738409 and the ICAM1 SNP

rs1799969, had genome-wide significant Levene’s test P-value for

sICAM-1 (see Figure 6 and Table S1). To further characterize

these SNPs, we then tested all pairwise interactions with the

339,595 remaining SNPs as well as environmental covariates,

using linear regression. No SNP-SNP interaction was observed

after correction for multiple hypothesis testing. Three SNP-

environment interactions were significant after correction for

multiple hypothesis testing (P,0.05/(3 SNPs66 traits); see

Table 1). The LEPR SNP rs12753193 interacted with BMI in

the prediction of CRP levels (P = 7.2610210), the ICAM1 SNP

rs1799969 interacted with smoking status in the prediction of

sICAM1 levels (P = 4.861029) and the PNPLA3 SNP rs738409

interacted with BMI in the prediction of sICAM1 levels

(P = 1.661027).

We sought to determine the contribution of the three

interactions to Levene’s test of inequality of variance. While

Levene’s test P-value was 1.6610229 for the LEPR SNP

rs12753193 in the CRP analysis, the P-value was 9.1610221 after

adjustment for the interaction for BMI. Similarly, Levene’s test P-

values were 2.161029 for the ICAM1 SNP rs1799969 and

1.9610210 for the PNPLA3 SNP rs738409 in the sICAM-1

analysis but were slightly less significant after adjustment for the

intraction with BMI and smoking status, respectively, at 3.361029

and 1.661027. Overall, these interactions explained 0.18% of

CRP total variance, and 0.16% and 0.13% of sICAM-1 total

variance for the ICAM1 and PNPLA3 interactions, respectively.

Neither the LEPR SNP rs12753193 nor the PNPLA3 SNP

rs738409 was associated with BMI (P.0.05). The ICAM1 SNP

rs1799969 was not associated with smoking status (P.0.05). These

data collectively suggest that individual interactions are likely to

have modest effects, and that additional covariates and/or SNPs

might interact with the validated SNP.

Discussion

Genetic effects on the variance of quantitative traits have been

largely ignored so far in the genetic analysis. As shown in this

report, differences in the variance per genotype can reflect

interaction effects and these differences can be leveraged to

Figure 6. Quantile–quantile plots. Illustrated in (A) is the quantile-quantile plot of Levene’s test of inequality of variance P-values applied to log-
CRP for 339,596 SNPs in our set of 21,799 individuals. Illustrated in (B) is the quantile-quantile plot of Levene’s test P-values applied to sICAM-1 in the
same set of individuals.
doi:10.1371/journal.pgen.1000981.g006
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prioritize SNPs for interaction testing. The proposed method,

variance prioritization, presents the distinct advantage that it does

not rely on the marginal effect of SNPs on the means to prioritize

them. Importantly, it can be used in combination with

prioritization based on marginal effects (on the means) if it is

assumed all interacting SNPs have a main effect on the trait of

interest. In such case, combining variance prioritization to

prioritization based on a pre-defined marginal effect P-value

provides the greatest power as compared to each procedure

individually, if the assumption that interacting SNPs have main

effects is true (data not shown). Another interesting property of this

method is the fact that the interacting covariate need not be

measured or even known to arouse suspicion of an interaction

effect, perhaps leading to novel biological insight.

The goal of any genetic prioritization method is to form a subset

of genetic variants enriched for the effect of interest. Variance

prioritization results in substantial reduction in multiple hypothesis

correction and hence increases power by using the information

embedded within the variance per genotype, which we showed is

independent from subsequent interaction testing. In this case, a

frequentist approach was adopted since prior knowledge on the

nature of the contribution of genetic interactions to complex traits

is currently scarce. Our simulations have shown that the optimal

Levene’s test P-value threshold for variance prioritization will

depend upon the allelic frequency, sample size, association of the

covariate with the quantitative trait, and expected strength of the

interaction. In most cases, all of these parameters can be directly

observed with the exception of the interaction strength. The

optimal threshold can therefore be empirically selected through

simulations when the potentially interacting covariate (or SNP) is

characterized and the expected interaction effect size defined.

Inequality of variance between genotypes could be the result of

factors other than interactions, such as increased variability.

Furthermore, the heteroscedacity of variances also depends on an

assumption of homogeneity of variances within genotype, which

could be violated if variances tend to be proportional to means.

This might reflect an inappropriate choice of scale for the

phenotype and a variance-stabilizing transform like the log or

square root might then be indicated. Linkage disequilibrium with

variants of large effect sizes could also theoretically lead to

inequality of variance between genotypes. Conversely, non-

additive interactions or SNPs with a multiplicity of interactions

may not result in deviation of Levene’s test. Failure to prioritize

‘‘interacting’’ SNPs or prioritization of ‘‘non-interacting’’ SNPs

can theoretically lead to decreased statistical power but should not

lead to inflated type I error since the first step is a screening test

followed by confirmatory analysis. While care was taken to

simulate models with plausible effect sizes (i.e. explaining less than

1% of total variance), the scenarios described in this report

undoubtedly represent simplified situations. Nevertheless, these

simulations suggest that variance prioritization has increased

power to detect genetic interactions of very modest strength in

situations where conventional methods perform poorly.

Genetic effects on variance in an empirical dataset led to the

identification of three novel interactions. Given the strength of the

observed interactions, they would have also been identified with

traditional methods. The significance of these results resides in (1)

the existence of SNPs with inequality of variance between

genotypes at genome-wide significance and (2) the presence of

biologically plausible interactions between these SNPs and

environmental factors. The first interaction involved the leptin

receptor SNP rs12753193 in the prediction of CRP. Leptin is a

protein synthesized and secreted by the adipose tissue whose main

function is to regulate appetite trough interaction with the leptin

receptor in the hypothalamus [16]. As such, leptin levels are

directly proportional to BMI and patients deficient in either leptin

or leptin receptor are characterized by marked obesity [17].

Interestingly, LEPR is also expressed by the liver, the source of

circulating plasma CRP, and physiological concentrations of leptin

stimulate expression of CRP in primary hepatocytes [18]. This

might explain why only a small fraction of the inequality of

variance between the LEPR SNP rs12753193 genotypes was due

to the interaction with BMI: the statistical interaction may only

capture a small fraction of the underlying biological interaction

between leptin levels and its receptor.

The LEPR SNP rs12753193 is known to be associated with

CRP concentration at a genome-wide level [19]. The minor allele

of rs12753193 (i.e. ‘‘G’’) is associated with lower levels of CRP and

was shown in this report to be associated with a greater effect of

BMI on CRP concentrations. This confirms the soundness of using

marginal effects of SNPs to select a subset for interaction testing.

No other SNP with genome-wide significance for CRP showed

evidence of inequality of variance between genotypes (excluding

SNPs in linkage disequilibrium with rs12753193).

The second interaction observed involved the ICAM1 SNP

rs1799969 in the prediction of sICAM-1 levels. The latter SNP is a

coding non-synonymous SNP (G241R) known to be associated

with sICAM-1 levels [20–22] and was shown in this report to

interact with smoking status. Smoking is a very strong determinant

of sICAM-1 levels (explaining up to 13% of sICAM-1 total

variance) and was associated with a stronger effect of rs1799969 in

WGHS. Interestingly, an interaction between another ICAM1

non-synonymous SNP (rs5498, r2 = 0.17 with rs1799969) and

smoking was recently described with regards to susceptibility to

coronary artery disease [23].

The third interaction identified involved the PNPLA3 SNP

rs738409 in the prediction of sICAM-1. PNPLA3 encodes a

protein of unknown function that belongs to the patatin-like

Table 1. Gene–environment interactions.

Trait
Interacting
SNP MAF Chr

Position
(Kb)

Nearest
Gene Type Covariable

Variance of
A1A1* (N)

Variance of
A1A2* (N)

Variance of
A2A2* (N)

Levene’s
P-value

Interaction
P-value

CRP

rs12753193 0.38 1 65942.3 LEPR - BMI 1.27 (8491) 1.47 (10126) 1.68 (3167) 1.6E-29 7.2E-10

sICAM-1

rs1799969 0.11 19 10255.8 ICAM1 Missense Smoking 6621 (17063) 5316 (4421) 4104 (300) 2.1E-09 4.8E-09

rs738409 0.22 22 42656.1 PNPLA3 Missense BMI 6087 (13098) 6743 (6965) 9205 (1110) 1.9E-10 1.6E-07

*A1A1: Homozygous Major Allele; A1A2: Heterozygous; A2A2: Homozygous Minor Allele.
doi:10.1371/journal.pgen.1000981.t001
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phospholipase family. The methionine allele of the missense

PNPLA3 SNP rs738409 (Ile148Met) has recently been associated

with increased hepatic fat levels, hepatic inflammation and plasma

levels of liver enzymes (traits often linked to insulin resistance and

obesity) [24]. Interestingly, that same variant has been associated

with insulin secretion in response to oral glucose tolerance test

[25]. Levels of the inflammatory marker sICAM-1 are known to

be correlated with insulin resistance and obesity [26]. Consistent

with this literature, the methionine allele was associated with

sICAM-1 itself (P = 2.261027; Beta = 4.9 ng/mL per minor allele)

while being associated with a greater effect of BMI on sICAM-1

levels.

In this report, we demonstrated that the presence of gene-gene

or gene-environment interactions can result in changes in variance

of a quantitative trait per genotype and that these changes can be

exploited to prioritize SNPs for interaction testing. We used this

property of quantitative trait interactions on a real dataset and

discovered three new, biologically relevant, interactions. Variance

prioritization presents two advantages over other methods. First, it

does not depend on the marginal effect of SNPs on the means.

Second, it can identify SNPs likely to be involved in an interaction

even when the interacting genetic or environmental covariate(s) is

not measured. For instance, had BMI or smoking status not been

assessed in the WGHS, the LEPR SNP rs12753193, the ICAM1

SNP rs1799969 and the PNPLA3 SNP rs738409 would still have

been selected as candidates for interaction effects, perhaps leading

to novel biological hypotheses.

Supporting Information

Figure S1 (A) QQ-plot of interaction P values in the presence of

inequality of variance between genotypes (95% CI). (B) QQ-plot of

interaction P values when selecting SNPs with Leneve’s P,0.05

(95% CI).

Found at: doi:10.1371/journal.pgen.1000981.s001 (0.61 MB

TIF)

Table S1 SNPs with Levene’s test of inequality of variance P-

value lower than 1.561027 from the analysis of C-reactive protein

and soluble ICAM-1 in 21,799 women from the WGHS.

Found at: doi:10.1371/journal.pgen.1000981.s002 (0.07 MB

DOC)

Text S1 Proof of independence between variance per genotype

and estimation of interaction effect under the null of no

interaction.

Found at: doi:10.1371/journal.pgen.1000981.s003 (0.07 MB

DOC)
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