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Epileptic patients suffer from an epileptic brain seizure caused by the temporary and unpredicted electrical interruption.
Conventionally, the electroencephalogram (EEG) signals are manually studied by medical practitioners as it records the electrical
activities from the brain. *is technique consumes a lot of time, and the outputs are unreliable. In a bid to address this problem, a
new structure for detecting an epileptic seizure is proposed in this study. *e EEG signals obtained from the University of Bonn,
Germany, and real-time medical records from the Senthil Multispecialty Hospital, India, were used. *ese signals were dis-
integrated into six frequency subbands that employed discrete wavelet transform (DWT) and extracted twelve statistical functions.
In particular, seven best features were identified and further fed into k-Nearest Neighbor (kNN), näıve Bayes, Support Vector
Machine (SVM), and Decision Tree classifiers for two-type and three-type classifications. Six statistical parameters were employed
to measure the performance of these classifications. It has been found that different combinations of features and classifiers
produce different results. Overall, the study is a first attempt to find the best combination feature set and classifier for 16 different
2-class and 3-class classification challenges of the Bonn and Senthil real-time clinical dataset.

1. Introduction

Epilepsy is a brain disorder that includes repeated seizures in
the brain due to uncontrolled electrical movement. It results
in uninhibited jerking movement and momentary loss of
consciousness. It is potentially life-threatening as it causes
malfunction of the brain and lung, heart failure, and un-
expected deaths caused by accident. *erefore, it is im-
perative to diagnose epilepsy [1]. *e signal that records

electrical movement and activity in the brain is the elec-
troencephalogram (EEG) signal. Electrodes are placed on
various parts of the scalp during this procedure and produce
multichannel data. Since it is a noninvasive and inexpensive
method, it serves as a vital data resource in neurological
diagnosis such as seizure detection [1, 2]. Typically, medical
personnel collect recordings by visually inspecting the long-
term EEG. *is method consumes time, is cumbersome and
prone to errors, and requires a certain level of human
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expertise. *us, an automated epilepsy seizure detection
framework is needed.

*is tedious nature of reading EEG recordings by
doctors to determine epileptic conditions has necessitated
research into more straightforward, quicker, and more ef-
ficient methods of detecting epileptic conditions. In [3], a
pattern recognition study was conducted using time-domain
(TD) functions for detecting epileptic seizures, which in-
cludes waveform length (WL), some slope sign changes
(SSC), and many zero-crossings (ZC) that are derivative of
filtered EEG data and discrete wavelet transform (DWT) of
filtered EEG data for the detection of epileptic seizures.
*erefore, the performance of time-domain features was
studied based on the support vector machines (SVM)
classifiers and naı̈ve Bayes (NB). With direct and DWT-
based TD functions, the results revealed that the suggested
technique should reach the best accuracy of 100 percent for
regular eyes open and epileptic datasets.

In [4], it is imperative to use the combination of elec-
troencephalogram (EEG) with the technique of deep
learning computation to diagnose epileptic seizures, as
highlighted in the study. *is study emphasized designing
and evaluating seizure detection using the deep convolution
neural network-based classifier. *e outcome proposed was
to determine the most accurate seizure detection, and it was
classified into three methods. 99.21%was the highest average
classification accuracy, which was proposed to be the FT-
VGG16 classifier using the accuracy data with previous
studies of the same set of data. *e outcome shows that
comparing the signal-to-image conversion method and
accuracy data model surpassed all earlier investigations in
the vast majority. Furthermore, to discover the most im-
proved classification accuracy and the EEG frequencies
feature, the SHapley Additive exPlanations (SHAP) analysis
approach was used.

In [5], the Bonn dataset was used to evaluate the new
suggested technique for automatically recording epileptic
electroencephalograms. *is is based on approximated
entropy and repetitive mixed quantification analysis,
leveraging a convolution neural network. *e results
revealed that approximation entropy and recurrence
quantification effectively detect epileptic seizures. 92.17%,
91.75%, and 92.00% show the recurrence rate of attainment
of sensitivity and accuracy, respectively. *e classic re-
cordings automatically differentiate seizure electroenceph-
alogram from convolutional neural networks, especially
when combined with the approximate entropy and recur-
rence quantification analysis features. *e results reached
98.84%, 99.35%, and 99.26%. Several other works in this
domain all point to the fact that automatic detection of
epileptic conditions can be a possibility, thus ruling out the
tedious task of doctors inspecting EEGs. *ese tools would
be helpful in epilepsy clinical diagnosis and therapy.

In providing an accurate solution to the problem of an
epileptic seizure, several algorithms have been proposed, and
they provide several levels of accuracy. In [6–8], several
time-frequency domain algorithms were introduced for the
accurate characterization of epileptic seizures from collected
EEG signals. Two of the algorithms are short-time Fourier

transform and multiwavelet transform. *e two algorithms
provided satisfactory results upon validation. Discrete
wavelet transform was employed in [9] for epileptic seizure
detection.*is method was primarily used to extract features
from the EEG signals and carry out the principal component
analysis, independent component analysis, and, lastly, the
linear discriminant analysis, which was introduced to reduce
the dimensions of the various signals and for straightforward
representation. Support vector regression machine learning-
based model was then employed to classify the mixed EEG
signals in the multidimensional plane.

As introduced, the Support Vector Machine is efficient
for signal classification, but that does not come without the
challenges of selecting the optimal number of parameters.
Setting the proper parameter is crucial to achieving high
accuracy in detecting epileptic seizures.*is hyperparameter
tuning and selection makes particle swarm optimization and
genetic algorithms highly accurate.*e detection of epileptic
seizures must be done accurately and efficiently, and this is
why machine learning algorithms have been recently in-
troduced. *e large volume of the dataset used in EEG
signals can be processed accurately with the algorithms.

Also, the robust network architecture that ML algo-
rithms provide makes them scalable and useful when
characterizing EEG signals. *e epileptic seizure detection
must be performed with the lowest false negative and false
positive. ML algorithms have been introduced to ensure this
efficiency and accuracy in feature characterization. *e
digital wavelet transformation (DWT) introduced in [9, 10]
was able to handle the problem of spikes in epileptic seizures.
*e DWT algorithm can handle the spikes through the
localization of these transient occurrences. *e algorithm
prevents the generalization of the spike occurrences and thus
reduces or minimizes any form of error at that particular
time during the signal characterization process.

*e detection of epileptic seizures was introduced using
hybrid methods [11]. *e generic algorithm was embedded
into fuzzy logic and characterized both epileptic and non-
epileptic signals. Various risk assessments to both the two
signal characterizations (epileptic and nonepileptic) were
provided by fusing the data into the genetic algorithm to
make accurate predictions. Another hybrid method was
introduced in [12], in which computational intelligence was
integrated with a genetic algorithm to ensure optimal
characterization of EEG signals. *e entire dataset was di-
vided into training and validation datasets. Features were
extracted from the datasets and used to train the genetic
algorithm.*e validation datasets were then used to validate
the trained model. *e genetic algorithm-based model was
able to detect epileptic seizures accurately. Hybrid models
work efficiently and can adequately compensate for the
deficiencies in each base model to produce a single model
with high accuracy. For this particular base model, the
accuracy largely depends on the proper tuning of the pa-
rameters of the genetic algorithm.

In [13], another model stationary wavelet transform was
introduced and employed to detect an epileptic seizure. *is
presented algorithm properly captured points on the edge of
the signal which are stationary at all points. *e ability to
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capture these stationary points reduces the probability of
error. *is is because the points on the wavelet that would
have been normally left unaccounted for have now been
adequately represented with the aid of this stationary
wavelet algorithm. It was applied to both epileptic and
nonepileptic signals under varying conditions to determine
its optimization level. *e stationary wavelet algorithm is
also efficient for handling the data points along rough edges
that could negatively affect the seizure detection algorithm.
*e stationary points for the nonepileptic signals present
some form of complexities. Still, they could also be handled
appropriately with the stationary wavelet transformation for
linear signals and nonlinear signals.

An algorithm was given to detect epileptic seizures in
[14]. *e study used data from both epileptic patients and
those who are not epileptic patients to develop the frame-
work. *e authors then classified the sample features into
various datasets using linear and nonlinear classifiers. *e
linear classifier handled the measurements taken from
nonepileptic patients, while the nonlinear classifiers were
used to classify epileptic patients. Digital wavelet transfor-
mation was then later used to analyze seizure detection. *e
datasets were also divided into the training and the test
datasets to ensure proper characterization in all cases. While
the detection algorithm was developed with the training
dataset, the testing was carried out with the test datasets to
prevent overfitting and reduce the number of outliers.
Several other algorithms have been developed and used in
epileptic seizure detection, but some present one form of
limitation or the other. *e concern is not just in the de-
velopment of an algorithm. *e focus should be on opti-
mization and accurate characterization so that seizure
detection can be done with the lowest possible form of error.

*is work combines the wavelet domain and machine
learning approach to identify epileptic seizures. Time-fre-
quency analysis is carried out on EEG signals as they are
nonlinear, nonstationary, and complex. *ere are many
methods for performing time-frequency analysis. In this
study, the discrete wavelet transform technique is adopted.
Extracting the hidden characteristics of the signal is done by
using feature extraction, which helps in inspecting the signal.
*ese derived features are fed into classifiers that differ-
entiate between healthy and seizure signals. *e classifiers
used are k-Nearest Neighbor (kNN), Support Vector Ma-
chine (SVM), näıve Bayes, and Decision Tree classifier
[15, 16]. *e performance of these classifiers is measured
using statistical parameters.

*e remainder of this work is structured as follows.
Section 2 presents the methodology. *e results and dis-
cussions are given in Section 3. *e comparison with other
existing state-of-the-art developments is given in Section 4,
and the conclusion is given in Section 5.

2. Methods

*e EEG data is fragmented into six frequency subbands
using the discrete wavelet transform. *e essential charac-
teristics, such as mean average power, lowest coefficient,
average value, and highest coefficient, are removed and

inputted into näıve Bayes, SVM, Decision Tree classifiers,
and kNN. *e computation performance is done for each
classifier and feature. *e proposed framework is indicated
in Figure 1.

2.1. Bonn University Dataset. *is data is available on the
website of the Department of Epileptology, Bonn University,
Germany [15]. *is is a single-channel data provided solely
for research purposes. *e record contains five datasets
named as set A to set E. Each set of data has 100 samples.*e
time taken is 23.6 s for 100 EEG segments recorded on the
head’s surface via a single channel. Five healthy volunteers
were chosen for clusters A and B, and the EEG signals were
recorded with keen observation, respectively. For cluster C,
there are the patients who do not have the epileptic attack at
hemisphere hippocampal formation, and, for cluster D, the
epileptogenic zone is where the recording took place. Set E of
the EEG signal was recorded, while the patients were ex-
periencing an epileptic attack. A 12-bit A/D converter with a
173.61Hz sampling frequency is used for digitizing the data.
*erefore, each EEG segment is found to contain 4096
points of sampling. *e graphs of EEG signals are plotted
and presented in Figure 2.

2.2. Real-Time Clinical Dataset. Real-time multichannel
clinical data were acquired from six healthy patients and six
epileptic patients from Senthil Multispecialty Hospital in
Erode, Tamil Nadu, India. *e data was 21-channel EEG
data. *e epileptic signal was recorded during the preseizure
period. *e sampling frequency is maintained at 256Hz.

2.3. Preprocessing of Signal Using DWT. *e Fast Fourier
Transform (FFT) for frequency-domain analysis is applied in
many applications. But, for biomedical signals such as EEG,
the usage of FFT is restricted, since they include uneven
patterns and are also nonstationary. *e only time-domain
analysis will not yield information regarding the frequency
of the pattern. *erefore, the time-frequency analysis is
applied for preprocessing the signal. Discrete wavelet
transform is a widely used time-frequency analyzer for
biomedical signals as it prefers variable window sizes. *e
DWT algorithm uses low-pass (LP) and high-pass (HP)
quadrature mirror filters.

*e input signal is routed through the low- and high-
pass filters to produce the approximate (A1) coefficient and
their outputs detailed (D1) coefficient. *e result obtained
from the high-pass filter is provided to another filter of
quadrature mirror type, and the process is repeated to de-
termine the coefficients of the subsequent level. Every de-
composition process leads to doubling the frequency
resolution because of filtering and halved through
downsampling.

*is work uses Daubechies order-4 wavelet function due
to its orthogonal features and filtering efficiency. *e nec-
essary statistical features are acquired from the subbands
frequency.
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2.4. Statistical Features from Discrete Wavelet Transform
(DWT) Coefficients. *e following features were extracted.

Mean Average Value (MAV). MAV relates to the in-
formation frequency of the signal and can be determined
from the following equation:

MAV �
1
N



N

i�1
xi


. (1)

Maximum Coefficient. *e maximum coefficient measures
the maximum frequency value for a given sample.

Minimum Coefficient. *e minimum coefficient measures
the minimum value of frequency for a given sample.

Standard Deviation (STD). Standard deviation relates to
the proportionate changes in the frequency signal and is
given by the following equation:

SD �
1

N − 1


N

i�1
xi − μ( .

2
(2)

Average Power. Average power represents information about
the frequency content of the signal and is determined by the
following equation:

AVP �
1
N



N

i�1
xi


.
2

(3)

Shannon Entropy. *e expression of Shannon entropy offers
an easy mode to determine the average number of bits
necessary to encode a string of symbols. It is given by the
following equation:

H(X) � − 
N−1

i�0
pilog2pi. (4)

Approximate Entropy (ApEn). *e extent of regularity
and unpredictability of fluctuations over time-series data can
be quantified by approximate entropy, ApEn (m, r, N). *e
parametersm and r are the run length and tolerance window
input parameters, respectively. *e parameter N is the
number of points of the time series.

2.5. K-Fold Cross-Validation. 10-fold cross-validation is
used in this study to get reliable results. *e original sample
is divided into 10 subsamples. *e 9 subsamples are used as
training datasets, and one subsample is used as testing
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Figure 1: Block diagram of the proposed methodology.
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dataset. It is then repeated 10 times. In this way, each dataset
is trained 9 times and tested one time. *e 10 results ob-
tained are then averaged to give a single estimated accuracy.
*is validation is applied to SVM, KNN, naı̈ve Bayes, and
Decision Tree classifier.

2.6. Support Vector Machine (SVM) Classifier. SVM is a
binary classifier model based on a machine learning algo-
rithm. In this format, a training dataset is classified into two
groups so that the division is as wide as possible. *e ma-
chine learning [46] algorithm generates a plot of hyperplane,
which distributes the two groups using the training dataset.
From the plot, a set of data is considered nonsensitive if the
hyperplane is closer to that data. *us optimal hyperplane is
chosen, which is farthest from the data points. *e optimal
hyperplane is used to classify the testing dataset.

*e equation of hyperplane is

f(x) � β0 + βT
x, (5)

where β is the weight vector and β0 is the bias vector. An
infinite number of hyperplanes can be obtained by varying
the two parameters. *e condition for optimal hyperplane is

β0 + βT
x � 1, (6)

where x represents the support vector, the training set closest
to the hyperplane.

2.7. k-Nearest Neighbor (kNN) Classifier. kNN is a non-
parametric and nonlinear classifier. It is used for relatively
larger training sets.*e similarities between the training and
testing [47] sets are considered for the measure. *e class
having the majority in the nearby “k” datasets is assigned to
the test/unknown dataset. *e dataset “nearness” is mea-
sured using Euclidean distance given by

ED �

������������


n

i�1
Y1i − Y2i( 

2




, (7)

where Y1i � (y11, y12, . . . , y1n) and Y2i � (y21, y22, . . . , y2n).
*e value of k should be a positive integer. In this study,

the value of k is 3.

2.8. Naı̈ve Bayes (NB) Classifier. *is classifier is based on
Bayesian theory and is a probabilistic classifier. It is also
based on the assumption that each class feature is inde-
pendent of any other feature. *e NB classifier needs less
training data.

Assuming D as a training set for n number of classes and
Y as the attribute vector and associated class labels, the class
with the highest posterior probability to which attribute Y
belongs to is given by

P Ci|Y( >P Cj|Y  for 1≤ j≤ n, j≠ i, (8)

where

P Ci|Y(  �
P Y|Ci(  P Ci( 

P(Y)
, (9)

by Bayes theorem.
Here P(Ci) represents the class probabilities, P(Y) is the

prior probability of Y, P(Ci|Y) is the posterior probability,
and P(Y|Ci) is the posterior probability of Y conditioned on
Ci.

2.9. Decision Tree (DT) Classifier. DT is a predictive mod-
elling approach widely used in data mining, statistics, and
machine learning algorithms. Tree models are used where
the target variable is assigned with continuous values. *e
Decision Tree leaves represent the class labels, and the
branches represent a combination of features that lead to
those class labels.

2.10. Statistical Parameter. *e performances of the four
classifiers are evaluated using six parameters, namely, ac-
curacy, specificity, sensitivity, positive predicted value
(PPV), negative predicted value (NPV), and Mathews cor-
relation coefficient (MCC) [4, 5]. *ese parameters are
mathematically defined as follows:

Accuracy:

accuracy(%) �
CCP
TPT

× 100%. (10)

Sensitivity:

sensitivty(%) �
TP

TP + FN
× 100%. (11)

Specificity:

specificity(%) �
TN

TN + FP
× 100%. (12)

Positive predictive value (PPV):

PPV(%) �
TP

TP + FP
× 100%. (13)

Negative predictive value (NPV):

NPV(%) �
TN

TN + FN
× 100%. (14)

Mathews correlation coefficient (MCC):

MCC �
TP × TN − FP × FN

�����������������������������������
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

 ,

(15)

where CCP denotes correct classified patterns, and total
patterns are denoted as TPT. TP denotes true positive, FN
denotes false negative, FP denotes false positive, and TN
denotes a true negative.

3. Results and Discussions

3.1. Results from the University of BonnDataset. *e datasets
from sets A, B, C, D, and E are decomposed into different
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subbands. *e different frequency subbands are D1
(43.4–86.8Hz), D2 (21.7–43.4Hz), D3 (10.85–21.7Hz), D4
(5.42–10.85Hz), D5 (2.70–5.43Hz), and A5 (0–2.70Hz).
Since the most useful information is available in subbands
D3–D5 and A5, only they are considered [10]. Features such
as Mean Absolute Value, maximum coefficients, minimum
coefficients, Standard Deviation, average power, Shannon
entropy, and approximate entropy are derived from sub-
bands D3, D4, D5, and A5 for five datasets A, B, C, D, and E.

Sixteen cases are considered, including 2 class classifi-
cations and 3 class classifications on data readily available
from the University of Bonn, Germany. 7 features were
obtained in the study. However, the number of features
generated for each EEG signal should be 4 x 7� 28. For every
100 signals of datasets A to E, 28 features were generated. In
each case, 10-fold cross-validation is applied, dividing whole
data into 10 equal parts, where 9 data parts are used for
training against 1 used for testing purposes.*e SVM, KNN,
naı̈ve Bayes, and Decision Tree classifiers are then fed the
following training and testing sets, and performance mea-
sures such as Accuracy, Specificity, Sensitivity, Positive
Predicted Value, Negative Predicted Value, and Mathews
Correlation coefficients are obtained.

From Table 1, we can observe the result for 16 different
classifications for the SVM classifier. For A-E classification,
estimated entropy from the D5 frequency subband provides
the highest level of accuracy of 100%. Similarly, for B-E
classification, minimum coefficients extracted from D3, D4,
and A5 frequency subbands give only 90%, 91%, and 92%
accuracy, respectively, but approximate entropy extracted
from D5 frequency subband gives the highest accuracy of
99.5%. For C-E classification, in D4 frequency subband,
maximum coefficient gives the highest accuracy of 98%. For
D-E classification, in the D3 frequency subband, MAV gives
the best accuracy of 96%. For AB-E classification, in the D5
frequency subband, approximate entropy provides the
highest level of accuracy of 99.67%. For AC-E classification,
in the D5 frequency subband, MAV provides the highest
level of accuracy of 98.66%. For AD-E classification, in the
D3 frequency subband, MAV provides the highest level of
accuracy of 98%. For BC-E classification, in the D3 fre-
quency subband, the minimum coefficient gives an accuracy
of 92.6%. For BD-E classification, in the D5 frequency
subband, MAV provides the highest level of accuracy of
96.3%. For CD-E classification, in the D3 frequency sub-
band, MAV gives the highest accuracy of 98%. For ABC-E
classification, in the D5 frequency subband, MAV gives the
highest accuracy of 99%. For ABD-E classification, in the D5
frequency subband, MAV gives the highest accuracy of 97%.
For ACD-E classification, in the D3 frequency subband,
MAV gives the highest accuracy of 98.25%. For BCD-E, in
the D5 frequency subband, MAV gives the highest accuracy
of 97%. For ABCD-E classification, in the D3 frequency
subband, the minimum coefficient gives the best accuracy of
100%. For AB-CD classification, in the D3 frequency sub-
band, approximate entropy gives an accuracy of 80%.
Moreover, we can infer that the feature that provides SVM
the best result is the Mean Absolute Value. *e highest
accuracy is achieved for A-E and ABCD-E classification,

which is 100%.*e lowest classification accuracy is achieved
for AB-CD classification.

From Table 2, we can observe the result for 17 different
classifications for the kNN classifier. For A-E classification,
approximate entropy from the D5 frequency subband gives the
highest accuracy of 100%. For B-E classification, maximum and
minimumcoefficients extracted fromD3,D4, andA5 frequency
subbands give poor results, but MAV extracted from D5 gives
the best result of 100%. ForC-E classification, in theD3,D4, and
D5 frequency subbands, STD gives the highest accuracy of 98%,
and in the A5 frequency subband, ApEp gives the accuracy of
79.5%. For D-E classification, in the D3 frequency subband,
MAV gives the best accuracy of 97%. For AB-E classification, in
the D5 frequency subband, MAV gives the highest accuracy of
100%. For AC-E classification, in the D3 frequency subband,
STD gives the highest accuracy of 98.7%. For AD-E classifi-
cation, in the D3 frequency subband, MAV gives the highest
accuracy of 98%. For BC-E classification, in the D5 frequency
subband, MAV gives a better result. *e highest accuracy
achieved for A-E, B-E, AB-E, and ABCD-E classification is
100%.*e lowest classification accuracy is achieved for AB-CD
and AB-CD-E classification, with the highest accuracy of 98.6%.
For BD-E classification, in the D5 frequency subband, Shannon
entropy gives the highest accuracy of 95.33%. For CD-E clas-
sification, in the D3 frequency subband, MAV gives the highest
accuracy of 97.66%. For ABC-E classification, in the D5 fre-
quency subband, MAV gives the highest accuracy of 99%. For
ABD-E classification, in the D5 frequency subband, MAV
provides the highest level of accuracy of 96.5%. For ACD-E
classification, in the D3 frequency subband, Shannon entropy
provides the highest level of accuracy of 98%. For BCD-E
classification, in the D5 frequency subband, MAV provides the
highest level of accuracy of 97%. For ABCD-E classification, in
the D3 frequency subband, the minimum coefficient gives the
best accuracy of 100%. For AB-CD classification, in the D5
frequency subband, MAV gives the best accuracy of 75%. For
AB-CD-E classification, in the D5 frequency subband, Shannon
entropy gives the best accuracy of 75%. Moreover, we can infer
that Mean Absolute Value and Shannon entropy are the fea-
tures that offer the best result for kNN.

From Table 3, we can observe the results for 16 different
classifications for the näıve Bayes classifier. For A-E clas-
sification, MAV from the D5 frequency subband gives the
highest accuracy of 100%. For B-E classification, the min-
imum coefficient extracted from D3, average power
extracted from D4, and ApEp extracted from A5 frequency
subband give poor results. Still, MAV extracted from D5
gives the best result of 99.5%. For C-E classification, in D3,
D4, D5, and A5 frequency subbands, the STD has been
extracted, and the highest accuracy of 100% has been
attained only in the D5 frequency subband. For D-E clas-
sification, in the D3 frequency subband, MAV gives the best
accuracy of 97.5%. For AB-E classification, in the D5 fre-
quency subband, STD provides the highest level of accuracy
of 99.7%. For AC-E classification, in the D3 frequency
subband, STD provides the highest level of accuracy of
98.7%. For AD-E classification, in the D3 frequency sub-
band, MAV provides the highest level of accuracy of 98%.
For BC-E classification, in the D5 frequency subband, ApEp
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Table 1: SVM results for University of Bonn dataset.

Sets (cases) Frequency subband Feature Classifier accuracy (%) Sensitivity (%) Specificity (%) PPV NPV MCC

A-E

D3 Max. coeff. 97 94 100 100 94.84 0.94
D4 Max. coeff. 98.5 97 100 100 97.2 0.97
D5 Ap. entropy 100 100 100 100 100 1
A5 Min. coeff. 94.5 90 99 99.09 91.51 0.89

B-E

D3 Min. coeff. 90 82 98 97.88 85.19 0.81
D4 Min. coeff. 91 85 97 96.72 87.78 0.83
D5 Ap. entropy 99.5 99 100 100 99.09 0.99
A5 Min. coeff. 92 88 96 95.72 89.53 0.81

C-E

D3 MAV 97.5 96 99 99.09 96.36 0.95
D4 Max. coeff. 98 97 99 99.09 97.42 0.96
D5 Ap. entropy 98 97 99 99.09 97.42 0.96
A5 Max. coeff. 79.5 65 94 92.46 74.46 0.62

D-E

D3 MAV 96 94 98 98.18 94.69 0.92
D4 MAV 94 91 97 97.27 92.07 0.88
D5 Ap. entropy 93.5 97 90 91.54 97.18 0.87
A5 Min. coeff. 75.5 66 85 83.87 72.61 0.53

AB-E

D3 Max. coeff. 92 85 95.5 91.18 92.88 0.82
D4 Min. coeff. 94.66 89 97.5 97.18 94.94 0.88
D5 Ap. entropy 99.67 100 99.5 99.09 100 0.99
A5 Min. coeff 95.3 90 98 96.27 95.3 0.89

AC-E

D3 MAV 98.33 96 99.5 99.09 98.13 0.96
D4 Min. coeff. 94.66 89 97.5 95.2 94.9 0.88
D5 MAV 98.66 97 99.5 99.09 98.57 0.97
A5 Min. coeff. 87 83 89 80.02 91.57 0.71

AD-E

D3 MAV 98 96 99 98.18 98.09 0.95
D4 MAV 96 93 97.5 95.87 96.8 0.91
D5 MAV 96.66 96 97 94.36 98.1 0.92
A5 Ap. entropy 84.66 67 93.5 84.68 85.3 0.64

BC-E

D3 Min. coeff. 92.6 86 96 92.02 93.4 0.83
D4 MAV 93 91 94 98.1 95.6 0.84
D5 MAV 98.6 97 99.5 99.1 98.54 0.97
A5 Min. coeff. 86.6 80 90 80 90 0.87

BD-E

D3 Min. coeff. 91.33 86 94 89.5 93.42 0.81
D4 MAV 92.66 90 94 88.9 95.11 0.84
D5 MAV 96.3 96 96.5 93.68 97.96 0.92
A5 Min. Coeff. 82.66 73 87.5 78.17 87.15 0.62

CD-E

D3 MAV 98 97 98.5 97.27 98.61 0.95
D4 MAV 96.6 93 98.5 97.09 96.6 0.92
D5 MAV 96.3 95 97 94.42 97.5 0.91
A5 STD 82.3 61 93 78.75 83.2 0.57

ABC-E

D3 Max. Coeff. 94.5 91 95.6 88.8 97.1 0.86
D4 MAV 96.6 93 98.5 97.1 96.6 0.92
D5 MAV 99 97 99.6 99.1 99.1 0.97
A5 Min. Coeff. 88.5 85 89.6 74.5 95 0.71

ABD-E

D3 Max. Coeff 92.5 87 94.33 84.01 95.6 0.80
D4 Shannon ent. 95.75 83 100 100 94.74 0.88
D5 MAV 97 97 97 91.69 99 0.92
A5 Min. Coeff. 87.75 82 89.66 73.1 93.82 0.69

ACD-E

D3 MAV 98.25 96 99 97.1 98.6 0.95
D4 STD 97.5 96 98 94.6 98.7 0.93
D5 MAV 97.25 96 97.66 93.6 98.6 0.93
A5 STD 86.25 63 94 79.28 88.6 0.61

BCD-E

D3 Min. Coeff. 92.75 83 96 94.60 89.55 0.81
D4 Shannon ent. 94.5 80 99.33 93.87 97.87 0.85
D5 MAV 97 96 97.33 98.66 98.6 0.92
A5 STD 85.75 63 93.33 88.43 88.43 0.60

ABCD-E

D3 Min. Coeff. 100 100 100 100 100 1
D4 Shannon ent. 87.4 51 96.5 79.9 88.9 0.56
D5 MAV 97.4 97 97.5 90.87 99.25 0.922
A5 Shannon ent. 88.2 57 96 79.2 90.00 0.60

AB-CD

D3 Approx. Ent. 80 76.5 83.5 83.09 78.5 0.60
D4 Approx. Ent. 64.5 42 87 78.6 60.2 0.33
D5 Min. Coeff. 72.5 71 74 73.9 72.02 0.45
A5 Approx. Ent. 69.75 68 71.5 70.7 69.6 0.391

Ap. entropy: approximate entropy; Max. coeff.: maximum coefficient; MAV: mean absolute value; Approx. entropy: approximate entropy.
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Table 2: kNN results for University of Bonn dataset.

Sets (cases) Frequency subband Feature Classifier accuracy (%) Sensitivity (%) Specificity (%) PPV NPV MCC

A-E

D3 Max. coeff. 97 94 100 100 94.84 0.94
D4 Min. coeff. 98.5 97 100 100 97.27 0.97
D5 Ap. entropy 100 100 100 100 100 1
A5 Min. coeff. 94.5 90 99 99.09 91.51 0.89

B-E

D3 Max. coeff. 92.5 90 95 95.55 91.36 0.85
D4 Min. coeff. 93.5 91 96 96.07 92.56 0.87
D5 MAV 100 100 100 100 100 1
A5 Min. coeff. 93.5 91 96 96.09 92.11 0.87

C-E

D3 STD 98 98 98 98.18 98.1 0.96
D4 STD 98 98 98 98.1 98.1 0.96
D5 MAV 98 97 99 99.1 97.3 0.96
A5 Approx. ent 79.5 75 84 82.8 77.6 0.59

D-E

D3 MAV 97 97 97 97.1 97.1 0.94
D4 Shannon ent. 95 96 94 94.4 96.1 0.90
D5 MAV 93.5 94 93 93.8 94.5 0.87
A5 Max. coeff. 73 72 74 75.2 73.5 0.47

AB-E

D3 Max. coeff. 95.6 88 99.5 98.8 94.4 0.9
D4 Max. coeff. 93.6 92 94.5 90.8 96 0.86
D5 MAV 100 100 100 100 100 1
A5 Min. coeff. 93.6 87 97 94.3 94.1 0.86

AC-E

D3 STD 98.7 98 99 98.1 99.1 0.97
D4 Max. coeff. 93.7 92 94.5 91 95.9 0.86
D5 MAV 98.7 97 99.5 99.1 98.6 0.97
A5 Ap. entropy 85 71 93 86.3 87.02 0.68

AD-E

D3 MAV 98 97 98.5 97.18 98.54 0.95
D4 MAV 95.3 93 96.5 93.73 96.61 0.89
D5 MAV 95.7 94 96.5 93.59 97.03 0.90
A5 Min. coeff. 80.7 67 87.5 73.42 84.39 0.56

BC-E

D3 Max. coeff. 95.33 88 99 98.09 94.59 0.89
D4 MAV 94 88 97 93.95 94.32 0.84
D5 MAV 98.66 97 99.5 99.09 98.61 0.97
A5 Ap. entropy 85.33 73 91.5 82.47 87.72 0.67

BD-E

D3 Max. coeff. 93.33 88 96 92.32 94.22 0.85
D4 MAV 94.66 88 98 95.72 94.41 0.88
D5 Shannon ent. 95.33 95 95.5 91.43 97.57 0.89
A5 Min. coeff. 81 70 86.5 74.02 85.32 0.57

CD-E

D3 MAV 97.66 96 98.5 97.33 98.07 0.94
D4 MAV 94.66 92 96 92.78 92.78 0.88
D5 MAV 95.33 94 96 92.54 92.54 0.89
A5 Ap. entropy 80 65 87.5 74.03 83.33 0.54

ABC-E

D3 Max. coeff. 94.5 89 98.33 95.78 96.57 0.89
D4 MAV 94.66 92 96 92.78 96.15 0.88
D5 MAV 99 97 99.66 99.09 99.05 0.97
A5 Min. coeff 88.25 70 94.33 80.65 90.53 0.67

ABD-E

D3 Min. coeff. 91.75 80 95.66 87.18 93.56 0.78
D4 MAV 95.75 88 98.33 95.78 96.25 0.88
D5 MAV 96.5 94 97.33 92.29 98.06 0.90
A5 Ap. entropy 86.25 68 92.33 77.01 89.89 0.63

ACD-E

D3 Shannon ent. 98 97 98.33 95.27 98.98 0.94
D4 Shannon ent. 97.25 96 97.66 94.20 98.7 0.93
D5 STD 96.25 93 97.33 92.82 97.73 0.90
A5 Ap. entropy 85.5 65 92.33 74.76 88.97 0.60

BCD-E

D3 Max. coeff. 93.5 84 96.66 89.63 94.83 0.82
D4 STD 94.25 85 97.33 92.16 95.15 0.84
D5 MAV 96.5 94 97.33 92.87 98.08 0.91
A5 Ap. entropy 85.5 64 92.66 76.47 88.62 0.60

ABCD-E

D3 Min. Coeff. 100 100 100 100 100 1
D4 Avg power 88.4 60 95.5 76.85 90.74 0.60
D5 MAV 97 93 98 92.72 98.3 0.90
A5 Avg power 88 59 95.25 75.84 90.39 0.59
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Table 2: Continued.

Sets (cases) Frequency subband Feature Classifier accuracy (%) Sensitivity (%) Specificity (%) PPV NPV MCC

AB-CD

D3 Ap. entropy 82.5 70 95 93.09 76.56 0.67
D4 MAV 59.75 56.5 63 60.9 59.09 0.19
D5 MAV 75 59.5 90.5 86.52 69.21 0.52
A5 Ap. entropy 73.25 51 95.5 92.79 66.59 0.52

AB-CD-E

D3 MAV 73.8 74 73.75 42.47 91.87 0.40
D4 MAV 64.2 85 59 34.21 94.17 0.35
D5 Shannon ent. 75 95 70 44.82 98.35 0.52
A5 Ap. entropy 66.4 65 66.75 33.23 88.37 0.26

Ap. entropy: approximate entropy; Min. coeff.: minimum coefficient, MAV: mean absolute value; Approx. entropy: approximate entropy; Shannon ent.:
Shannon entropy; STD: standard deviation.

Table 3: Näıve Bayes results for University of Bonn dataset.

Sets (cases) Frequency subband Feature Classifier accuracy (%) Sensitivity (%) Specificity (%) PPV NPV MCC

A-E

D3 STD 99.5 99 100 100 99.09 0.99
D4 MAV 99.5 99 100 100 99.09 0.99
D5 MAV 100 100 100 100 100 1
A5 Min. coeff. 93.5 91 96 96.33 92.35 0.87

B-E

D3 Min. coeff. 90.5 83 98 98 86.07 0.82
D4 Avg. power 92.5 86 99 98.88 89.05 0.86
D5 MAV 99.5 100 99 99.09 100 0.99
A5 Ap. entropy 92 87 97 97.09 89.08 0.85

C-E

D3 STD 100 100 100 100 100 1
D4 STD 98 98 98 98.18 98.18 0.96
D5 STD 98 97 99 99.09 99.09 0.96
A5 STD 79.5 62 97 94.90 72.96 0.63

D-E

D3 MAV 97.5 97 98 98.18 97.27 0.95
D4 MAV 94 91 97 97.18 92.98 0.88
D5 Ap. entropy 94 97 91 92.03 97.18 0.88
A5 Min. coeff. 75 60 90 88.86 70.34 0.54

AB-E

D3 Min. coeff. 93 85 97 94.62 93.08 0.84
D4 MAV 94.33 90 96.5 93.58 95.22 0.87
D5 STD 99.7 100 99.5 99.09 100 0.99
A5 Min. coeff. 94 86 98 96.22 93.52 0.86

AC-E

D3 STD 98.7 98 99 98.18 99.04 0.97
D4 MAV 94.3 90 96.5 93.58 95.22 0.87
D5 Ap. ent. 98.7 98 99 98.1 99.02 0.97
A5 STD 86.7 65 97.5 93.35 84.88 0.69

AD-E

D3 MAV 98 96 99 98.33 98.09 0.95
D4 MAV 96.3 93 98 96.27 96.71 0.92
D5 Ap. ent. 95.7 97 95 91.54 98.54 0.91
A5 Min. coeff. 82.7 60 94 84.38 82.86 0.59

BC-E

D3 Min. coeff. 93.3 83 98.5 97.07 92.3 0.85
D4 MAV 94.7 90 97 93.91 95.4 0.88
D5 Ap. ent. 98.7 97 99.5 99.10 98.5 0.97
A5 Max. coeff. 80.3 64 97.5 93.25 84.7 0.68

BD-E

D3 Max. coeff. 90 74 98 95.5 88.56 0.77
D4 MAV 93.3 85 97.5 94.75 93.04 0.85
D5 Ap. ent. 96 97 95.5 92.43 98.43 0.91
A5 Min. coeff. 83.3 60 95 86.46 83.17 0.61

CD-E

D3 MAV 97.7 97 98 96.27 98.54 0.94
D4 MAV 97.7 93 98.5 96.72 96.73 0.92
D5 Ap. ent. 96 97 95.5 92.09 98.52 0.91
A5 Min. coeff. 82.3 55 96 65.82 81.88 0.59

ABC-E

D3 Min. coeff. 94.5 85 97.67 94.02 95.33 0.85
D4 MAV 96.67 93 98.5 96.72 96.73 0.92
D5 MAV 99 98 99.33 98.18 99.35 0.97
A5 Max. coeff. 89.75 64 98.33 93.67 89.47 0.70
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provides the highest level of accuracy of 98.7%. For BD-E
classification, in the D5 frequency subband, ApEp gives the
maximum accuracy of 96%. For CD-E classification, in the
D3 and D4 frequency subbands, MAV gives the maximum
accuracy of 97.7%. For ABC-E classification, in the D5
frequency subband, MAV gives the maximum accuracy of
99%. For ABD-E classification, in the D5 frequency subband,
ApEp gives the maximum accuracy of 96.25%. For ACD-E
classification, in the D5 frequency subband, ApEp gives the
maximum accuracy of 97.6%. For ABCD-E classification, in
D3 frequency subband, the minimum coefficient gives the
best accuracy of 97.4%. For AB-CD classification, in the D3
frequency subband, approximate entropy gives the maxi-
mum accuracy of 82.5%. Moreover, from Table 3, we can
infer that the attributes which show the best result for näıve
Bayes are Mean Absolute Value and approximate entropy.
*e maximum accuracy is achieved for A-E and C-E, 100%.
*e lowest accuracy is achieved for AB-CD classification.

From Table 4, we can observe the results for 16 different
classifications for the Decision Tree classifier. For A-E
classification, MAV from the D5 frequency subband gives
the highest accuracy of 100%. For B-E classification, the
maximum coefficient extracted from D3 and D4 and STD
extracted from A5 frequency subband give poor results, but
MAV extracted from D5 give the best result of 100%. For
C-E classification, Shannon entropy extracted from D4 gives
the highest accuracy of 98. For D-E classification, in the D3
frequency subband, MAV gives the best accuracy of 96.5%.
For AB-E classification, in the D5 frequency subband, MAV
gives the maximum accuracy of 100%. For AC-E classifi-
cation, in the D3 frequency subband, STD provides the
highest level of accuracy of 98.67%. In the D5 frequency
subband, ApEp provides the highest level of accuracy of
98.67%. For AD-E classification, in the D3 frequency sub-
band, MAV provides the highest accuracy of 98%. For BC-E

classification, in the D5 frequency subband, MAV provides
the highest level of accuracy of 98.33%. For BD-E classifi-
cation, in the D5 frequency subband, MAV provides the
highest level of accuracy of 94.67%. For CD-E classification,
in the D3 frequency subband, MAV provides the highest
level of accuracy of 96.67%. For ABC-E classification, in the
D3 frequency subband, the minimum coefficient gives the
best accuracy of 94.5%. For ABD-E classification, in the D4
frequency subband, the maximum coefficient gives the
highest accuracy of 95.75%. For ACD-E classification, in the
D3 frequency subband, MAV gives the maximum accuracy
of 98%. For BCD-E classification, in the D5 frequency
subband, ApEp gives the maximum accuracy of 96.25%. For
ABCD-E classification, in the D3 frequency subband, the
minimum coefficient gives the best accuracy of 100%. For
AB-CD classification, in the D3 frequency subband, MAV
gives the maximum accuracy of 79.75%. Moreover, we can
infer that the attributes that show the Decision Tree’s best
result are Mean Absolute Value and Shannon entropy. *e
highest accuracy is achieved for A-E, B-E, AB-E, and ABCD-
E classifications, which is 100%. *e lowest classification is
performed for AB-CD classification.

3.2. Results from Clinical Real-Time Dataset. A real-time
clinical dataset from a healthy signal is distinguished from an
epileptic patient signal. We have applied DWT and gener-
ated the features for different subbands. *is work has
considered all the 21-channel datasets obtained for 24 sec.
*e features were generated from subbands D3–D5 and A5,
and these features were used for classification [15, 16, 18].
But the better result has been obtained only for the average
power feature derived from the D5 subband using the SVM
classifier. Table 5 shows the results. Here, we applied 10-fold
cross-validation for classification, since most of the useful

Table 3: Continued.

Sets (cases) Frequency subband Feature Classifier accuracy (%) Sensitivity (%) Specificity (%) PPV NPV MCC

ABD-E

D3 Min. coeff. 93.25 79 98 93.41 93.42 0.81
D4 Avg power 95.75 92 97 92.52 97.39 0.89
D5 Ap. ent. 96.25 93 97.3 92.66 97.71 0.90
A5 Min. Coeff. 87.25 60 96.3 84.76 88.05 0.63

ACD-E

D3 MAV 98.25 96 99 97.27 98.72 0.95
D4 STD 97.25 94 98.3 95.42 98.10 0.92
D5 Ap. ent. 97 97 97 91.87 98.97 0.92
A5 Min. coeff. 87.25 57 97.3 86.88 87.48 0.63

BCD-E

D3 Min. coeff. 93 78 98 92.67 93.23 0.80
D4 MAV 95 88 97.3 91.84 96.11 0.86
D5 Ap. ent. 97 97 97 91.87 98.99 0.92
A5 Min. coeff. 87.25 89 96.67 87.87 87.75 0.90

ABCD-E

D3 Min. coeff. 97.4 87 100 100 96.89 0.91
D4 Min. coeff. 89.8 60 97.25 85.51 90.81 0.65
D5 Ap. ent. 97.6 97 97.25 91.8 99.24 0.92
A5 Min. coeff. 90 60 97.5 86.09 90.78 0.66

AB-CD

D3 Ap. ent. 82.5 70 95 93.09 76.56 0.67
D4 Ap. ent. 64.5 42 87 78.68 60.23 0.33
D5 MAV 74 53.5 94.5 90.62 67.32 0.52
A5 MAV 74 53.5 94.5 90.62 67.32 0.52

Ap. entropy: approximate entropy; MAV: mean absolute value; STD: standard deviation.
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Table 4: Decision Tree results for University of Bonn dataset.

Sets (cases) Frequency subband Feature Classifier accuracy (%) Sensitivity (%) Specificity (%) PPV NPV MCC

A-E

D3 Avg. power 99 99 100 100 99.09 0.99
D4 MAV 99.5 99 100 99.09 99.09 0.99
D5 MAV 100 100 100 100 100 1
A5 Min. coeff. 92.5 92 93 93.54 92.38 0.85

B-E

D3 Max. coeff. 91.5 88 95 95.45 91.21 0.84
D4 Max. coeff. 90.5 89 92 92.4 89.8 0.81
D5 MAV 100 100 100 100 100 1
A5 STD 89.5 91 88 89.23 92.17 0.8

C-E

D3 STD 98 98 98 98.18 98.18 0.96
D4 Shannon ent. 98 98 98 98.33 98.18 0.96
D5 MAV 97.5 97 98 99.09 97.27 0.96
A5 Max. coeff. 80 77 83 82.47 79.25 0.6

D-E

D3 MAV 96.5 97 96 96.27 97.18 0.93
D4 MAV 92.5 93 92 92.87 93.16 0.85
D5 MAV 91.5 91 92 93.09 91.91 0.83
A5 Max. coeff. 69 70 68 69.35 69.8 0.38

AB-E

D3 Max. coeff. 92.67 88 95 91.09 94.35 0.84
D4 MAV 94.33 87 98 96.5 94.11 0.87
D5 MAV 100 100 100 100 100 1
A5 Min. coeff. 92 87 94.5 89.28 93.83 0.82

AC-E

D3 STD 98.67 98 99 98.18 99.04 0.97
D4 MAV 94.33 90 96.5 93.58 95.22 0.87
D5 Ap. ent. 98.67 98 99 98.1 99.02 0.97
A5 STD 86.67 89 97.5 93.35 84.88 0.69

AD-E

D3 MAV 98 97 98.5 97.18 98.54 0.95
D4 MAV 94.3 92 95.5 91.47 96.15 0.87
D5 Ap. ent. 94.67 91 96.5 93 95.7 0.88
A5 Min. coeff. 81.33 72 86 73.64 86.81 0.59

BC-E

D3 Max. coeff. 93.67 87 97 95.1 93.85 0.86
D4 MAV 93.3 88 96 93.28 94.39 0.85
D5 MAV 98.33 97 99 98.18 98.57 0.96
A5 Ap. ent. 81.67 71 87 76.02 85.68 0.59

BD-E

D3 Max. coeff. 88.3 82 91.5 84.34 91.31 0.74
D4 MAV 91.67 88 93.5 87.94 94.08 0.81
D5 MAV 94.67 92 96 93.09 96.33 0.88
A5 Min. coeff. 80.33 70 85.5 73.41 85.46 0.56

CD-E

D3 MAV 96.67 97 96.5 94.11 98.54 0.93
D4 MAV 94 93 94.5 90.18 96.64 0.87
D5 Ap. ent. 94 92 95 90.75 96.37 0.86
A5 Min. coeff. 76.66 65 82.5 65.82 82.73 0.47

ABC-E

D3 Min. coeff. 94.5 87 97 90.86 95.97 0.85
D4 MAV 94 93 94.5 90.18 96.65 0.87
D5 MAV 98.5 96 99.3 98.18 98.72 0.96
A5 Max. coeff. 89.75 68 99.1 87.32 90.43 0.7

ABD-E

D3 Min. coeff. 92.5 84 95.33 86.32 94.76 0.8
D4 Max. coeff. 95.75 90 97.66 93.61 96.75 0.8
D5 Ap. ent. 95.25 90 97 91.68 96.85 0.87
A5 Min. coeff. 85.75 72 90.3 72.18 90.86 0.62

ACD-E

D3 MAV 98 97 98.33 95.75 99.05 0.95
D4 STD 96.75 96 97 91.81 98.6 0.91
D5 Ap. ent. 95.5 91 97 92.18 97.13 0.88
A5 MAV 82.25 66 87.66 63.85 88.75 0.53

BCD-E

D3 Min. coeff. 91.25 85 93.33 81.72 94.93 0.77
D4 Avg. power 94.25 85 97.33 91.77 95.17 0.84
D5 Ap. ent. 96.25 95 96.6 91.2 98.35 0.9
A5 STD 82.75 63 89.33 68 88.15 0.53

ABCD-E

D3 Min. coeff. 100 100 100 100 100 1
D4 Min. coeff. 85.8 65 91 64.72 91.29 0.55
D5 Ap. ent. 96.8 95 97.25 90.93 98.75 0.9
A5 Avg. power 85.2 58 92 63.43 89.86 0.51

AB-CD

D3 MAV 79.75 74.5 85 84.23 77.09 0.63
D4 Avg. power 57.75 56.5 59 58.15 57.95 0.15
D5 Min. coeff. 73.5 68 79 76.59 72.88 0.48
A5 Avg. power 74 52 96 93.62 67.06 0.53
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information [48] required for distinguishing healthy and
seizure patient signals might be in subband D5.

4. Comparison with Existing State of the Art

Different researchers had proposed several techniques to
detect epileptic seizures from EEG signals. *eir works are
compared with this work and tabulated in Table 6. *e
methods that used the same dataset are shown for com-
parison. It has been noticed that several strategies, such as
DTCWT, empirical mode decomposition, CNN, and Fuzzy
Neural Network, are used to examine EEG to identify ep-
ileptic seizures from normal conditions.

*emajority of the researchers classified set A with set E for
the two-class classifications and got a classification accuracy
from 94.8% to 100% [19–31, 39–42]. Many researchers also
classified set B with set E and achieved a classification accuracy
from 82.88% to 99.25% [19, 25, 29, 31, 41]. On classifying set C
with set E, researchers got a classification accuracy from 88% to
99.6% [23, 25, 29, 31, 41]. For classification of set D with set E,
researchers got classification accuracy from 79.94% to 95.85%
[23, 25, 29, 31, 41]. We, too, have achieved 100% in A-E
classification in our work. We have got better results for B-E,
C-E, and D-E classifications. We achieved 100% accuracy for
B-E classification, whereas the maximum accuracy to date has
been 99.25% only. Similarly, for C-E classification, we achieved
100% accuracy, whereas the maximum accuracy to date has
been 99.6%only.We have achieved 97.5% forD-E classification,
but the maximum accuracy achieved to date has been 95.85%.

Researchers also combined two datasets from set A to set
D and classified them with set E. In the case of AB-E
classification, the maximum accuracy achieved to date has
been 99.2% [29]. In our work, we have achieved 100% ac-
curacy. Our accuracy is 98.6% for AC-E classification, but
the maximum accuracy achieved has been 99.5% [23]. For
AD-E classification, researchers got classification accuracy of
85.9% [30] and 97.08% [29], but we got better accuracy of
98%. Researchers got a classification accuracy of 98.25% [31],
but we got a better accuracy of 98.67%. In the case of BD-E
classification, we got a classification accuracy of 96.33%, but
the maximum accuracy achieved has been 96.5% [28].
Similarly, for CD-E classification, we got a classification
accuracy of 98%, but the maximum accuracy achieved is
100% [26]. Likewise, researchers have combined three dif-
ferent datasets and classified them with set E. Researchers
have achieved a classification accuracy of 98.68% [31] for
ABC-E, but we have achieved a better accuracy of 99% in our
work. For ACD-E classification, researchers have achieved
classification accuracy from 96.65% to 98.15%
[20, 25, 31, 34]. We have achieved a slightly better accuracy

of 98.25% in our work. We have also classified ABD-E,
which has not been computed in any previous work, and
have achieved an accuracy of 97%. We have achieved a
classification accuracy of 97% for BCD-E classification, but
the highest accuracy has been 97.72% [31].

*e other two-class classifications are ABCD-E and AB-
CD. For ABCD-E classification, our result is comparable
with those of other researchers. Researchers have achieved
accuracy ranging from 97.1% [28] to 100% [26]. In our work
also, we have reached an accuracy of 100%. Additionally, we
have combined set A with set B and set C with set D and
classified these two combined datasets. *is type of classi-
fication has not been attempted previously, and we got a
classification accuracy of 82.5%.

Furthermore, for three-class classification, AB-CD-E,
researchers have achieved classification accuracy ranging
from 95.6% to 98.8% [22, 28, 31, 35, 36]. We have got a lesser
accuracy of 95% only in our work.

Many studies have been carried out on applying en-
semble techniques to various aspects of science and engi-
neering. Ensemble models combine several base models to
achieve an overall model with high predictive ability. En-
semble models as used in various areas of science and en-
gineering are provided in [5, 43–45].

4.1.Discussion of Key Findings. For A-E classification, MAV,
STD, and average power extracted from the D5 frequency
subband are fed into kNN, NB, and DTclassifiers, giving the
best result of 100% accuracy. *e SVM classifier gives 100%
accuracy for approximate entropy features from the D5
frequency subband. For B-E classification, MAV, STD, and
average power taken out from the D5 frequency subband are
fed into kNN and DTclassifier, which gives the best result of
100% accuracy. For C-E classification, STD and average
power extracted from the D3 frequency subband are fed into
the NB classifier, giving the best result of 100% accuracy. For
D-E classification, MAV extracted from the D3 frequency
subband is fed into the NB classifier, which gives the best
result of 97.5% accuracy. For AB-E classification, MAV and
Shannon entropy extracted from the D5 frequency subband
are fed into the kNN and DT classifier, giving the best ac-
curacy result of 100% accuracy. For AC-E classification, STD
extracted from the D3 andD5 frequency subbands is fed into
kNN and DT classifier, giving the best result of 98.67%
accuracy. For AD-E classification, MAV extracted from the
D3 frequency subband is fed into all classifiers, giving the
best result of 98% accuracy. For BC-E classification, MAV
extracted from the D5 frequency subband is fed into kNN,
NB, and DT classifier, giving the best result of 98.67%

Table 5: Results for real-time clinical datasets using average power feature for different classifiers.

Sets (cases) Classifier Classifier accuracy (%) Sensitivity (%) Specificity (%) PPV NPV MCC

Healthy versus epileptic patients

SVM 91.667 83.33 100 100 87.5 0.85
kNN 75 50 100 100 67.5 0.58

Näıve Bayes 75 100 50 75 0 0
Decision Tree 50 0 100 0 50 0

SVM: support vector machine.
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Table 6: Comparison with the existing state of the art.

References Year Methods Cases CA
(%)

[30] 2006 DWT adaptive neurofuzzy network AD-E 85.9
[31] 2009 DWT+ApEn and surrogate data analysis ACD-E 96.65

[18] 2010 Line length feature and ANN
A-E 99.6

ACD-E 97.75
ABCD-E 97.5

[20] 2011 Statistical features from DWT+kNN classifier A-E 100.0
AB-CD-E 95.6

[21] 2012 Permutation entropy + SVM

A-E 100.0
B-E 82.88
C-E 88.0
D-E 79.94

[32] 2012 Statistical features from DWT+PCA+ANN classifier A-E 100.0

[17] 2012 ApEp + SampEp+ phase entropy 1 + phase entropy 2-Fuzzy Sugeno
classifier AB-CD-E 98.1

[29] 2013 DWT+permutation and sample entropy +Hurst exponent + genetic
algorithm+ extreme learning machine (ELM) A-E 94.8

[34] 2013 DWT+Hurst and Lyapunov exponent B-E 96.5

[24] 2014 Dual-tree complex wavelet transform+ kNN transform
A-E 100.0
CD-E 100.0

ABCD-E 100.0
[25] 2015 Empirical mode decomposition-based temporal spectral features + SVM A-E 100.0
[26] 2015 DTCWT+ complex-valued neural network AB-CD-E 98.28

[33] 2016 DTCWT+general regression neural network

A-E 100.0
B-E 98.9
C-E 98.7
D-E 93.3
AB-E 99.2

[28] 2016 Key-point based local binary pattern of EEG signals CD-E 99.45
AB-CD-E 98.8

[35] 2017 Tunable-Q wavelet transform+ kNN entropy + SVM AB-CD-E 98.6

[4] 2016 DWT – MVP+ SD+AVP – NB/kNN classifier

A-E 100.0
B-E 99.25
C-E 99.5
D-E 95.62
AB-E 99.16
AC-E 99.5
AD-E 97.08
BC-E 98.25
BD-E 96.5
CD-E 98.75
ABC-E 98.68
ACD-E 97.31
BCD-E 97.72
ABCD-E 97.1

[36] 2018 CNN AB-CD-E 88.67
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accuracy. For BD-E classification, MAV extracted from the
D5 frequency subband is fed into the SVM classifier, giving
the best result of 96.33% accuracy. For CD-E classification,
MAV extracted from the D3 frequency subband is fed into
the SVM classifier, giving the best result of 98% accuracy.
For ABC-E classification, MAV extracted from the D5
frequency subband is fed into SVM, kNN, and NB classifier,
which gives the best result of 99% accuracy. For ABD-E
classification, MAV extracted from the D5 frequency sub-
band is fed into the SVM classifier, which gives the best
result of 97% accuracy. For ACD-E classification, MAV
extracted from the D3 frequency subband is fed into SVM
and NB classifier giving the best result of 98.25% accuracy.
For BCD-E classification, MAV extracted from the D5
frequency subband is fed into SVM and NB classifier, which
gives the best result of 97% accuracy. For the ABCD-E
classification, minimum coefficient extracted from the D5
frequency subband is fed into SVM, kNN, and DTclassifier,
giving the best result of 100% accuracy. For AB-CD clas-
sification, ApEp extracted from the D3 frequency subband is
fed into kNN and NB classifier, which gives the best result of
82.5% accuracy. For AB-CD-E classification, Shannon

entropy from the D5 frequency subband is fed into the kNN
classifier, which gives the best result of 95% accuracy. From
Table 6, we can conclude that we have achieved 100% ac-
curacy for A-E, B-E, C-E, AB-E, and ABCD-E classifications,
which have been achieved previously. Additionally, we
achieved better accuracy for the dataset combinations of D-
E, BC-E, and ABC-E in the detection of epileptic seizure.

5. Conclusions

A new approach for identifying epileptic seizures by using
the time-frequency domain features and various classifiers is
proposed in this work. *e dataset developed by the Uni-
versity of Bonn in Germany achieves the highest classifi-
cation rate of 100%. *e overall accuracy of 91.67% is
obtained in real-time data from the Senthil Multispecialty
Hospital, India. *e proposed method is successful after
verifying and comparing it with the accuracies of the existing
methods in several existing literature. *e work also pre-
sented different base classifier machine learning models to
characterize EEG signals and accurately detect epileptic
seizures. One of the significant contributions of this work is

Table 6: Continued.

References Year Methods Cases CA
(%)

[37] 2018 CNN

A-E 100
B-E 99.8
C-E 99.1
D-E 99.4
AB-E 99.8
AC-E 99.7
BC-E 99.5
BD-E 99.6
CD-E 99.7
ABC-E 99.97
ACD-E 99.8
BCD-E 99.3
ABCD-E 99.7
AB-CD 99.9
AB-CD-E 99.1
AB-CDE 99.7

*is work (University of
Bonn dataset) 2020 DWT+SVM/KNN/NB/DT

A-E 100.0
B-E 100.0
C-E 100.0
D-E 97.5
AB-E 100.0
AC-E 98.67
AD-E 98.0
BC-E 98.67
BD-E 96.33
CD-E 98.0
ABC-E 99.0
ABD-E 97.0
ACD-E 98.25
BCD-E 97.0
ABCD-E 100.0
AB-CD 82.5
AB-CD-E 95.0

*is work (real-time
clinical dataset) 2020 DWT+SVM/KNN/NB/DT Healthy- epileptic

patient 91.67
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that if offered wide-ranging machine learning models on the
dataset, the proposed method could guarantee accurate
prediction. In contrast, other existing works on EEG
signals do not examine as many models explored in this
work. Examining the different base classifier models is
vital for generalization. *is is one of the strengths and
critical contributions of this paper. Since we could test the
validity of the results clinically, we would develop this
algorithm further to implement it in the hospitals in our
future work.
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